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Control Flow Analysis is a static technique for predicting safe and computable approximations to
the set of values that the objects of a program may assume during its execution. We present an analysis
for theπ -calculus that shows how names will be bound to actual channels at run time. The result of
our analysis establishes a super-set of the set of channels to which a given name may be bound and of
the set of channels that may be sent along a given channel. Besides a set of rules that permits one to
validate a given solution, we also offer a constructive procedure that builds solutions in low polynomial
time. Applications of our analysis include establishing two simple security properties of processes.
One example is thatP hasno leaks: P offers communication to the external environment through
public channels only and confines its secret channels within itself. The other example is connected
to theno read-up/no write-downproperty of Bell and LaPadula: once processes are given levels of
security clearance, we check that a process at a high level never sends channels to processes at a lower
level. C© 2001 Academic Press

1. INTRODUCTION

Program analysis aims at verifying properties of a program that hold in all executions—regardless of
the actual data upon which the program operates and regardless of the specific environment in which it
executes. Traditionally, program analysis has been used in compilers for “optimizing” the implementa-
tion of programming languages. More recently, program analysis has been used for validating security
and safety issues for concurrent and distributed systems.

Program analysis provides automatic and decidable methods for analysing properties of programs.
Since most properties implicitly involve questions about termination, the methods are intended to “err
on the safe side.” For each analysis an ordering is imposed on the properties, for example stipulating
that a property is larger than another if more values satisfy the former than the latter. The properties are
then interpreted in such a way that an analysis remains correct even when it produces a larger property
than ideally possible. This corresponds to producing a valid inference in a program logic for partial
correctness. However, program analysis is generally more efficient than program verification, and for
that reason more approximate, because the focus is on the fully automatic processing of large programs.

We wish to study these issues for concurrent languages. To investigate them in a pure form we shall
use theπ -calculus which is a model of concurrent communicating processes based on name passing.
Names may represent both data and channels that processes exchange. For example, ifa is the name of a
link to some information on the web home page of a user, then another user can access this information
througha, by performing a communication. We propose in Section 3 a Control Flow Analysis for the
π -calculus that requires only minor additions to the syntax: assigning explicit “channels” to the names
occurring in restrictions and assigning explicit “binders” to the names occurring in input prefixes. This
may be compared to the approach of [41], where processes are required to be on a special form. Roughly,
channels can be seen as representatives of semantic values that names may have, and binders as the
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actual placeholders in input prefixes. We review in Section 2 the syntax and the early semantics of the
π -calculus, and we introduce our annotations.

The result of our control flow analysis establishes a super-set of the set of channels to which a given
name may be bound and of the set of channels that may be sent along a given channel. These super-
sets give rise tosolutions(ρ, κ) and we formulate the control flow analysis as a specification of the
correctness of a candidate solution. This takes the form of a Flow Logic with judgements (ρ, κ) |=me P
(wheremeis an auxiliary function that associates channels or binders with the free names of the process
P), and a set of clauses that operate on them. We show that best solutions always exist and we establish
the semantic correctness of solutions in the form of a subject-reduction result. In Section 4 we then
present a procedure that generates solutions by inducing on the structure of processes, and operates in
O(N5) time with respect to the sizeN of the process under analysis.

We apply our analysis for statically checking two simple security properties. The first property is in
Section 5 and considers channels as divided into “secret” and “public” channels. Then, the dynamic
security requirement is that secret information may only be communicated over secret channels; in
other words, a process has no leaks of secret information. With simple checks on a solution, we obtain
a static test (calledconfinement) for a given process having no leaks, and we prove it safe with respect
to the dynamic notion (calledno leaks).

The second property presented in Section 6 is thesimple securityproperty that is part of the multi-level
security property (“no read-up/no write-down”) of Bell and LaPadula [5]. Processes are given levels of
security clearance, and the dynamic property demands that those at high level never send information
to those at low level, while communication in any other direction is permitted. A little extension to our
machinery is sufficient to define a static check (calleddiscreetness) for when a process respects the
classification hierarchy, and to prove it safe with respect to the dynamic notion (callednru/nwd).

Finally, we briefly discuss in Section 7 some related work on static analysis and security properties,
and in Section 8 we discuss some other uses of control flow analysis for concurrent processes.

2. THEπ -CALCULUS

Syntax

In this section we briefly recall theπ -calculus [29], a model of concurrent communicating processes
based on the notion ofname passing.

DEFINITION 2.1. LetN be an infinite set of names ranged over bya, b, . . . , x, y, . . . and letτ be a
distinguished element such thatN ∩ {τ } = ∅. Processes are built from names according to the syntax

P :: 0 | µ.P | P + P | P | P | (νx)P | [x = y] P | ! P,

whereµ may either bex(y) for input, or x̄ y for output orτ for silent moves. Hereafter, the trailing0
will be omitted (i.e., we writeµ instead ofµ.0). We assume that+ has lower precedence than| which
again has lower precedence than the other operators.

The prefixµ is the first atomic action that the processµ.P can perform. The input prefixx(y) binds
the namey in the prefixed process. Intuitively, some namey is received along the link namedx. The
output prefixx̄ y does not bind the namey which is sent alongx. The silent prefixτ denotes an action
which is invisible to an external observer of the system. Summation denotes nondeterministic choice,
so P + Q behaves either asP or asQ. The operator| describes parallel composition of processes.
Intuitively, P and Q in P | Q act independently and can also communicate when one performs an
input and the other an output on the same common link. The restriction operator (νx)P acts as a
declaration for the namex in the processP that it prefixes. In other words,x is a unique name in
P which is different from all the external names. The agent (νx)P behaves asP except that sending
and receiving alonḡx andx is blocked. A distinguished feature of theπ -calculus is to allow for an
enlargement of the scope of a restriction; we will expand on this below. Matching [x = y] P is anif–then
operator: processP is activated ifx = y. Finally, replication !P behaves asP|P| · · · as many times as
needed.
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The formulation of our analysis requires only a minor extension to the syntax of theπ -calculus,
namely annotating the binding occurrences of names within restrictions with “channels”χ , and the
binding occurrences of names within input prefixes with “binders”β. These syntactic extensions are
needed because of theα-conversion allowed by the structural congruence. They do not affect the dynamic
semantics of theπ -calculus; however, they heavily influence the way in which our static analysis of
Section 3 operates. From the point of view of the analysis, annotations place all the names of a process
in a finite set of equivalence classes. Through them, the analysis computes (a super-set of) the actual
links that a name can denote.

DEFINITION 2.2. LetB be a nonempty set of binders ranged over byβ, β ′, . . . ; and letC be a non
emptyset of channels ranged over byχ, χ ′, . . . such thatB ∩ C = ∅; moreover callB ∪ C the set of
markers. Then (annotated) processes, denoted byP, P1, P2, Q, R, . . . ∈ Procare built as in Definition
2.1, where the (annotated) input prefixx(yβ) replacesx(y) and the (annotated) restriction (νxχ )P
replaces (νx)P.

Semantics

Theπ -calculus can be equipped with an early as well as a late semantics; in this paper we consider the
early operational semantics defined in SOS style, because it is emerging as a standard for transitional
semantics and appears to be more suitable for the security issues studied in the next sections. We follow
[30], in particular for the distinction between free and bound input.

The labels of transitions areτ for silent actions,xy for free input,x̄ y for free output,x(yχ ) for bound
input andx̄(yχ ) for bound output. Roughly speaking, the effect of a bound output is moving a (νxχ )
operator from a process to a label, as inQ = (νyχ )x̄ y.P

x̄(yχ )−→P. The intuition behind this operation is to
make the namey, which is private toQ, available to the external environment. The bound output then
enlarges the scope of the declaration, and for this reason it is sometimes referred to asscope extrusion
in the literature. When coupled with a bound inputx(yχ ), the extrusion originates a communication and
reestablishes the removed restriction.

As usual, we will useµ as a metavariable for the labels of transitions (although it is formally distinct
from the metavariable for prefixes with which it has a few cases in common). We recall the notion of
free namesfn(µ), bound namesbn(µ), and namesn(µ)= fn(µ)∪ bn(µ) of a labelµ. Thesubjectof an
input or output action is the channel (x) used for the communication and theobject is the entity (y)
being transmitted.

Kind µ fn(µ) bn(µ)

Silent move τ ∅ ∅
Free input and output xy, x̄ y {x, y} ∅
Bound input and output x(yχ ), x̄(yχ ) {x} {y}

Functionsfn andn are extended in the obvious way to processes.

Congruence

Below we shall need thestructural congruence≡ on processes, defined as in [30] to be the least
congruence satisfying:

• if P andQ areα-equivalent (P=α Q) thenP≡ Q; to be more precise: (νxχ )P≡ (νyχ )(P{y/x}) if
y /∈ f n((νxχ )P), andx(yβ)P ≡ x(zβ)(P{z/y}) if z /∈ f n(x(yβ)P);

• (Proc/≡,+, 0) and (Proc/≡, |, 0) are commutative monoids;

• (νxχ )(νyχ
′
)P ≡ (νyχ

′
)(νxχ )P, if x 6= y, (νxχ )(P1 | P2) ≡ (νxχ )P1 | P2 if x /∈ f n(P2), and

(νxχ )P ≡ P if x /∈ f n(P);

• ! P ≡ P | ! P.
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TABLE 1

Early Transition System for theπ -Calculus

Tau: τ.P
τ→ P Out: x̄ y.P

x̄ y→ P

FreeIn: x(yβ ).P
xw→ P{w/y} Bound In: x(yβ ).P

x(yx )−→ P

Par: P1
µ→ Q1

P1|P2
µ→ Q1|P2

, bn(µ) ∩ f n(P2) = ∅ Sum: P1
µ→ Q1

P1+ P2
µ→ Q1

Res: P
µ→ Q

(νxχ )P
µ→ (νxχ )Q

, x /∈ n(µ) Open: P
x̄ y→ Q

(νχ )P
x̄(yχ )−→ Q

, y 6= x

Close: P1
x̄(yχ )−→ Q1,P2

x(yχ )−→ Q2

P1|P2
τ→ (νyχ )(Q1|Q2)

Com: P1
x̄(y)−→ Q1,P2

x(y)−→ Q2

P1|P2
τ→ Q1|Q2

Var: P′ ≡ P
µ→ Q≡ Q′

P′ µ→ Q′
Match: P

µ→ Q

[x=x] P
µ→ Q

Note thatα-conversions do not affect markers. Also, we permit exchange restrictions only when the re-
stricted names are different, because otherwise (νxχ )P ≡ (νxχ

′
)P and the marker then loses its identity.

Table 1 shows the (annotated)early transition system of theπ -calculus defined in SOS style.

A different treatment of matching is presented in [7]. There, the structural congruence law
[x = x] P≡ P is assumed and the transitional ruleMatch is removed from Table 1. This latter change
requires an accurate handling of free names, otherwise applying the congruence rule from right to left
may introduce new free names ad libitum. The need of handling similar kinds of low level details is a
recurrent problem in congruence-based semantics, and in [7] we illustrate one of the techniques needed
to deal with them.

We conclude this section with a straightforward fact that will be repeatedly used in the proofs later on.

Fact 2.3. If P
µ→Q then

(1) If µ = τ thenfn(P) ⊇ f n(Q).

(2) If µ = x̄ y thenfn(P) ⊇ {x, y} ∪ fn(Q).

(3) If µ = x̄(yχ ), xy, x(yχ ) thenfn(P) ⊇ {x} ∪ (fn(Q)\{y}).

3. CONTROL FLOW ANALYSIS

The result of analysing a processP is a pair (ρ, κ). The first component,ρ, is an abstract environment
which gives information about the set of channels to which names can be bound; the second component,
κ, is an abstract channel environment which gives information about the set of channels that can flow
over given channels.

One way to view the pair (ρ, κ) is as a record of the actual communications taking place during
it execution. Whenever a valueaval is output on some channelbchan, as inbchanaval, it must be duly
recorded in theκ component, intuitively by ensuring thataval ∈ κ(bchan). Similarly, whenever a variable
cvar inputs a value on some channelbchan, as inbchan(cvar), this must also be duly recorded in theρ
component, intuitively by ensuring thataval ∈ ρ(cvar) for all aval ∈ κ(bchan).

We now make this more precise (also paying attention to an additional marker environmentmefor
associating names with markers).

3.1. Validation

To validate the correctness of a proposed solution (ρ, κ) we state a set of clauses operating upon
judgments of the form:

(ρ, κ) |=me P

The purpose ofme, ρ, andκ is clarified by:
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• me: N → (B ∪ C) is themarker environmentthat maps a name (in particular the free names of a
process) to the appropriate channel or binder used when the name was introduced; some(x) will be the
marker (inB or C) where the current namex is bound.

• ρ :B→℘(C) is theabstract environmentthat maps a binder to the set of channels that it can be
bound to; more precisely,ρ(β) must include the set of channels thatβ could evaluate to. We shall allow
one to regard the abstract environment as a functionρ : (B∪ C)→℘(C) by setting∀χ ∈ C : ρ(χ )={χ}.

We write ⊥ for the function that maps everything to∅. However, we continue to assume that
∀χ ∈ C :⊥ (χ )={χ}.
• κ : C → ℘(C) is theabstract channel environmentthat maps a channel to the set of channels that

can be communicated over it.
More precisely,κ(χ ) must include the set of channels that can be communicated over the channelχ .

Also, here we write⊥ for the function that maps everything to∅.
Note that we use a marker environment, because the identity of names is not preserved underα-

conversions (see the ruleVar). Indeed, it would not suffice to “α-rename the program apart” because this
property is not preserved under reduction, in particular when scope extrusion is required. For example,
the process (νaχ

′
)(a(yβ).a(zβ

′
).ȳz | !(νxχ )āx) performs a first communication, thenα-converts the

namex to perform a second communication and becomes (νaχ
′
)(νxχ )(νwχ )(x̄w | !(νxχ )āx).

A further comment on annotations may clarify their subsequent use. A typical schema for annotating
the occurrences of restricted names and of objects of inputs in a processP is to keep all theχ ’s and the
β ’s distinct; also, the marker environmentmeshould map the free names ofP to fresh channels. Note that
annotating a process in this way is merely mechanical and involves no knowledge about its behaviour.

The detailed definition of our control flow analysis is given by the flow logic in Table 2, where
we often writeme[x 7→ η] to indicate that theme is updated with the new association of the namex
with the markerη, overwriting a possible previous association. All the rules dealing with a compound
process require that the components are validated, apart from the one for matching. Moreover, the
second conjunct of the rule for output requires that the set of channels that can be communicated along
each element ofρ(me(x)) includes the channels to whichy can evaluate. Symmetrically, the rule for
input demands that the set of channels that can pass alongx is included in the set of channels to whichy
can evaluate. In the clause for restriction, we can simply update the marker environment asme[x 7→ χ ]
becauseρ(χ ) = {χ} by definition. The condition for matching says that the continuationP needs to be
validated if there is at least one channel to which bothx andy can evaluate.

EXAMPLE 3.1. Consider the following process

P = a
(
xβ0
)
.
(
νbχ0

)(
νcχ1

)((
b̄a.x̄ x.b

(
xβ1
)
.x̄c+ b̄d.āc

) ∣∣ b
(
xβ2
)
.b̄x
) ∣∣ d

(
xβ3
)
,

the marker environmentmesuch thatme(a) = χ2 andme(d) = χ3, and the pair (ρ, κ) defined as
follows, wherei ∈ {0, 1, 2, 3, 4}:

ρ(βi ) =
{
{χ0, χ1, χ2, χ3, χ4} if i = 1, 2

{χ1, χ2, χ3, χ4} if i = 0, 3
κ(χi ) =

{
{χ0, χ1, χ2, χ3, χ4} if i = 0

{χ1, χ2, χ3, χ4} if i ≥ 1.

TABLE 2

Control Flow Analysis for theπ -Calulus

(ρ, κ) |=me 0 iff true

(ρ, κ) |=me τ.P iff (ρ, κ) |=me P

(ρ, κ) |=me x̄ y.P iff (ρ, κ) |=me P ∧ ∀χ ∈ ρ(me(x)) : ρ(me(y)) ⊆ κ(χ )

(ρ, κ) |=me x(yβ ).P iff (ρ, κ) |=me[y7→β] P ∧ ∀χ ∈ ρ(me(x)) : κ(χ ) ⊆ ρ(β)

(ρ, κ) |=me P1 + P2 iff (ρ, κ) |=me P1 ∧ (ρ, κ) |=meP2

(ρ, κ) |=me P1 | P2 iff (ρ, κ) |=me P1 ∧ (ρ, κ) |=meP2

(ρ, κ) |=me (νxχ )P iff (ρ, κ) |=me[x 7→χ ] P

(ρ, κ) |=me [x = y] P iff (ρ(me(x)) ∩ ρ(me(y)) 6= ∅ ⇒ (ρ, κ) |=meP

(ρ, κ) |=me! P iff (ρ, κ) |=meP
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A simple check shows that (ρ, κ) |=me P. The objectsxof the inputs on channelsaanddare kept distinct
for the analysis, because the annotationsβ0 andβ3 place them in two different equivalence classes (but
this does not influence the dynamic semantics). The reader may have noticed that (ρ, κ) above is not the
least solution, e.g., because of the presence ofχ4. This kind of useless channel may occur in solutions,
although they do appear neither in annotations nor in the image of a marker environment—nor will they
occur in the solutions constructed according to Section 4 (see also Theorem 3.4).

The formulation of our control flow analysis borrows from standard ideas for functional languages.
Our current formulation is insensitive to flow and context [31], so terms can be rearranged without
affecting the acceptability of a candidate solution; in effect, restrictions can be lifted to the top level, or
to the nearest enclosing !, and prefixing of actions can be replaced by their parallel composition. While
more complex flow analyses can be devised, these are not necessary for the applications to security
studied here.

3.2. Existence of Solutions

So far we have only considered a procedure for validating whether or not a proposed solution (ρ, κ)
is in fact acceptable. We now show that there always exists a least choice of (ρ, κ) that is acceptable in
the manner of Table 2.

DEFINITION 3.2. The set of proposed solutions can be partially ordered by setting (ρ, κ) v (ρ ′, κ ′) iff
∀β ∈ B : ρ(β) ⊆ ρ ′(β) and∀χ ∈ C : κ(χ ) ⊆ κ ′(χ ).

It is immediate that this suffices for making the set of proposed solutions into a complete lattice;
using standard notation we write (ρ, κ) t (ρ ′, κ ′) for the binary least upper bound (defined pointwise),
u I for the greatest lower bound of a setI of proposed solutions (also defined pointwise), and (⊥,⊥)
for the least element.

DEFINITION 3.3. A setI of proposed solutions is a Moore family if and only if it containsuJ for all
J ⊆ I (in particular forJ = ∅ and forJ = I).

This concept plays an important role in the theory of Abstract Interpretation [11, 31]; in other branches
of computer science it is sometimes called the model intersection property. WhenI is a Moore family it
contains a greatest element (u∅) as well as a least element (uI). The following theorem then guarantees
that there always is a least solution to the specification in Table 2 (just take (¯ρ, κ̄) = (⊥,⊥) in the
statement below).

THEOREM 3.4. For all me, P and(ρ̄, κ̄) the set

{(ρ, κ) | (ρ, κ) |=me P ∧ (ρ, κ) w (ρ̄, κ̄)}

is a Moore family.

Proof. We proceed by structural induction onP (since Table 2 is defined by structural induction on
P). Let

J ⊆ {(ρ, κ) | (ρ, κ) |=m P ∧ (ρ, κ) w (ρ̄, κ̄)}

and letJ and (ρ j , κ j ) be given such thatJ = {(ρ j , κ j ) | j ∈ J}. Next define

(ρ ′, κ ′) = uJ = u{(ρ j , κ j ) | j ∈ J}

and recall that the greatest lower bound is defined pointwise and hence that (ρ ′, κ ′) w (ρ̄, κ̄). It remains
to check that (ρ ′, κ ′) |=me P. For this we proceed by cases onP making use of the induction hypothesis.
Most cases are straightforward and here we only consider two of the more interesting cases.

The Case x(yβ).P. Since∀ j ∈ J : (ρ j , κ j ) |=me x(yβ).P we have

∀ j ∈ J : (ρ j , κ j ) |=me[y7→β] P and ∀ j ∈ J : ∀χ ∈ ρ j (me)(x)) : κ j (χ ) ⊆ ρ j (β)
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Using the induction hypothesis and thatρ ′ is defined in a pointwise manner, we then obtain

(ρ ′, κ ′) |=me[y7→β] P and ∀χ ∈ ρ ′(me(x)) : κ ′(χ ) ⊆ ρ ′(β)

thus establishing the desired (ρ ′, κ ′) |=me x(yβ).P.

The Case[x = y] P. Since∀ j ∈ J : (ρ j , κ j ) |=me [x = y] P we have

∀ j ∈ J : (ρ j (me(x)) ∩ ρ j (me(y)) 6= ∅ ⇒ (ρ j , κ j ) |=me P

Using the induction hypothesis and the pointwise definition ofρ ′, we then obtain

(ρ ′(me(x)) ∩ ρ ′(me(y)) 6= ∅ ⇒ (ρ ′, κ ′) |=me P

thus establishing the desired (ρ ′, κ ′) |=me [x = y] P.

3.3. Correctness

We state now some auxiliary results that will allow us to establish the semantic correctness of our
analysis; they are all independent of the operational semantics and only rely on Table 2.

LEMMA 3.5. Assume that∀x ∈ fn(P) : me1(x)=me2(x); then (ρ, κ) |=me1 P if and only if
(ρ, κ) |=me2 P.

Proof. A straightforward structural induction onP.

LEMMA 3.6. Assume that me(y) = me(z); then(ρ, κ) |=me P if and only if(ρ, κ) |=me P{z/y}.
Proof. The proof is by induction on the size ofP. Most cases are straightforward using the fact that
∀x : me(x) = me(x{z/y}). This leaves us with the cases where the marker environment is modified and
here we consider only a typical case.

The Case P= u(vβ).Q. If v = y the result follows from the above remarks so assume thatv 6= y.
Letw be a fresh name, i.e., letw /∈ fn(Q) ∪ {z, y}, in casez= v, and letw = v in casez 6= v; in both
casesme[w 7→ β](z) = me[w 7→ β](y). Then

P{z/y} = u{z/y}(wβ).(Q{w/v}{z/y})

and it follows that

(ρ, κ) |=me P{z/y}

amounts to

(ρ, κ) |=me[w 7→β] Q{w/v}{z/y} and ∀χ ∈ ρ(me(u{z/y})) : κ(χ ) ⊆ ρ(β)

and by the induction hypothesis this amounts to

(ρ, κ) |=me[w 7→β] Q{w/v} and ∀χ ∈ ρ(me(u)) : κ(χ ) ⊆ ρ(β),

which by Lemma 3.5 amounts to

(ρ, κ) |=me[w 7→β,v 7→β] Q{w/v} and ∀χ ∈ ρ(me(u)) : κ(χ ) ⊆ ρ(β)

so that by the induction hypothesis this amounts to

(ρ, κ) |=me[w 7→β,v 7→β] Q and ∀χ ∈ ρ(me(u)) : κ(χ ) ⊆ ρ(β),
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which by Lemma 3.5 amounts to

(ρ, κ) |=me[w 7→β] Q and ∀χ ∈ ρ(me(u)) : κ(χ ) ⊆ ρ(β),

which again amounts to

(ρ, κ) |=me P

as was to be shown.

COROLLARY 3.7. Assume that z/∈ fn(P) and η ∈ B ∪ C; then (ρ, κ) |=me[y7→η] P if and only if
(ρ, κ) |=me[z7→η] P{z/y}.

Proof. By Lemma 3.6

(ρ, κ) |=me[y7→η,z7→η] P iff ( ρ, κ) |=me[y7→η,z7→η] P{z/y}

and by Lemma 3.5 andz /∈ f n(P)

(ρ, κ) |=me[y7→η] P iff ( ρ, κ) |=me[z7→η] P{z/y}

as was to be shown.

LEMMA 3.8. Assume that P≡ Q; then(ρ, κ) |=me P if (ρ, κ) |=me Q.

Proof. The proof is by induction on the construction ofP ≡ Q and here we only consider the two
harder cases.

The Case ofα-Equivalence. Consider the subcase (νxχ )P≡ (νyχ )(P{y/x}) wherey /∈ fn((νxχ )P).
We calculate that

(ρ, κ) |=me (νxχ )P

is equivalent to

(ρ, κ) |=me[x 7→χ ] P,

which by Corollary 3.7 is equivalent to

(ρ, κ) |=me[y7→χ ] P{y/x}

(since eithery /∈ f n(P) or y = x), which is equivalent to

(ρ, κ) |=me (νyχ )(P{y/x})

as was to be shown. The other subcase is similar.

The Cases. (νxχ )(P1 | P2) ≡ (νxχ )P1 | P2 (if x /∈ fn(P2)) and (νxχ )P ≡ (if x /∈ fn(P)) are
easy consequences of Lemma 3.5 and the case (νxχ )(νyχ

′
)P ≡ (νyχ

′
)(νxχ )P (if x 6= y) is straight-

forward.

LEMMA 3.9. Assume that(ρ, κ) |=me P and me(w) ∈ ρ(me(z)); then(ρ, κ) |=me P{w/z}.
Proof. The proof is by structural induction onP. Most cases are straightforward using the fact

∀x : ρ(me(x{w/z})) ⊆ ρ(me(x)).

Here we only consider the two harder cases.



76 BODEI ET AL.

The Case P= u(vβ).Q. By Lemma 3.8 (sinceα-equivalence is part of the structural congru-
ence) we may without loss of generality assume thatv is neitherw nor z. Then we may calculate
that

(ρ, κ) |=me u(vβ).Q

amounts to

(ρ, κ) |=me[v 7→β] Q and ∀χ ∈ ρ(me(u)) : κ(χ ) ⊆ ρ(β),

which, by the induction hypothesis and the fact stated above, imply that

(ρ, κ) |=me[v 7→β] Q{w/z} and ∀χ ∈ ρ(me(u{w/z})) : κ(χ ) ⊆ ρ(β),

which is equivalent to the required

(ρ, κ) |=me (u(vβ).Q){w/z}.

The Case P= [x = y]Q. Our assumption (ρ, κ) |=me P amounts to

(ρ(me(x)) ∩ ρ(me(y)) 6= ∅ ⇒ (ρ, κ) |=me Q

and our goal is to show

ρ(me(x{w/z})) ∩ ρ(me(y{w/z})) 6= ∅ ⇒ (ρ, κ) |=me Q{w/z}

as this amounts to (ρ, κ) |=me P{w/z}. By the induction hypothesis it suffices to show that

ρ(me(x{w/z})) ∩ ρ(me(y{w/z})) 6= ∅ ⇒ ρ(me(x)) ∩ (ρ(me(y)) 6= ∅

that is immediate using the fact stated at the beginning of the proof.

Subject Reduction

To establish the semantic correctness of our analysis we rely on the definition of the early semantics
in Table 1 as well as on the analysis in Table 2. The subject reduction result below applies toall the
solutions of the analysis and hence in particular to the least. The operational semantics only rewrites
processes at “top level” where it is natural to demand that all free names are bound to channels (rather
than to binders); this is formalised by the conditionme[fn(−)]⊆ C. In the statement below, we write
(ρ, κ) |=Cme P as a shorthand for (ρ, κ) |=me P ∧me[fn(P)] ⊆ C.

THEOREM 3.10. If (ρ, κ) |=Cme P and P
µ→Q we have:

if µ = τ then(ρ, κ) |=Cme Q; (1)

if µ = x̄ y then(ρ, κ) |=Cme Q, and me(y) ∈ κ(me(x)); (2a)

if µ = x̄(yχ ) then(ρ, κ) |=Cme[y7→χ ] Q, andχ ∈ κ(me(x)); (2b)

if µ = xy and me(y) ∈ κ(me(x)) then(ρ, κ) |=Cme Q; (3a)

if µ = x(yχ ) andχ ∈ κ(me(x)) then(ρ, κ) |=Cme[y7→χ ] Q. (3b)

Proof. The proof is by induction on the construction ofP
µ→ Q and with subcases depend-

ing on whether case (1), (2a), (2b), (3a), or (3b) applies. Throughout assume thatme[fn(P)] ⊆ C,
(ρ, κ) |=me P (i.e. (ρ, κ) |=Cme P) andP

µ→ Q.
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The Case (1). Thatme[fn(Q)] ⊆ C is immediate from Fact 2.3. It remains to show that (ρ, κ) |=m Q.
In the case ofTauthis is immediate; clearly the axiomsOut, FreeIn, andBoundIndo not apply. Thanks
to Lemma 3.8 and the induction hypothesis (1), the property is preserved by the rulesVar, Par, Sum,
Res, andMatch; clearly the ruleOpendoes not apply.

For suitableQ1 andQ2 such thatQ = Q1 | Q2, in the case of ruleClosethe induction hypothesis
(2b) ensures that

(ρ, κ) |=me[y7→χ ] Q1∧χ ∈ κ(me(x))

and the induction hypothesis (3b) ensures that

(ρ, κ) |=me[y7→χ ] Q2

thereby establishing the desired

(ρ, κ) |=me (νyχ )(Q1 | Q2).

The case of ruleComis similar but uses the induction hypotheses (2a) and (3a).

The Case (2a). Thatme[fn(Q)] ⊆ C is immediate from Fact 2.3; furthermoreρ(me(x)) = {me(x)} ⊆
C andρ(me(y)) = {me(y)} ⊆ C. It remains to show that (ρ, κ) |=me Q and thatme(y) ∈ κ(me(x)).
In the case ofOut it follows from Table 2 that (ρ, κ) |=me Q and∀χ ∈ ρ(me(x)) : ρ(me(y)) ⊆ κ(χ ),
which amounts tome(y)∈ κ(me(x)); the axiomsTau, FreeIn, andBoundIndo not apply. Thanks to
Lemma 3.8 and the induction hypothesis (2a) the property is preserved by the rulesVar, Par, Sum, Res,
andMatch; clearly the rulesOpen, Close, andComdo not apply.

The Case (2b). That (me[y 7→χ ])[ f n(Q)] ⊆ C is immediate from Fact 2.3; furthermoreρ(me(x))=
{me(x)}⊆ C. It remains to show that (ρ, κ) |=me[y7→χ ] Q and thatχ ∈ κ(me(x)). None of the axioms
Tau, Out, FreeIn, andBoundInnor any of the rulesCloseor Comcan apply. Thanks to Lemma 3.8
and the induction hypothesis (2b) the property is preserved by the rulesVar, Par, Sum, Res, andMatch.
In the case of ruleOpenthe induction hypothesis (2a) andy 6= x ensure that (ρ, κ) |=me[y7→χ ] Q and
(me[y 7→ χ ])(y) ∈ κ((me[y 7→ χ ])(x)), which establish the desired result.

The Case (3a). Here we also assume thatme(y) ∈ κ(me(x)) so thatme(y) ∈ C. Thenme[ f n(Q)] ⊆
C is immediate from Fact 2.3 that also impliesρ(me(x))={me(x)} ⊆ C; it remains to show that
(ρ, κ) |=me Q.

In the case ofFreeIn, P is on the formx(wβ). R and Q is R{y/w}. By Lemma 3.8 (sinceα-
equivalence is part of the structural congruence) we may use ruleVar to guarantee thatw 6= y. From
(ρ, κ) |=me x(wβ).R we have that (ρ, κ) |=me[ω 7→β] R and κ(me(x)) ⊆ ρ(β). It follows that
me(y) ∈ ρ(β), which may be rewritten as (me[w 7→ β])(y) ∈ ρ((me[w 7→ β])(w)). From Lemma 3.9
we then get (ρ, κ) |=me[w 7→β] R{y/w} and the desired (ρ, κ) |=me R{y/w} follows, by Lemma 3.5.

Neither the axiomsTau, Out, andBoundIn, nor the rulesOpen, Close, orComare applicable. Thanks
to Lemma 3.8 and induction hypothesis (3a) the property is preserved by the rulesVar, Par, Sum, Res,
andMatch.

The Case (3b). Here we also assume thatχ ∈ κ(me(x))⊆ C. From Fact 2.3 we have
(me[y 7→χ ])[ f n(Q)]⊆ C and ρ(me(x))={me(x)}⊆ C so that it remains to show that
(ρ, κ) |=me[y 7→χ ] Q.

The axiomBoundInapplies in this case soP has the formx(yβ).Q. Let noww /∈ {y} ∪ f n(Q) and
note thatx(wβ).R ≡ x(yβ).Q for R = Q{w/y}. SinceQ ≡ R{y/w} it follows from Lemma 3.8 that
it suffices to show that (ρ, κ) |=me[y7→χ ] R{y/w}. From (ρ, κ) |=me P and Lemma 3.8 it follows that
(ρ, κ) |=me x(wβ).R and hence that (ρ, κ) |=me[w 7→β] R andκ(me(x)) ⊆ ρ(β). Using Lemma 3.5 it
now follows that (ρ, κ) |=me[w 7→β][ y7→χ ] R. As in the previous case we have (me[w 7→ β][ y 7→ χ ])(y)
∈ ρ((me[w 7→ β][ y 7→ χ ](w)) and Lemma 3.9 gives (ρ, κ) |=me[w 7→β][ y7→χ ] R{y/w}. The desired
(ρ, κ) |=me[y7→χ ] R{y/ω} follows by Lemma 3.5.

Neither the axiomsTau, Out, andFreeIn, nor the rulesOpen, Close, or Comare applicable. Thanks
to Lemma 3.8 and induction hypothesis (3b) the property is preserved by the rulesVar, Par, Sum, Res,
andMatch.
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The inclusions occurring in the above items mildly constrain the environment where the process
under validation operates. If one only considers closed systems, which can only performτ moves, the
inclusions become useless, as all names are bound; in essence we retain only item (1).

4. CONSTRUCTION OF SOLUTIONS

There is also a constructive procedure for obtaining the least solution which operates inO(N5)
time in the size of processes (see [18, 31]). To describe it we shall concentrate on a process,P?,
of interest as well as a marker environment,me?, giving the binders and channels of free names in
the process. To obtain a finite algorithm we prefer to restrict our attention to a finite universe,U?,
containing all the relevant binders and channels and the setme[ fn(P?)] =def {me(x) | x ∈ fn(P?)}.
We shall say that the size,N, of P? is the maximum of the number of symbols inP? and the num-
ber of elements inU?. In case we take an annotation which has all markers different from each
other and disjoint from the image of the marker environment,N linearly depends on the size ofP?,
only.

Validating a solution (ρ, κ) |=me P amounts to checking a number of individual constraints. We now
define a functionGC[[ P]]me for explicitly extracting the set of constraints to be checked. In doing so we
shall make it clear that we are extracting the constraints in the form of syntax, and hence replaceρ of
Table 2 byr andκ by k.

DEFINITION 4.1. We now define two classes of constraints.

• An individual constraintis on one of the formsn1 ⊆ n2, {χ} ⊆ n0, or n1∩ n2 6= ∅, where eachni

will be on one of the three formsr (β), r (χ ) or k(χ ).

• A composite constraintis on the form{ic1, . . . , icm} ⇒ ic wherem ≥ 0, all ici (on the left-hand
side) are individual constraints on either form{χ} ⊆ n0 or n1∩ n2 6= ∅, andic (on the right-hand side)
is an individual constraint on the formn1 ⊆ r (β) or n1 ⊆ k(χ ).

The details ofGC[[ P]]me are given in Table 3. In the clause for [x = y] P we cannot decide whether
or notr (me(x)) ∩ r (me(y)) 6= ∅ and hence we ensure that the constraints subsequently generated will
in fact explicitly test this. Technically, this is achieved by means of the subscriptC to the function
GC[[ P]]me: each constraint generated will be conditional on all of the constraints in the (initially empty)
setC. Similarly, in the clauses for̄x y.P andx(yβ).P we use the assumptions about the universeU?,
in particular thatme[fn(P?)] ⊆ U?, to generate a sufficiently large set of constraints that then explicitly
test for{χ} ⊆ r (me(x)).

The callG∅[[ P?]]me? will give rise to at mostO(N) recursive calls, each call directly responsible
for generating at mostO(N) constraints (see the clauses for input and output). The set of constraints
C occurring as index to the recursive callsGC[[ P]]me can have size at mostO(N) (see the clause for
matching). Hence at mostO(N2) constraints of sizeO(N) will be produced.

TABLE 3

Constraint Generation for theπ -Calculus

GC [[0]] me = ∅
GC [[r ·P]]me = GC [[ P]]me

GC [[ x̄ y·P]]me = GC [[ P]]me∪ {(C ∪ {{χ} ⊆ r (me(x))})⇒ r (me(y)) ⊆ k(χ ) | χ ∈ U? ∩ C}
GC [[x(yβ )·P]]me = GC [[ P]]me[y7→β] ∪ {(C ∪ {{χ} ⊆ r (me(x))})⇒ k(χ ) ⊆ r (β) | χ ∈ U? ∩ C}
GC [[ P1 + P2]]me = GC [[ P1]]me∪ GC [[ P2]]me

GC [[ P1|P2]]me = GC [[ P1]]me∪ GC [[ P2]]me

GC [[(νxχ )P]]me = GC [[ P]]me[x 7→χ ]

GC [[[ x = y] P]]me = GC∪{r (me(x))∩r (me(y))6=∅}[[ P]]me

GC [[! P]]me = GC [[ P]]me
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The Semantics of the Constraints

To relate Tables 2 and 3 we need to interpret a set of constraints with respect to a proposed solution
(ρ, κ). First we define an evaluation function for left-hand sides:

DEFINITION 4.2. We defineV(ρ,κ)[[n]] as follows:

V(ρ,κ)[[n]] =


ρ(β) if n = r (β)

{χ} if n = r (χ )

κ(χ ) if n = k(χ ).

Next we define a satisfaction relation.

DEFINITION 4.3. We define

(ρ, κ) sat n1 ⊆ n2 iff V(ρ,κ)[[n1]] ⊆ V(ρ,κ)[[n2]]

(ρ, κ) sat {χ} ⊆ n iff χ{h} ⊆ V(ρ,κ)[[n]]

(ρ, κ) sat n1 ∩ n2 6= ∅ iff V(ρ,κ)[[n1]] ∩ V(ρ,κ)[[n2]] 6= ∅

and also

(ρ, κ) sat {ic1, . . . , icm} ⇒ ic iff

(
m∧

i=1

(ρ, κ)sat ici

)
⇒ ((ρ, κ) sat ic)

and finally

(ρ, κ) SAT C iff ∀cc∈ C : (ρ, κ) sat cc

The relationship between Tables 2 and 3 is now given by the following result.

LEMMA 4.4. ((ρ, κ) SAT GC[[ P]]me) iff (((ρ, κ) SAT C)⇒ ((ρ, κ) |=me P)).

Proof. We proceed by structural induction onP. Most cases are straightforward and here we only
consider two of the more interesting cases.

The Case x(yβ)·P. We have that (ρ, κ) SAT GC[[x(yβ).P]]me is equivalent to

(ρ, κ) SAT GC[ P]me[y7→β]

(ρ, κ) SAT {C ∪ {{χ} ⊆ r (me(x))})⇒ k(χ ) ⊆ r (β) | χ ∈ U? ∩ C}.

Using the induction hypothesis this is equivalent to

((ρ, κ) SAT C)⇒ (ρ, κ) |=me[y7→β] P

((ρ, κ) SAT C)⇒ (∀χ ∈ U? ∩ C : χ ∈ ρ(me(x))⇒ κ(χ ) ⊆ ρ(β))

and given the assumptions about the universeU? this is equivalent to the desired ((ρ, κ) SAT C) ⇒
(ρ, κ) |=me x(yβ).P.

The Case[x = y] P. We have that (ρ, κ) SAT GC[[[ x = y] P]]me is equivalent to

(ρ, κ) SAT GC∪{r (me(x))∪r (me(y))6=∅}[[ P]]me.

Using the induction hypothesis and the definition ofSAT this is equivalent to

((ρ, κ) SAT C ∧ (ρ, κ) sat (r (me(x)) ∩ r (me(y)) 6= ∅))⇒ ((ρ, κ) |=me P),
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which using the definition of sat may be rewritten as

(ρ, κ) SAT C ∧ (ρ(me(x)) ∩ ρ(me(y)) 6= ∅))⇒ ((ρ, κ) |=me P)

that is equivalent to the desired ((ρ, κ) SAT C)⇒ (ρ, κ) |=me [x = y] P).

Solving the Constraints

We now demonstrate how to solve a set of constraints as might have been generated above. For our
purposes, merely obtaining an algorithm running inO(N5) time, it suffices to perform a simple iterative
procedure upon a functionfC associated with the set of constraintsC.

DEFINITION 4.5. Given a setC of constraints, the functionfC maps a proposed solution into another
one as

fC(ρ, κ) = (ρ ′, κ ′),

where

ρ ′(β) =
⋃

({ic1,...,icm}⇒n⊆ r (β))∈C

{
V(ρ,κ)[[n]] if

∧m
i=1(ρ, κ) sat ici

∅ otherwise

and

κ ′(χ ) =
⋃

({ic1,...,icm}⇒n⊆k(χ ))∈C

{
V(ρ,κ)[[n]] if

∧m
i=1(ρ, κ) sat ici

∅ otherwise.

A related functionf̂ C is given by

f̂ C(ρ, κ) = (ρ, κ) t fC(ρ, κ).

The relationship between the two functions,fC and f̂ C, and satisfaction,SAT C, of the set of constraints
is given by the following result.

LEMMA 4.6. (ρ, κ) SAT C iff fC(ρ, κ) v (ρ, κ) iff f̂ C(ρ, κ) = (ρ, κ) whenever C is a set of com-
posite constraints.

Proof. The second “iff” is immediate so consider the first. A composite constraint inC has the form
{ic1, . . . , icm} ⇒ n1 ⊆ n2; there are two possibilities forn2 and here we just consider the case where
n2 is r (β). Then

(ρ, κ) sat ({ic1, . . . , icm} ⇒ n1 ⊆ r (β))

is equivalent to (
m∧

i=1

(ρ, κ) sat ici

)
⇒ V(ρ,κ)[[n1]] ⊆ ρ(β),

which can be rewritten as({
V(ρ,κ)[[n1]] if

∧m
i=1(ρ, κ) sat ici

∅ otherwise

)
⊆ ρ(β).

It follows that

(ρ, κ) SAT {({ic1, . . . , icm} ⇒ n1 ⊆ r (β ′)) ∈ C | β ′ = β}
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is equivalent to

⋃
({ic1,...,icm}⇒n1⊆r (β ′))∈C∧β ′=β

({
V(ρ,κ)[[n1]] if

∧m
i=1(ρ, κ) sat ici

∅ otherwise

)
⊆ ρ(β)

and the desired result easily follows.

To prepare for the iteration we need the following standard result.

LEMMA 4.7. fC is monotone andf̂ C is monotone and extensive whenever C is a set of composite
constraints.

Proof. It is immediate thatf̂ C is extensive (meaning that∀(ρ, κ) : (ρ, κ) v f̂ C(ρ, κ)) and that
it is monotone (meaning that∀(ρ, κ) v (ρ ′, κ ′) : f̂ C(ρ, κ) v f̂ C(ρ ′, κ ′)) if fC is. To see thatfC is
monotone let (ρ, κ) v (ρ ′, κ ′) and consider a composite constraint{ic1, . . . , icm} ⇒ n1 ⊆ n2 in C;
there are two possibilities forn2 and here we just consider the case wheren2 is r (β). It is immediate
thatV(ρ,κ)[[n1]] ⊆ V(ρ ′,κ ′)[[n1]] and we also have (ρ, κ) sat ici ⇒ (ρ ′, κ ′) sat ici becauseici is either
of the formn′1 ∩ n′2 6= ∅ or {χ} ⊆ n′. This establishes the result.

SettingC = G∅[ P?]me? it now follows that the least (ρ, κ) (above a given (¯ρ, κ̄), typically (⊥,⊥)) that
satisfies (ρ, κ) |=me? P? equals the least fixed point offC (above (¯ρ, κ̄)). Because of our assumptions
about the universe,U?, the setC is finite and f̂ C operates over a complete lattice of finite size. Standard
fixed point theory then ensures that the desired (ρ, κ) is obtained asf̂ j

C(ρ̄, κ̄) upon stabilisation, i.e.,
for the leastj such thatf̂ j

C(ρ̄, κ̄) = f̂ j+1
C (ρ̄, κ̄), where it is certain that suchj exists. We may summarise

the development as follows.

THEOREM 4.8. Writing C = G∅[[ P?]]me? there is a least natural number j such thatf̂ j
C(ρ̄, κ̄) =

f̂ j+1
C (ρ̄, κ̄); it satisfies that

f̂ j
C(ρ̄, κ̄) |=me? P?

and that f̂ j
C(ρ̄, κ̄) = u{(ρ, κ) | (ρ, κ) |=me? P? ∧ (ρ, κ) w (ρ̄, κ̄)}.

The tuple (ρ, κ) containsO(N) elements taking values in a set of sizeO(N). Hence at mostO(N2)
iterations of the function will be needed. Each iteration can be performed by considering each of the
O(N2) constaints of form{ic1, . . . , icm} ⇒ n1 ⊆ n2, calculatingic1, . . . , icm andn1 in timeO(N)and
then updating the entry forn2 accordingly. Hence the desired solution can be obtained in timeO(N5)
and spaceO(N3).

EXAMPLE 4.9. As an example suppose that (ρ1, κ1) is the least solution forP1 and that (ρ2, κ2) is the
least solution forP2 (w.r.t. the sameme). It follows that there also is a least solution (ρ, κ) for P1 | P2

and since this is a solution forP1 and forP2 we have

(ρ1, κ1) t (ρ2, κ2) v (ρ, κ).

We therefore know that (ρ, κ) equals

f̂ j
C((ρ1, κ1) t (ρ2, κ2))

upon stabilisation.

To see thatj cannot always be taken to be 0 consider the two processesP1 = x(yβ0).(νxχ1)x̄ x and
P2 = (νxχ1)(νzχ2)x̄z, the marker environmentme(x) = χ1, and the following definitions ofρi andκi :

κi (χ1) ρi (β0) · · ·
i = 1 {χ1} {χ1} · · ·
i = 2 {χ2} ∅ · · ·
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Setting (ρ ′, κ ′) = (ρ1, κ1) t (ρ2, κ2) we haveκ ′(χ1) = {χ1, χ2} andρ ′(β0) = {χ1} and hence the
constraintκ ′(χ1) ⊆ ρ ′(β0) fails.

5. PREVENTING LEAKAGE

A common approach to system security is based on putting objects and subjects into security classes.
We demonstrate that control flow analysis helps in statically detecting useful information on security.
We consider in this section a static property ensuring that a channel, devised to be secret to a process
P, is never communicated to an external user. In the next section, we statically check another property
that concerns how information flows between processes at different levels.

The π -calculus does not distinguish between data, that may be secret, and channels that can be
seen as capabilities of accessing data. More refined calculi, notably thespi-calculus [3], make such
a distinction and permit a finer description of security properties. We choose here a pure calculus of
computations, without encryption and decryption primitives, in order to concentrate on the applica-
bility of the control flow analysis to security issues. In fact, the scoping rules of theπ -calculus are
sufficient for a careful use of channels, because processes can generate and pass new names, making
the channels they denote available for communication. In a sense, learning the name of a channel
amounts to possessing the capability to communicate on it, and restriction governs the visibility of
names.

A processP could have the security requirement of keeping secret (some of) its channels, i.e., not to
communicate them to the external environment. A process matches this requirement if it never performs
an extrusion of a secret channel, as made precise below. In the following, we assume thatS is a set
of secretchannels given by a designated authority, e.g., the designer or the user of a processP, who
implicitly introduces also the setP of public channels as the complement ofS. A priori, binders are
neither public nor secret; the actual solution of the analysis establishes which kind of channels can be
bound to each binder.

DEFINITION 5.1. The pairP, me is admissiblefor the setS ⊆ C of secret channels, if and only if
me[fn(P)] ⊆ C andme[fn(P)] ∩ S = ∅. Then, the set of public channels isP = C\S.

Note that the condition of admissibility is equivalent tome[fn(P)] ⊆ P; i.e., all free names are public
channels.

A Dynamic Notion

Now, we characterize a processP that never discloses its secrets. We describe this property by saying
thatP has no leaks. Intuitively, P enjoys this property if neither it nor any of its derivatives can perform
an extrusion of a name bound to a secret channel. For this to make sense it is important to assume
that the environment (or an external user) cannot guess any secret channels. We formalise this by a
constrained notion of computation calledcensored. Essentially, a computation is censored if no name
y, with me(y) ∈ S, can be read from the environment through an input.

DEFINITION 5.2. GivenP, me, S a censoredstep (P,me)
µ7→ (Q,me′) is defined whenever the fol-

lowing conditions hold:

1. P
µ→ Q

2. (a) ifµ = xy, then me(y) ∈ P
(b) if µ = x(yχ ), thenχ ∈ P

whereme′ =
{

me if µ = τ, x̄ y, xy
me[y 7→ χ ] if µ = x̄(yχ ), x(yχ ).

A censoredcomputation (P,me) 7→∗ (Q,me′)
µ7→ (R,me′′) is made of censored steps, whose labels are

all immaterial, apart from the last one.
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The following proposition shows that admissibility is preserved under censored computations, pro-
vided that there is no extrusion of a name marked secret. It also reveals the role played by the second
condition of a censored step.

LEMMA 5.3. Let P, me be admissible forS and(P, me)
µ7→(Q, me′) be such thatµ = x̄(yχ ) implies

χ ∈ P; then Q, me′ are admissible forS.

Proof. The proof is by cases onµ. If µ = τ or µ = x̄ y thenme′ = me; from the hypotheses
and Fact 2.3 we have thatme′ [fn(Q)] ⊆ P. If µ = x̄(yχ ) we have thatme′ = me[y 7→χ ]; from the
hypotheses and Fact 2.3 we get thatme′[fn(Q)] ⊆ P. If µ = xy, me(y) ∈ P (by censored step) and
me′ = me, therefore the hypotheses and Fact 2.3 ensure thatme′[fn(Q)] ⊆ P. If µ = x(yχ ) we have
thatχ ∈ P (by censored step) and thatme′ = me[y 7→ χ ] so that the hypotheses together with Fact 2.3
ensure thatme′[fn(Q)] ⊆ P.

We are ready to define our dynamic notion of security for someP, methat are admissible for the set
S of secret channels.

DEFINITION 5.4. The processP hasno leakswith respect toS, meif and only if (P,me) 7→∗ (Q,me′)
implies that there is no pair (R,me′′) such that (Q,me′)

x̄(yχ )7−→ (R,me′′) with χ ∈ S.

Of course whenP is stuck, it has no leaks. Note that ifP has no leaks, with respect toS, me, andP,
meare admissible forS, then for allQ such that (P,me) 7→∗ (Q,me′), Q,me′ are admissible forS,
due to Lemma 5.3.

A Static Notion

The notion of no leaks above is dynamic. We now introduce a static notion, in order to predict at
compile time if a process has no leaks. It is calledconfinement1 and we prove that it is a sufficient
condition for a process to have no leaks.

DEFINITION 5.5. Let P, mebe admissible for a givenS. A processP is confinedwith respect toS,
meif and only if there exists (ρ, κ) such that

(a) (ρ, κ) |=me P and (b)κ(χ ) = P if χ ∈ P.

Hereafter, we will say thatP is confined via the confining solution (ρ, κ).

Note that if a processP is confined, by admissibility we also have thatme[fn(P)] ⊆ P. Intuitively,
condition (b) above implies that only public information can be transmitted along a public channel, i.e.,⋃
χ∈P κ(χ ) ⊆ P; conversely, any channel, be it secret or public, can pass along secret channels, as no

restriction is put on them. We now show that confinement is preserved by censored computations.

LEMMA 5.6 (Subject reduction for confinement).Let P be confined(w.r.t. S, me) and

(P,me)
µ7→(Q,me′); then Q is confined(w.r.t.S, me′).

Proof. The proof is by cases onµ and considers the confining solution (ρ, κ) for P. If µ = τ

or µ = x̄ y we have thatme′ = me; it follows from Theorem 3.10 that (ρ, κ) |=me′ Q and from
Lemma 5.3 thatQ,me′ is admissible forS. If µ = x̄(yχ ) we haveme′ = me[y 7→ χ ] andx ∈ fn(P) (by
Fact 2.3); it follows from Theorem 3.10 and confinement that (ρ, κ) |=me′ Q and thatχ ∈ κ(me(x)) = P;
then, by Lemma 5.3 it follows thatQ, meis admissible forS. If µ = xyorµ = x(yχ ) we havex ∈ f n(P)
(because of Fact 2.3). In the first subcaseme′ = meandme(y) ∈ P = κ(me(x)) (by censored step and
confinement); Theorem 3.10 guarantees that (ρ, κ) |=me′ Q and Lemma 5.3 thatQ,me′ is admissible for
S. In the second subcaseme′ = me[y 7→ χ ], χ ∈ P = κ(me(x)) (by censored step and confinement);
Theorem 3.10 guarantees that (ρ, κ) |=me′ Q and Lemma 5.3 thatQ, me′ is admissible forS.

We are finally ready to show that confinement is sufficient to guarantee thatP has no leaks.

THEOREM 5.7. If P is confined(with respect toS, me) then P has no leaks(with respect toS, me).

1 In the literature on security, confinement is also used with different meanings.
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Proof. By Lemma 5.6 it is enough to prove that (P,me)
x(yχ )7−→ (Q,me′) implies χ ∈ P. Since

x ∈ f n(P) by Fact 2.3, we have thatme(x) ∈ P andκ(me(x)) = P (by confinement). By Theorem
3.10,χ ∈ κ(me(x)) and henceχ ∈ P as was to be shown.

EXAMPLE 5.8. We consider here an abstract version of the Wide Mouthed Frog protocol, adapted from
[3]. Intuitively, two principalsA andB wish to communicate using classical shared-key cryptography,
and the first forwards a secret key, saycAB, to the second one, with the help of a server. The server
shares the secret keyscAS andcSB with A andB, respectively. So, the principalA passes its keycAB,
encrypted withcAS, to the server. The server decrypts the message, encrypts it withcSB and passes it to
B. AfterwardsA sends the messageM, encrypted withcAB, to B.

Here principals will be represented by processes and keys by secret channels, because theπ -calculus
has no cryptographic primitives. The specification follows:

• A = (νMχM )(νcχAB
AB )cAScAB . cABM

• S= cAS(xβx ) . cSBx

• B = cSB(yβy) . y(zβz)

• P = (νcχAS
AS )(νcχSB

SB )(A|S|B)

The following solution is the least one:

ρ(β) =
{
{χAB} if β = βx, βy

{χM} if β = βz
κ(χ ) =


{χM} if χ = χAB

{χAB} if χ = χAS, χSB

∅ if χ = χM

If we takeS = {χAB, χAS, χSB, χM}, for all choices ofP there is a solution confiningP (with respect
to S). Thus, secrecy ofM is guaranteed.

Suppose to have a new namecAC, with me(cAC) = χc ∈ P. Let A be extended as follows

A = (νMχM )
(
νcχAB

AB

)
cAScAB.cASM.cACcAB.

Intuitively, A sendscAB alongcAC after the completion of the protocol. For all solutions, it turns out
that κ(χcAC) ⊇ {χAB} 6⊆ P. Therefore, there is no solution confiningP, with respect toS. Indeed,
the analysis reveals the extrusion ofcAB. With our specification in theπ -calculus, this action does not
affect the secrecy ofM, yet it signals a potential problem, as an extrusion represents the publication
of the corresponding secret key. Indeed, if we take thespi-calculus, where encrypted messages are
transmitted as cleartext, an enemy may interceptM encrypted, store it, and then decrypt it aftercAB has
been extruded (this violates the so-called forward-secrecy property, see e.g., [2]).

It is immediate to see that confinement is not a necessary condition forPhaving no leaks. For instance
the process (νxχ )x̄ y . ȳx has no leaks but it is not confined with respect toS = {χ} andme(y) 6= χ .
Indeed not all deadlocks can be detected statically. So the extrusion of the namex along channely is
considered a possible violation of secrecy.

Checking the Static Condition

One approach to checking confinement of a processP with respect toS, meis to use the polynomial
time algorithm devised in the previous section. First, we check thatP, me (or P?, me?) is indeed
admissible for theS given. Next, we construct sets of constraintsCa andCb corresponding closely to
the two conditions in Definition 5.5. ForCa we may simply useG∅[[ P]]me. ForCb we generate constraints
for half of the equality, namely for the inclusion “⊇.” To be specific, writeP? = P∩U? and letCb consist
of the constraintsP? ⊆ k(χ ) for all χ ∈ P?. (These constraints can be expanded into a form allowed
by Definition 4.1 unlike what would be the case if we letCb take care of the entire equality.) We then
solve the set of constraints in polynomial time so as to get the least solution. ThenP is confined if and
only if the least solution has aκ component equal to the one displayed in Definition 5.5. This approach
to determining whether or notP is confined (w.r.t. toS, me) clearly operates in polynomial time.
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6. MULTILEVEL SECURITY

Another way of enforcing security is by defining a hierarchy of levels for processes. The security
requirement is that a process classified at a high level cannot write any value to a process at low level,
while the converse is allowed; symmetrically a process at low level cannot read data from one of a high
level. Sometimes this noninterference property is referred to asno read-up/no write-down[16]. These
requirements amount to the simple security property that is part of the multilevel access control policy
of [5, 14].

To study the no read-up/no write-down property we need an extension to the syntax of theπ -calculus
to assign security levels to processes. Accordingly, the operational semantics requires a little extension.
Moreover, we will adapt the static analysis as well to take care of these levels.

In the following we will only introduce the necessary extensions to the setting of the previous sections.

Syntax

In order to simplify our presentation, we make here two assumptions that are common in the literature
(see e.g., [43]). First, we consider only two levels of security clearance:L for low andH for high. So,
we introduce the setL = {L , H}. The case with a hierarchy of levels is studied in [8]. Second, we
assume to have systems made of processes in parallel, and only these top-level components are labelled
by clearance levels.

The new syntax, defined below, imports the syntax in Definition 2.2 for processes.

DEFINITION 6.1. Systems, denoted byS, S′, S1, S2, . . . ∈ Sys are built from processes according to
the syntax

S ::= 〈P〉l | (νxχ )S | S|S | !S,

where〈P〉l expresses thatP has levell ∈ L.

The definition of free names is trivially extended by letting

fn(〈P〉l ) = fn(P) fn((νxχ )S) = fn(S)\{x}
fn(S1 | S2) = fn(S1) ∪ fn(S2) fn(!S) = f n(S).

Semantics

The structural congruence now takes care of systems, i.e.:

• S≡ S′ if SandS′ areα-equivalent;

• 〈0〉H ≡ 〈0〉L , and (Sys/≡, |, 〈0〉H ) is a commutative monoid;

• (νxχ )(νyχ
′
)S≡ (νyχ

′
)(νxχ )S, if x 6= y, (νxχ )(S1 | S2)≡ (νxχ )S1 | S2 if x /∈ fn(S2), and

(νxχ )S≡ S if x /∈ fn(S);

• !S≡ S | !S.
The operational semantics is defined in Table 4, and uses the transition relation defined in Table 1.

The transitions have the formS
µ→
l

S′, with l ∈ L∪ {ε}. When different fromε, the additional level label
l records the clearance of the system performing the transition. When a communication is derived the
levels of the senderSo and of the receiverSi are discarded, leading to a transition of the formSo | Si

τ→
ε

S′
(see the rulesComSandCloseSin Table 4).

Analysis

The solution of our new analysis is a triple (ρ, κ, σ ) and the flow logic judgements are on either form

(ρ, κ, σ ) |=me S or (ρ, κ, σ ) |=l
me P.
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TABLE 4

Early Transition System for theπ -Calculus with Security Levels

Lev: P
µ→ Q

〈P〉l
µ→
l
〈Q〉l

VarS:
S′1≡ S1, S1

µ→
l

S2, S2≡ S′2

S′1
µ→
l

S′2

ParS:
S1

µ→
l S′1

S1|S2

µ→
l S′1|S2

, bn(µ) ∩ fn(S2) = ∅ ResS:
S
µ→
l

S′

(νxχ )S
µ→
l

(νxχ )S′
, x /∈ n(µ)

CloseS:
S1

x̄(yχ )−→
l1

S′1,S2
x(yχ )−→

l2
S′2

S1|S2
τ→
ε

(νyχ )(S′1|S′2)
OpenS:

S
x̄ y→
l

S′

(νyχ )S
x̄(yx )−→

l
S′
, y 6= x

ComS:
S1

x̄ y→
l1

S′1, S2
xy→
l2

S2

S1|S2
τ→
ε

S′1|S′2

The role ofρ, κ,me is exactly as in the previous sections. The purpose of the new entriesl and
σ = 〈σin, σout〉, theabstract communication structure, is the following:

• l ∈ L keeps track of the current security level of the process under validation and is not needed for
systems.

• σin, σout :L→ (C → ℘(C)) give the set of the channels that can be bound to the possible objects
of an input and an output action respectively, performed by the subprocesses labelled byl ∈ L, on a
given channelχ ∈ C.
The analysis in Table 5 extends the analysis in Table 2, to deal with the levels of security clearance by
imposing two further conditions while checking an input and an output prefix. The channels that can
be bound to the object of an input (respectively, an output) action along channelχ must be included
in σin(l )(χ ) (respectively,σout(l )(χ )), wherel is the current security level. This is determined by, and is
the only task of, the clause for the analysis of the system〈P〉l . The rules for the other systems are just
as the rules for the corresponding processes. The technical results of Section 3 concerning the set of
solutions forming a Moore family, as well as the computation of solutions inO(N5) time andO(N3)
space via the generation of constraints, are easily adapted to the setting at hand. We therefore dispense
with the details.

TABLE 5

Control Flow Analysis for theπ -Calculus with Security Levels

(ρ, κ, σ ) |=l
me 0 iff true

(ρ, κ, σ ) |=l
me τ . P iff (ρ, κ, σ ) |=l

me P

(ρ, κ, σ ) |=l
me x̄ y.P iff (ρ, κ, σ ) |=l

me P ∧ ∀χ ∈ ρ(me(x)) :

(
ρ(me(y)) ⊆ κ(χ )∧
ρ(me(y))⊆ σout(l )(χ )

)

(ρ, κ, σ ) |=l
me x(yβ ).P iff (ρ, κ, σ ) |=l

me[y7→β] P ∧ ∀χ ∈ ρ(me(x)) :

(
κ(χ ) ⊆ ρ(β)∧
κ(χ )⊆ σin(l )(χ )

)
(ρ, κ, σ ) |=l

me P1 + P2 iff (ρ, κ, σ ) |=l
me P1 ∧ (ρ, κ, σ ) |=l

me P2

(ρ, κ, σ ) |=l
me P1 | P2 iff (ρ, κ, σ ) |=l

me P1 ∧ (ρ, κ, σ ) |=l
me P2

(ρ, κ, σ ) |=l
me (νxχ )P iff (ρ, κ, σ ) |=l

me[x 7→χ ] P

(ρ, κ, σ ) |=l
me [x = y] P iff (ρ(me(x)) ∩ ρ(me(y)) 6= ∅ ⇒ (ρ, κ, σ ) |=l

me P

(ρ, κ, σ ) |=l
me ! P iff (ρ, κ, σ ) |=l

me P

(ρ, κ, σ ) |=me 〈P〉l iff (ρ, κ, σ ) |=l
me P

(ρ, κ, σ ) |=me (νxχ )S iff (ρ, κ, σ ) |=me[x 7→χ ] S

(ρ, κ, σ ) |=me S1 | S2 iff (ρ, κ, σ ) |=me S1 ∧ (ρ, κ, σ ) |=me S2

(ρ, κ, σ ) |=me!S iff (ρ, κ, σ ) |=me S
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EXAMPLE 6.2. Consider the following systemS. It consists of the processesRandQ of low level and
of P of high level.

• R= āb.āb.b̄c

• Q = a(xβx ).x̄ x

• P = a(yβy).y(zβz) · ([y = z] ȳa+ y(wβw ))

• S=!(〈R〉L | 〈Q〉L | 〈P〉H ),

where the marker environmentmeis such thatme( fv) = χfv for all the free namesfv ∈ {a, b, c}. The
triple (ρ, κ, σ ) is defined as follows, where the bound names arebv∈ {x, y, z, w}:

ρ(βbv) =
{
{χb} if bv= x, y

{χa, χb, χc} if bv= z, w
κ(χfv) =


{χb} if fv= a

{χa, χb, χc} if fv= b

∅ if fv= c

σin(L)(χa) = {χb} σin(H )(χa) = {χb}
σin(L)(χb) = ∅ σin(H )(χb) = {χa, χb, χc}
σin(L)(χc) = ∅ σin(H )(χc) = ∅
σout(L)(χa) = {χb} σout(H )(χa) = ∅
σout(L)(χb) = {χb, χc} σout(H )(χb) = {χa}
σout(L)(χc) = ∅ σout(H )(χc) = ∅.

Recall thatρ(χ ) = {χ}. A simple check shows that (ρ, κ, σ ) |=me S.

The semantic soundness of our new analysis is stated by the new subject reduction theorem, which
is almost indentical to Theorem 3.10. The only differences are the new judgements (ρ, κ, σ ) |=me S
and the obvious conditions about the new componentsσ andl. Its proof is a straightforward adaptation
of the proof of Theorem 3.10, so we omit it. We also omit the easy extensions of the relevant lemmata
in Section 3. As before, (ρ, κ, σ ) |=Cme Sstands for (ρ, κ, σ ) |=Cme S∧me[ fn(S)] ⊆ C.

THEOREM 6.3. If (ρ, κ, σ ) |=Cme S and S
µ→
l

S′ we have:

if µ = τ then(ρ, κ, σ ) |=Cme S′; (1)

if µ = x̄ y then(ρ, κ, σ ) |=Cme S′,me(y) ∈ κ(me(x)), and me(y) ∈ σout(l )(me(x)); (2a)

if µ = x̄(yχ ) then(ρ, κ, σ ) |=Cme[y7→x] S′, χ ∈ κ(me(x)) andχ ∈ σout(l )(me(x)); (2b)

if µ = xy and me(y) ∈ κ(me(x)) then(ρ, κ, σ ) |=Cme S′, and me(y) ∈ σin(l )(me(x)); (3a)

if µ = x(yχ ) andχ ∈ κ(me(x)) then(ρ, κ, σ ) |=Cme[y7→χ ] S′, andχ ∈ σin(l ) (me(x)), (3b)

with l ∈ {L , H} in all cases, except for the case(1) where l∈ {L , H} ∪ {ε}.

A Dynamic Notion

We now introduce the dynamic version of the no read-up/no write-down property. As we did with
censored steps, we impose a restriction on the channels that can be read by a processP with a
given clearancel . We assume that the environment is always willing to listen toP, but it can select
which information is to be transmitted toP. To formalize the intentions of the environment, we use a
function

ς :L→ (C → ℘(C))
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that maps a labell ∈ L and a channelχ ∈ C to the set of channels that the environment considers secure
to communicate to〈P〉l .

DEFINITION 6.4. GivenS, me, ς , agrantedstep is (S, me)
µ7→
l

(S′,me′), and is defined whenever

1. S
µ7→
l

S′, and

2. (a) ifµ = xy, thenme(y) ∈ ς (l )(me(x))
(b) if µ = x(yχ ), thenχ ∈ ς (l )(me(x)),

whereme′ =
{

me if µ = τ, x̄ y, xy

me[y 7→ χ ] if µ = x̄(yχ ), x(yχ )

A granted computation (S,me) 7→∗ (S′, me′)
µ7→
l

(S′′, me′′) is made of granted steps.

The definition of our version of the no read-up/no write-down property follows.

DEFINITION 6.5. A systemS is no read-up/no write-down(nru/nwdfor short) with respect toς , meif
and only if: whenever (S, me) 7→∗ (S′,me′)

τ7→
ε

(S′′, me′′), where the last granted step is a communication
(betweenSo andSi ) that has been deduced with either

(a) the ruleComS, using the premisesSo
x̄ y→
lo

S′o andSi
xy→
l i

S′i , or

(b) the ruleCloseS, using the premisesSo
x̄(yχ )−→

lo
S′o andSi

x(yχ )−→
l i

S′i ,

thenlo = H impliesl i = H .

A Static Notion

We define now a static property that guarantees that a process is nru/nwd. Besides finding a solution
(ρ, κ, σ ) for a processP, we require that the channels that can pass along a given channelχ include
those that can be read and sent alongχ , recorded by the abstract communication structureσ (condition
2a below). More interesting is item (b) of the same condition, where the channels read alongχ should
include those that the environment is willing to supply, expressed byς . The last condition is the key
condition. It requires that a channelχ cannot be used for sending an object from a process with high
level H to a process with low levelL.

DEFINITION 6.6. LetS, mebe such thatme[fn(S)] ⊆ C. ThenS is discreet(w.r.t. ς , me) if and only
if there exists (ρ, κ, σ ) such that

1. (ρ, κ, σ ) |=me S

2. ∀l ∈ {L , H}, χ ∈ C :
(a)κ(χ ) ⊇ σin(l )(χ ) ∪ σout(l )(χ )
(b) σin(l )(χ ) ⊇ ς (l )(χ )

3. ∀χ ∈ C : σout(H )(χ ) ∩ σin(L)(χ ) = ∅.
Below, we show that the property of being discreet is preserved under granted steps.

LEMMA 6.7 (Subject Reduction for Discreetness).If S is discreet with respect toς, me, and
(S,me)

µ7→
l

(S′,me′), then S′ is discreet with respect toς,me′.

Proof. Theorem 6.3 suffices to prove bothme[ fn(S′)] ⊆ C and (ρ, κ, σ ) |=me S′. The proof of
the second and third items of discreetness is immediate, because the solution does not change. The
only delicate point for the application of Theorem 6.3 is when the granted step is an input, while in
the other cases the proof is trivial. For input, consider first the caseµ = xy. It suffices to show that
me(y) ∈ κ(me(x)). Conditions (2a) and (2b) of Definition 6.6 guarantee thatκ(me(x)) ⊇ σin(l )(me(x)) ⊇
ς (l )(me(x)). Furthermore,me(y) ∈ ς (l )(me(x)) because the step is granted. The case whenµ = x(yχ )
is similar.

THEOREM 6.8. If S is discreet(w.r.t. ς,me), then S is nru/nwd(w.r.t. ς, me).
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Proof. Since our computations are granted, by Lemma 6.7 it is enough to check that, if
(S,me)

τ7→
ε

(S′,me′) then S′ is nru/nwd, withτ being a communication betweenSo and Si , defined
as in Definition 6.5. Without loss of generality we may assume that all restrictions inSoccur outermost
or inside some〈· · ·〉. Assume, per absurdum, thatlo = H andl i = L. Then there exists〈Po〉H and〈Pi 〉L
such that either

(a) 〈Po〉H x̄ y→
H
〈P′o〉H and〈Pi 〉L xy→

L
〈P′i 〉L , or

(b) 〈Po〉H x̄(yχ )−→
H
〈P′o〉H and〈Pi 〉L x(yχ )−→

L
〈P′i 〉L ,

given the assumptions aboutSo andSi . Given that (ρ, κ, σ ) |=me Swe obtain that (ρ, κ, σ ) |=me 〈Po〉H
and (ρ, κ, σ ) |=me 〈Pi 〉L , for some suitablemetaking care of the restrictions mentioned above. The
analysis and Theorem 6.3 tell us that

(a) me(y) ∈ σout(H )(me(x)) andme(y) ∈ σin(L)(me(x)), or

(b) χ ∈ σout(H )(me(x)) andχ ∈ σin(L)(me(x)).

This contradicts item 3 of Definition 6.6, that demands the intersection of the two sets to be empty.

EXAMPLE 6.9. It is easy to prove that the processSvalidated in Example 6.2 is discreet. In particular,
the following two conditions hold.

• σout(H )(χa) ∩ σin(L)(χa) = ∅ ∩ {χb} = ∅.
• σout(H )(χb) ∩ σin(L)(χb) = {χa} ∩ ∅ = ∅.
As was the case for confinement, the polynomial time algorithm of Section 4 can be used to per-

form a polynomial time check of whether or not a processP is discreet with respect to givenς,
me.

7. RELATED WORK

There are two strains of related work: the first concerns static analysis techniques, the second (mainly)
their applications to security.

Static analysis of programs aims at developing efficient techniques that may be used to obtain ap-
proximate answers about how a program executes without actually executing it. Traditionally, this has
been a main component in the construction of efficient implementations of programming languages.
There is a vast literature on static program analysis and we here survey some of the more important
approaches; we refer to [31] for further details.

Control Flow Analysis (e.g., [40]) deals with the problem of dynamic dispatch where it isnot ap-
parent which function (or method) is actually being invoked and where an analysis is needed in order
to determine this information. This is a problem that appears all the time in higher order functional
languages and many developments of control flow analysis have indeed been performed for func-
tional languages, but also object-oriented languages [35] and languages with concurrency [18] can be
addressed.

Recently, Venet [41, 42] has used Abstract Interpretation [11] to analyse processes in a fragment of
theπ -calculus, with particular attention to the usage of channels. Type Systems are intimately connected
to ensuring the well-formedness of programs. In recent years they have been extended with annotations
and effects and are becoming a very popular tool for the analysis of calculi of computations (e.g., [1, 9,
34, 43, 44]); in our view, type systems are particularly useful when they admit principal types, and this
is not the case for all of the developments cited.

These approaches are not so dissimilar as might appear at first sight. In fact, Control Flow Analyses
can be expressed in the Constraint Based Formulation used here, in the terminology of Type Systems
and using abstract interpretation. We refer to [10, 31] and their references for further information about
the relationships among these approaches.

We now turn to the second strain of related work. The first studies in system security reach back
to the 1970s and were mainly carried out in the area of operating systems; see the detailed survey by
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Landwehr [24]. Denning’s book [14] reports her pioneering work, inspired also by the work by Bell
and LaPadula [5], Fenton [15], and Lampson [23]. They developed methods for detecting violations of
secure flow while statically analysing the code.

Recently, security classes have been formalized as types and the control of flow is based on type
checking. Heintze and Riecke [22] refine Denning’s analysis and study a noninterference property on the
SLam Calculus (Secureλ-calculus). Well-typed processes are such that values of low-level expressions
are independent of the values of high-level parameters. Volpanoet al.develop a type system to ensure
secure information flow in a sequential imperative language [44]; this work was later extended by the
first two authors in a concurrent, shared-memory based setting [43].

The work closest to our proposal in Section 5 is that by Abadi [1], who studies the secrecy of channels
and of encrypted messages using thespi-calculus, an extension of theπ -calculus devised for writing
secure protocols. His is a more ambitious goal than ours, because thespi-calculus also has cryptographic
primitives. Semantic correctness of the type system, formalised using testing equivalence, guarantees
that there is no leaking of secret information. As for the disciplined use of channels, Abadi’s and our
aims are very close, as well as for the assumptions made (except that Abadi has a further notion ofAny,
besides those ofPublicandSecret). We conjecture that the two approaches are comparable in precision.
Indeed our solution (ρ, κ) can be seen as an explicit type annotation of processes (in the manner of
Exercise 5.4 of [31]) and our notion of validation corresponds to validate the type annotation. However,
whereas we established that a best solution always exists (via Moore families) and gave a procedure for
constructing solutions, Abadi [1] does not establish the existence of the analogous notion of principal
types, and hence it is unclear whether or not a sound and complete typing algorithm exists. The semantic
correctness is checked against two different dynamic notions (testing equivalence versus no leaks).

Other interesting papers in this area are [4, 12, 13, 17, 36–39]. Particularly relevant are Hennessy and
Riely’s papers [37, 38] that give a type system for Dπ , a variant of theπ -calculus with explicit sites that
harbour mobile processes. A well-typed process correctly uses its capabilities and never compromises
the integrity of well-behaved sites. Recently also Cardelli and Gordon [9] proposed a type system for the
ambient calculus ensuring that a well-typed mobile computation cannot cause certain kinds of run-time
faults, even when capabilities can be exchanged between processes.

The idea of static analysis for security has been followed also in the Java world, for example in the
Java Bytecode Verifier [25]. Also, Abadi faces in [2] the problem of implementing secure systems and
proposes to use full abstraction to check that the compiled code enjoys the same security properties of
the source program.

The dynamic point of view has been adopted by a certain number of information flow models [16, 19,
26, 27] (to cite only a few). Here, only the external observable behaviour is the object of the analysis. A
classical example is the noninterference model of [19, 20], where the actions of the group of high level
users have no effect on what the group of low level users can observe. McCullough [26, 27] extends
this definition to cope with non determinism. Focardi and Gorrieri [16] use a process algebras setting,
by using SPA (Security Process Algebra), an extension of CCS [28]. Our property of no read-up/no
write-down could be considered a variant of the noninterference property, studied by most of the authors
mentioned above.

8. CONCLUSIONS

We presented a control flow analysis for theπ -calculus that statically predicts how names will be
bound to actual channels at run-time. The only extensions made to the syntax of processes are that a
channelχ is explicitly assigned to a restricted name, and that an input action has the formx(yβ), making
explicit the role of the placeholdery; this change was motivated by the inclusion ofα-conversion in
the semantics. Annotations can be done mechanically and do not affect the behaviour of processes;
typically, all markers will be different. The results of our analysis approximate the actual solutions,
because they may give a super-set of the corresponding actual values.

We defined judgements on solutions and processes and a set of clauses that operate on judgements
so as to validate the correctness of the solution. We proved that a best solution always exists and we
also presented a constructive procedure for generating solutions, which is inO(N5).2 Note that the only

2 A recent result [33] shows that time complexity can be reduced toO(n3).
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point where we addressed reachability is in the two clauses for matching in Tables 2 and 5. There, we
avoid analysing the “continuation” if the match cannot possibly be passed. Similar considerations could
be applied to input and output actions, so as to avoid analysing the continuation, e.g., in case the empty
set is associated with the subject of the action (see [8]).

We described how our analysis can be used to establish two simple properties of security. The first
property we called confinement, the second property we called discreetness. The two properties are
orthogonal, as the first puts constraints on the communications to the environment, and the second
property enforces a discipline on the communications internal to the process under analysis. So, one
can separately check them on a process.

An immediate extension to our (two-level) notion of confinement consists of defining a hierarchy of
classification levels associated with channels. Equally immediate is extending our analysis in Section 5
to statically check that a high level of information is never transmitted on a channel with a lower level
of security classification.

We did not consider, but we plan to, the more general notion of the no read-up/no write-down property
that assigns levels of confidentiality also to the exchanged data (i.e., the objects of input and output
actions). Processes with low level clearance are then not allowed to access (i.e., they can neither send
nor receive) highly classified data. Note in passing that (an extension of) our first security property is not
enough for getting the full version of the nru/nwd property; indeed, processes with different clearances
are allowed to send objects with different classification along the same channel, while this is forbidden
in the case considered in Section 5. A further extension to the nru/nwd property might consider to have
a partial order of clearance levels (see Chapter 5 of [14]).

Future work will consider calculi more oriented to security. The last two authors have already consid-
ered in [21, 32] the ambient calculus [9] that extends theπ -calculus with an explicit notion of mobility
of computation. The main application concerns validating the protectiveness of a firewall, meaning
that it does not allow agents to enter unless they know the required passwords. We are also interested
in thespi-calculus [3] that enriches theπ -calculus with primitives for encryption and decryption and
distinguishes between data and channels. The core analysis for thespi-calculus should remain the same
as presented here, while some sort of data flow analysis seems necessary to track data manipulations. It
would also be interesting to study authentication properties. Preliminary work on a control flow analysis
for the spi-calculus can be found in Bodei’s thesis [6], where a notion of secrecy and a restricted form
of authentication are considered.
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