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Control Flow Analysis is a static technique for predicting safe and computable approximations to
the set of values that the objects of a program may assume during its execution. We present an analysis
for the -calculus that shows how names will be bound to actual channels at run time. The result of
our analysis establishes a super-set of the set of channels to which a given name may be bound and of
the set of channels that may be sent along a given channel. Besides a set of rules that permits one to
validate a given solution, we also offer a constructive procedure that builds solutions in low polynomial
time. Applications of our analysis include establishing two simple security properties of processes.
One example is tha® hasno leaks P offers communication to the external environment through
public channels only and confines its secret channels within itself. The other example is connected
to theno read-up/no write-dowproperty of Bell and LaPadula: once processes are given levels of
security clearance, we check that a process at a high level never sends channels to processes at a lower
level.  ©2001 Academic Press

1. INTRODUCTION

Program analysis aims at verifying properties of a program that hold in all executions—regardle
the actual data upon which the program operates and regardless of the specific environment in w
executes. Traditionally, program analysis has been used in compilers for “optimizing” the implem
tion of programming languages. More recently, program analysis has been used for validating se
and safety issues for concurrent and distributed systems.

Program analysis provides automatic and decidable methods for analysing properties of proc
Since most properties implicitly involve questions about termination, the methods are intended t
on the safe side.” For each analysis an ordering is imposed on the properties, for example stipt
that a property is larger than another if more values satisfy the former than the latter. The properti
then interpreted in such a way that an analysis remains correct even when it produces a larger pt
than ideally possible. This corresponds to producing a valid inference in a program logic for ps
correctness. However, program analysis is generally more efficient than program verification, ar
that reason more approximate, because the focus is on the fully automatic processing of large pro

We wish to study these issues for concurrent languages. To investigate them in a pure form we
use ther-calculus which is a model of concurrent communicating processes based on hame pa
Names may represent both data and channels that processes exchange. For exasile iime of a
link to some information on the web home page of a user, then another user can access this infort
througha, by performing a communication. We propose in SetBaa Control Flow Analysis for the
r-calculus that requires only minor additions to the syntax: assigning explicit “channels” to the ne
occurring in restrictions and assigning explicit “binders” to the names occurring in input prefixes.
may be compared to the approach of [41], where processes are required to be on a special form. R
channels can be seen as representatives of semantic values that names may have, and binde
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actual placeholders in input prefixes. We review in Section 2 the syntax and the early semantics
r-calculus, and we introduce our annotations.

The result of our control flow analysis establishes a super-set of the set of channels to which &
name may be bound and of the set of channels that may be sent along a given channel. Thes
sets give rise t@olutions(p, k) and we formulate the control flow analysis as a specification of
correctness of a candidate solution. This takes the form of a Flow Logic with judgemer)steme P
(wheremeis an auxiliary function that associates channels or binders with the free names of the pi
P), and a set of clauses that operate on them. We show that best solutions always exist and we e
the semantic correctness of solutions in the form of a subject-reduction result. In Section 4 we
present a procedure that generates solutions by inducing on the structure of processes, and op
O(N5®) time with respect to the siz¢ of the process under analysis.

We apply our analysis for statically checking two simple security properties. The first property
Section 5 and considers channels as divided into “secret” and “public” channels. Then, the dy
security requirement is that secret information may only be communicated over secret chann
other words, a process has no leaks of secret information. With simple checks on a solution, we
a static test (calledonfinementfor a given process having no leaks, and we prove it safe with resj
to the dynamic notion (calledo leak$.

The second property presented in Section 6 istimgle securitproperty that is part of the multi-level
security property (“no read-up/no write-down”) of Bell and LaPadula [5]. Processes are given levs
security clearance, and the dynamic property demands that those at high level never send infor
to those at low level, while communication in any other direction is permitted. A little extension to
machinery is sufficient to define a static check (calligstreetnegsfor when a process respects th
classification hierarchy, and to prove it safe with respect to the dynamic notion (naliéavd).

Finally, we briefly discuss in Section 7 some related work on static analysis and security prope
and in Section 8 we discuss some other uses of control flow analysis for concurrent processes.

2. THEx-CALCULUS

Syntax

In this section we briefly recall the-calculus [29], a model of concurrent communicating proces:
based on the notion afame passing

Derinimion 2.1, LetA be an infinite set of names ranged overahp, ..., X, Y, ... and letr be a
distinguished element such thtN {t} = @. Processes are built from names according to the syn

P:O|u.P|P+P|P|P|(WwX)P|[x=VY]P|!P,

whereu may either bex(y) for input, orxy for output ort for silent moves. Hereafter, the trailiry
will be omitted (i.e., we writeu instead ofu.0). We assume that has lower precedence thawhich
again has lower precedence than the other operators.

The prefixu is the first atomic action that the process can perform. The input prefix(y) binds
the namey in the prefixed process. Intuitively, some nagnis received along the link named The
output prefixxy does not bind the namewhich is sent along. The silent prefix denotes an action
which is invisible to an external observer of the system. Summation denotes nondeterministic c
so P + Q behaves either aB or asQ. The operatolt describes parallel composition of processe
Intuitively, P andQ in P | Q act independently and can also communicate when one perform:
input and the other an output on the same common link. The restriction opeva)dt acts as a
declaration for the name in the procesd that it prefixes. In other words is a unique name in
P which is different from all the external names. The agenf)P behaves a® except that sending
and receiving along andx is blocked. A distinguished feature of thecalculus is to allow for an
enlargement of the scope of a restriction; we will expand on this below. Matchiagy] P is anif—then
operator: procesB is activated ifx = y. Finally, replication P behaves a®|P]|- - - as many times as
needed.
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The formulation of our analysis requires only a minor extension to the syntax of-taculus,
namely annotating the binding occurrences of names within restrictions with “channedsid the
binding occurrences of names within input prefixes with “bindgtsThese syntactic extensions ar
needed because of theconversion allowed by the structural congruence. They do not affect the dyn:
semantics of ther-calculus; however, they heavily influence the way in which our static analysi:
Section 3 operates. From the point of view of the analysis, annotations place all the names of a |
in a finite set of equivalence classes. Through them, the analysis computes (a super-set of) the
links that a name can denote.

DeriniTion 2.2, LetB be a nonempty set of binders ranged oversby’, .. .; and letC be a non
emptyset of channels ranged over pyy’, ... such thatB N C = @; moreover callB U C the set of
markers. Then (annotated) processes, denotdel B, P>, Q, R, ... € Procare built as in Definition
2.1, where the (annotated) input prefiky?) replacesx(y) and the (annotated) restrictionx)P
replaces{x)P.

Semantics

Ther-calculus can be equipped with an early as well as a late semantics; in this paper we consi
early operational semantics defined in SOS style, because it is emerging as a standard for tran
semantics and appears to be more suitable for the security issues studied in the next sections. W
[30], in particular for the distinction between free and bound input.

The labels of transitions arefor silent actionsxy for free input,xy for free outputx(y*) for bound
input andx(y*) for bound output. Roughly speaklngJ the effect of a bound output is moving’g (
operator from a process to a label, aQn= (vyX)Xy. P—> P. The intuition behind this operation is tc
make the namg, which is private tdQ, available to the external environment. The bound output tt
enlarges the scope of the declaration, and for this reason it is sometimes referreddpeextrusion
in the literature. When coupled with a bound ing(¢*), the extrusion originates a communication ar
reestablishes the removed restriction.

As usual, we will usq: as a metavariable for the labels of transitions (although it is formally disti
from the metavariable for prefixes with which it has a few cases in common). We recall the noti
free named$n(w), bound namebn(w), and names(u) = fn(w) U bn(w) of a labelw. Thesubjectof an
input or output action is the channel)(used for the communication and tbbjectis the entity §)
being transmitted.

Kind w fn(u)  bn(w)

Silent move T @ @
Free input and output XY, Xy {x,y} 7
Bound input and output x(y*), X(y*)  {x} {y}

Functionsfn andn are extended in the obvious way to processes.

Congruence

Below we shall need thstructural congruence= on processes, defined as in [30] to be the le:
congruence satisfying:

o if PandQarea-equivalent P =, Q) thenP = Q; to be more precisevk*)P = (vy*)(P{y/x}) if
y ¢ fn((vx*)P), andx(y’)P = x(2°)(P{z/y})if z ¢ fn(x(y*)P);
e (Proc/=, 4, 0) and Proc/—, |, 0) are commutative monoids;

o (vx)(WyX)P = (wyX)Wx)P, if x £y, (wx¥)(PL | P2) = (vxX)Py | Py if x ¢ fn(P,), and
(vxX)P = P if x ¢ fn(P);

e IP=P|IP.
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TABLE 1

Early Transition System for the-Calculus

Taut.P> P outxy.PX¥p

X(y¥)

Freeln x(y#).P X% P{w/y) Bound Inx(y#).P == P

Par — P Q1 pn(n fn(P) =9 Sum P

" PP S QP2 P+P b Q
PAq pYo
————, X ¢ n(u) Open ——5—,y #X
x)P 5 (1x0)Q P ¥ q
X(yX 24 X(
Close 21 o) Q1.P ) Q2 Com P ) Q1.P2 ) Q0

P1IP2 > (vy*)(Q11Q2)

N
Var:%
Pl

P1|P; > Q11Q2

u
Match —P=9
[x=x]P = Q

Note thaix-conversions do not affect markers. Also, we permit exchange restrictions only when tt
stricted names are different, because otherwisé)P = (vx*) P and the marker then loses its identity
Table 1 shows the (annotategBrly transition system of the-calculus defined in SOS style.

A different treatment of matching is presented in [7]. There, the structural congruence
[x = x]P = P is assumed and the transitional ridiatchis removed from Table 1. This latter chang
requires an accurate handling of free names, otherwise applying the congruence rule from right
may introduce new free names ad libitum. The need of handling similar kinds of low level detail:
recurrent problem in congruence-based semantics, and in [7] we illustrate one of the techniques
to deal with them.

We conclude this section with a straightforward fact that will be repeatedly used in the proofs lat

Fact2.3. If P55 Q then

(1) If u =t thenfn(P) 2 fn(Q).
(2) If u = Xxythenfn(P) 2 {x, y}Ufn(Q).
() If = x(y*), xy. x(y*) thenfn(P) 2 {x} U (fn(Q)\{y}).

3. CONTROL FLOW ANALYSIS

The result of analysing a proceBss a pair o, «). The first componeny, is an abstract environment
which gives information about the set of channels to which names can be bound; the second comj
K, is an abstract channel environment which gives information about the set of channels that ca
over given channels.

One way to view the pairg «) is as a record of the actual communications taking place dur
it execution. Whenever a valu®g, is output on some channblhan, as inbehardvar, it must be duly
recorded in the component, intuitively by ensuring thaty € «(bchan). Similarly, whenever a variable
Cvar iNputs a value on some chann®han, as inbehan(Cvar), this must also be duly recorded in the
component, intuitively by ensuring thaf, € p(Cyar) for all a,a € «(behan)-

We now make this more precise (also paying attention to an additional marker envirameemnt
associating names with markers).

3.1. Validation

To validatethe correctness of a proposed solutign £) we state a set of clauses operating up
judgments of the form:

(0, k) Eme P
The purpose oine p, andk is clarified by:
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e me N — (BUZC) is themarker environmerthat maps a name (in particular the free names o
process) to the appropriate channel or binder used when the name was introducggt) sall be the
marker (in3 or C) where the current nameis bound.

e p:B— p(C) is theabstract environmerthat maps a binder to the set of channels that it can
bound to; more precisely,(8) must include the set of channels tifatould evaluate to. We shall allow
one to regard the abstract environment as a fungtiai8 U C) — o(C) by settingvx €C : p(x) ={x}

We write L for the function that maps everything # However, we continue to assume ths
Vx € C:L(x)={x}

e «:C — p(C) is theabstract channel environmetitat maps a channel to the set of channels
can be communicated over it.

More preciselyk (x) must include the set of channels that can be communicated over the chant
Also, here we writel for the function that maps everything o

Note that we use a marker environment, because the identity of names is not preserveg- ur
conversions (see the rilar). Indeed, it would not suffice ta¥-rename the program apart” because tt
property is not preserved under reduction, in particular when scope extrusion is required. For ex
the processi@*)(a(y?).a(z*).yz | |(vx*)ax) performs a first communication, therconverts the
namex to perform a second communication and becomas J(vx*)(vw*)(Xw | !(vx*¥)ax).

A further comment on annotations may clarify their subsequent use. A typical schema for anno
the occurrences of restricted names and of objects of inputs in a pfeceskeep all thee's and the
B’s distinct; also, the marker environmenéshould map the free nameskfo fresh channels. Note tha
annotating a process in this way is merely mechanical and involves no knowledge about its behe

The detailed definition of our control flow analysis is given by the flow logic in Table 2, wh
we often writemgx +— n] to indicate that themeis updated with the new association of the name
with the markem, overwriting a possible previous association. All the rules dealing with a compo
process require that the components are validated, apart from the one for matching. Moreov
second conjunct of the rule for output requires that the set of channels that can be communicate
each element ob(mgXx)) includes the channels to whighcan evaluate. Symmetrically, the rule fo
input demands that the set of channels that can pass alsimgcluded in the set of channels to whigh
can evaluate. In the clause for restriction, we can simply update the marker environmmefi as x|
because(x) = {x} by definition. The condition for matching says that the continua@ioreeds to be
validated if there is at least one channel to which batimdy can evaluate.

ExampLE 3.1. Consider the following process
P = a(x).(vb) (ver) ((baxx.b(x).xc+ bd.ac) | b(x?2).bx) | d(x),

the marker environmenne such thatmga) = x, andmgd) = s, and the pair £, «) defined as
follows, wherei € {0, 1, 2, 3, 4}:

{x0, X1, X2, X3, xa} fi=1212 {x0, X1, X2, x3, xa} fi =0
p(Bi) = . k(xi) = .
{x1, x2, X3, xa} ifi =0,3 {x1, x2, X3, xa} if i > 1.
TABLE 2

Control Flow Analysis for ther-Calulus

(0, k) EmeO iff true
(0, k) Emet.P iff (0, «) FEme P
(P, €) EmeXy.P iff (0, k) Eme P A VY € p(MeX)) : p(MEy)) < «(x)

(0. €) EmeX(y#).P iff (0, k) Emdy—p P A VX € p(MeX)):x(x) S p(B)
(0,«) Eme PL+ P2 iff (0, k) Eme PL A (0, k) EmeP2

() Eme PL| P2 iff (0, k) Eme PL A (0, k) EmeP2

(0, €) FEme (vXX)P iff (0, k) Emgx—>x] P

(0, k) Eme[x =YIP iff (o(meX)) N p(MeY)) # 0 = (o, k) FEmeP

(0, &) Eme!P iff (0, k) EmeP
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A simple check shows thab( «) E=me P. The objects of the inputs on channeisandd are kept distinct
for the analysis, because the annotatiBpandgs place them in two different equivalence classes (b
this does not influence the dynamic semantics). The reader may have noticed iati{ove is not the
least solution, e.g., because of the presencgg of his kind of useless channel may occur in solutior
although they do appear neither in annotations nor in the image of a marker environment—nor wi
occur in the solutions constructed according to Section 4 (see also Theorem 3.4).

The formulation of our control flow analysis borrows from standard ideas for functional langue
Our current formulation is insensitive to flow and context [31], so terms can be rearranged wi
affecting the acceptability of a candidate solution; in effect, restrictions can be lifted to the top lev
to the nearest enclosing !, and prefixing of actions can be replaced by their parallel composition.
more complex flow analyses can be devised, these are not necessary for the applications to ¢
studied here.

3.2. Existence of Solutions

So far we have only considered a procedure for validating whether or not a proposed s@lutipn
is in fact acceptable. We now show that there always exists a least chojeedftfat is acceptable in
the manner of Table 2.

Derinmion 3.2, The set of proposed solutions can be partially ordered by settirg € (o, «”) iff
VB e B:p(B) < p'(B)andVy € Cik(x) < «'(X)-

It is immediate that this suffices for making the set of proposed solutions into a complete la
using standard notation we writg,(x) L (o, «’) for the binary least upper bound (defined pointwise
nZ for the greatest lower bound of a $ebf proposed solutions (also defined pointwise), ahd_()
for the least element.

Derinimion 3.3, A setZ of proposed solutions is a Moore family if and only if it contaimg for all
J C Z (in particular for7 = ¢ and forJ = I).

This concept plays animportantrole in the theory of Abstract Interpretation [11, 31]; in other brar
of computer science it is sometimes called the model intersection property. JNibarMoore family it
contains a greatest element as well as a least elememnt®). The following theorem then guarantee
that there always is a least solution to the specification in Table 2 (just tak§ & (L, L) in the
statement below).

Trveorem3.4. For all me, P and(p, «) the set

{(,O,K) | (IOsK) ':me P/\(psK) ; (p_vE)}

is a Moore family.

Proof. We proceed by structural induction &1since Table 2 is defined by structural induction o
P). Let

T S {(p.k) | (o, k) Em P A (p. k) 2 (p. k)}
and letJ and (o;, ;) be given such tha’ = {(p;, ;) | j € J}. Next define
(o', k) =nT =0{(pj, «j) | ] € I}
and recall that the greatest lower bound is defined pointwise and hencg'thd} O (o, «). It remains

to check thatf’, «') =me P. For this we proceed by casesi®making use of the induction hypothesis
Most cases are straightforward and here we only consider two of the more interesting cases.

The Case x(§).P. SinceVj € J:(pj, kj) Eme X(¥?).P we have

Vi€ J:(pj, ki) Emdy-p P and Vj e J:Vy € pj(me(x)) : «j(x) S pj(B)
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Using the induction hypothesis and thatis defined in a pointwise manner, we then obtain

(0", k") Emdy—p P and Vy € p'(mex)) : «'(x) < o'(B)
thus establishing the desiredl (k') Eme X(y?).P.
The Casg¢x = y] P. SinceVj € J:(pj, kj) Eme[X = Y]P we have
¥j € J: (o) (me(x) N pj(Mey)) # ¥ = (pj. ;) Eme P
Using the induction hypothesis and the pointwise definitiop’pfve then obtain
(o' (me(x)) N p'(MEy)) # ¥ = (0, k) Eme P
thus establishing the desired («") Eme[X = Y]P. =

3.3. Correctness

We state now some auxiliary results that will allow us to establish the semantic correctness |
analysis; they are all independent of the operational semantics and only rely on Table 2.

Lemma 3.5. Assume thatvx e fn(P): me(x)=mex(x); then (p,«)l=mq P if and only if
(0, k) Eme P.

Proof. A straightforward structural induction dA. =
Lemma 3.6. Assume that nfg) = mgz); then(p, «) l=me P if and only if(p, «) Eme P{z/Y}.

Proof. The proof is by induction on the size Bf Most cases are straightforward using the fact tr
Vx:mgx) = meXx{z/y}). This leaves us with the cases where the marker environment is modifiec
here we consider only a typical case.

The Case P= u(w?).Q. If v = ythe result follows from the above remarks so assumeutbéaty.
Letw be a fresh name, i.e., lat ¢ fn(Q) U {z, y}, in casez = v, and letw = v in casez # v; in both
casesndw — B1(2) = mgw — BI(y). Then

P{z/y} = ufz/y}(w”).(Qlw/v}{z/y})
and it follows that
(0. ) Eme P{z/y}
amounts to
(0. 1) Emdquep Qlw/vi{z/y} and Vy € p(meu{z/y}):«(x) < p(B)
and by the induction hypothesis this amounts to
(0. 1) Emdquep Qlw/v} and Vx e p(meu)) : «(x) < p(B).
which by Lemma 3.5 amounts to
(p. 1) Emduipup) Qlw/v} and Vx € p(meu)):«(x) < o(B)
so that by the induction hypothesis this amounts to

(:Ov K) 'zme[wHﬂ,w—nS] Q and Vx € p(mdU)):K(X) - IO(IB),
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which by Lemma 3.5 amounts to

(0. k) Emqu—p Q and Vy € p(meu)) :«(x) S p(B),

which again amounts to

(P, k) EmeP

as was to be shown.m

CoroLLARY 3.7. Assume that z fn(P) andn € B U C; then(p, k) Emgy—y P if and only if
(0, k) Emdz-n P{z/y}.

Proof. By Lemma 3.6
(,0, K) |=me[y»—>n,z»—>n] P iff (P, K) |=me[y»—>n,z»—>n] P{Z/Y}

and by Lemma 3.5 and¢ fn(P)

(0, k) Emdy—n P iff (0, k) Emdz—y P{z/Yy}

as was to be shown.m
Lemma 3.8. Assume that = Q; then(p, ) Eme P if (0, k) Eme Q.

Proof. The proof is by induction on the construction®f= Q and here we only consider the twc
harder cases.

The Case ok-Equivalence. Consider the subcasex*) P = (vy*)(P{y/x}) wherey ¢ fn((vx*) P).
We calculate that

(o, k) Eme (VX*)P
is equivalent to
(,0, K) |=me[x»—>x] P,

which by Corollary 3.7 is equivalent to

(p’ K) 'zmdyr—n(] P{Y/X}

(since eithery ¢ fn(P) ory = x), which is equivalent to

(0. 1) Eme (vy*)(PLy/x})

as was to be shown. The other subcase is similar.

The Cases. (vx*)(P1| P2) = (vxX)Pr| P, (if x ¢ fn(Py)) and px*)P = (if x ¢ fn(P)) are
easy consequences of Lemma 3.5 and the aas®(y* )P = (vy*)(vxX)P (if x # y) is straight-
forward. m

Lemva 3.9. Assume thafp, k) E=me P and méw) € p(me2)); then(p, k) F=me P{w/z}.
Proof. The proof is by structural induction oB. Most cases are straightforward using the fact
vx: p(mex{w/z})) S p(MEX)).

Here we only consider the two harder cases.
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The Case P= u(v?).Q. By Lemma 3.8 (sincer-equivalence is part of the structural congrt
ence) we may without loss of generality assume th& neitherw nor z. Then we may calculate
that

(0, k) Eme U(Uﬂ)-Q

amounts to

(0, k) Emdqu—p Q and Vy € p(meu)) i« (x) < p(B),

which, by the induction hypothesis and the fact stated above, imply that
(0, €) Emdu—p Q{w/z} and Vx € p(meufw/z})) 1k (x) < p(B).
which is equivalent to the required
(0, %) Fme (U(v’).Q){w/2}.
The Case P=[x =y]Q. Ourassumptiond, ) E=me P amounts to
(p(mex)) N p(Mey)) # 8 = (p, k) Fme Q
and our goal is to show
p(mex{w/z})) N p(mey{w/z})) # ¥ = (p. k) Fme Q{w/Z}
as this amounts tq( «) E=me P{w/z}. By the induction hypothesis it suffices to show that
p(melx{w/z})) N p(mely{w/z})) # 8 = p(MeX)) N (p(MEy)) # ¥
that is immediate using the fact stated at the beginning of the praof.

Subject Reduction

To establish the semantic correctness of our analysis we rely on the definition of the early sen
in Table 1 as well as on the analysis in Table 2. The subject reduction result below applieth
solutions of the analysis and hence in particular to the least. The operational semantics only re
processes at “top level” where it is natural to demand that all free names are bound to channels
than to binders); this is formalised by the conditime{fn(—)] CC. In the statement below, we write
(0, k) =S, P as a shorthand fop( k) =me P A mefn(P)] C C.

i
Theorem3.10. If (p, k) S, P and P~ Q we have

if 1 = 7 then(p, k) e Q; €N
if u = Xy then(p, «) Eqe Q. and méy) € k(meXx)); (2a)
if 1 = X(y*) then(p, ) Eqgy,q Q. andx & k(me(x); (2b)
if ;1 = xy and méy) € k(me(x)) then(p, k) =6 Q; (3a)
if 1 = x(y*) and x € x(me(x)) then(p, ) gy 1 Q (3b)

Proof. The proof is by induction on the construction Bf £ Q and with subcases depend
ing on whether case (1), (2a), (2b), (3a), or (3b) applies. Throughout assumeadhatP)] < C,

(0. k) Eme P (i.e. (0. €) ES.P) andP 5 Q.
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The Case (1). Thatmgfn(Q)] < Cisimmediate from Fact 2.3. Itremains to show that{) =mn Q.
In the case offauthis is immediate; clearly the axion@ut, Freeln andBoundindo not apply. Thanks
to Lemma 3.8 and the induction hypothesis (1), the property is preserved by th&ayl®ar, Sum,
Res andMatch clearly the ruleOpendoes not apply.

For suitableQ: and Q, such thatQ = Q7 | Q», in the case of rul€losethe induction hypothesis
(2b) ensures that

(0. 1) FEmdye 1 QuA x € k(MEX))

and the induction hypothesis (3b) ensures that

(o, x) Emdy— ] Q2

thereby establishing the desired
(0, k) Eme (vy*)(Q1 Q2).

The case of rul€omis similar but uses the induction hypotheses (2a) and (3a).

The Case (2a). Thatmgfn(Q)] C Cisimmediate from Fact 2.3; furthermgeéme(x)) = {megx)} C
C andp(mgy)) = {mgy)} € C. It remains to show thato( «) Eme Q and thatmgly) € «(meXx)).
In the case oDutit follows from Table 2 that ¢, k) Eme Q andVy < p(mgX)): p(mdy)) C «(x),
which amounts tand)y) € «k(mex)); the axiomsTau, Freeln andBoundindo not apply. Thanks to
Lemma 3.8 and the induction hypothesis (2a) the property is preserved by theaylBar, Sum Res
andMatch clearly the rule©Open Close andComdo not apply.

The Case (2b). Thatmgy— x])[ fn(Q)] € Cisimmediate from Fact2.3; furthermagsémex)) =
{mg(x)} CC. It remains to show thafo( «) Emdy—, Q and thaty € «(me&x)). None of the axioms
Tau, Out, FreelpandBoundInnor any of the rule€loseor Comcan apply. Thanks to Lemma 3.¢
and the induction hypothesis (2b) the property is preserved by theVateBar, Sum, RegandMatch.
In the case of rul®©penthe induction hypothesis (2a) ayd# x ensure thatd, «) Emgy—,] Q and
(mdy — xD(y) € «((mdy — x])(x)), which establish the desired result.

The Case (3a). Here we also assume tiragy) € x(megXx)) so thatmgy) € C. Thenmd fn(Q)] <
C is immediate from Fact 2.3 that also implipgme(x)) = {megXx)} < C; it remains to show that
(0, k) Fme Q.

In the case ofFreeln P is on the formx(w?). R and Q is R{y/w}. By Lemma 3.8 (sincex-
equivalence is part of the structural congruence) we may use&/aui® guarantee thab # y. From
(0,x) Eme X(w?).R we have that £, x) Emdw-pg R and«(mex)) < p(p). It follows that
megy) € p(B), which may be rewritten asrdw — B])(y) € p((Mqw — B])(w)). From Lemma 3.9
we then getg, ) Emqu—p R{Y/w} and the desiredo(, ) F=me R{y/w} follows, by Lemma 3.5.

Neither the axiom3au, Out andBoundIn nor the rule©Open, Closgor Comare applicable. Thanks
to Lemma 3.8 and induction hypothesis (3a) the property is preserved by th&aunl®ar, Sum, Res
andMatch

The Case (3b). Here we also assume that € k(mgx))SC. From Fact 2.3 we have
(mgy— xDIfn(Q) <C and p(mgx))={mgx)}<C so that it remains to show that
(IO’ K) |=me[y»—> x] Q

The axiomBoundInapplies in this case 9@ has the formx(y#).Q. Let noww ¢ {y} U fn(Q) and
note thatx(w?).R = x(y#).Q for R = Q{w/y}. SinceQ = R{y/w} it follows from Lemma 3.8 that
it suffices to show thatd, «) Emgy—,] R{Y/w}. From (o, k) Eme P and Lemma 3.8 it follows that
(0, k) Eme X(w?).R and hence thata( k) Emqu—pg R andc(mex)) < p(B). Using Lemma 3.5 it
now follows that p, k) FE=mquegliy—y] R- As in the previous case we havedw — B[y — x1)(y)
€ p((mdw — By — x]J(w)) and Lemma 3.9 giveso( ) Emqu—gly—x] RIY/w}. The desired
(0, k) Emgy—yx Rly/w} follows by Lemma 3.5.

Neither the axiomJau, Ouf andFreeln, nor the ruleOpen, Closgor Comare applicable. Thanks
to Lemma 3.8 and induction hypothesis (3b) the property is preserved by thé/anl&ar, Sum, Res
andMatch
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The inclusions occurring in the above items mildly constrain the environment where the pr
under validation operates. If one only considers closed systems, which can only perfoores, the
inclusions become useless, as all names are bound; in essence we retain only item (1).

4. CONSTRUCTION OF SOLUTIONS

There is also a constructive procedure for obtaining the least solution which operaDgsl i)
time in the size of processes (see [18, 31]). To describe it we shall concentrate on a pRyce
of interest as well as a marker environmang,, giving the binders and channels of free names
the process. To obtain a finite algorithm we prefer to restrict our attention to a finite uniigrse
containing all the relevant binders and channels and thendd(P,)] =qet {M&X) | X € fn(P,)}.
We shall say that the siz&|, of P, is the maximum of the number of symbols i and the num-
ber of elements irif,. In case we take an annotation which has all markers different from e
other and disjoint from the image of the marker environméhtinearly depends on the size &,
only.

Validating a solution , ) =me P amounts to checking a number of individual constraints. We n
define a functiorfc [ P] me for explicitly extracting the set of constraints to be checked. In doing so
shall make it clear that we are extracting the constraints in the form of syntax, and hence peplac
Table 2 byr andx by k.

Derinimion 4.1, We now define two classes of constraints.

e Anindividual constrainis on one of the forma; C ny, {x} C ng, orny Nn, # @, where eacim
will be on one of the three formyB), r (x) or k(x).

e A composite constrairs on the form{icy, ..., icy} = ic wherem > 0, allic; (on the left-hand
side) are individual constraints on either fofm} < ng orny N ny # @, andic (on the right-hand side)
is an individual constraint on the form C r(8) orny € k().

The details olGc[ P]me are given in Table 3. In the clause for £ y] P we cannot decide whethel
or notr (mg(x)) N r (mey)) # @ and hence we ensure that the constraints subsequently generate
in fact explicitly test this. Technically, this is achieved by means of the sub<€riptthe function
Gell PIme each constraint generated will be conditional on all of the constraints in the (initially em
setC. Similarly, in the clauses foxy.P andx(y?).P we use the assumptions about the univéfse
in particular thamdfn(P,)] < U,, to generate a sufficiently large set of constraints that then explic
test for{x} < r (mgXx)).

The call Gg[ P.]me Will give rise to at mostO(N) recursive calls, each call directly responsib!
for generating at mogD(N) constraints (see the clauses for input and output). The set of constr
C occurring as index to the recursive calls[ P]me can have size at mo€2(N) (see the clause for
matching). Hence at mo€(N?) constraints of siz&(N) will be produced.

TABLE 3

Constraint Generation for the-Calculus

gC[O] me =0

gC[r'P]me = gC'[P]Ime

GelXy-Plme = Gc[Plme U{(C U {{x} S r(mex))}) = r(mey)) S k(x) | x €U NC}
Gelx(¥)-Plme = Gl Plndy—p1 U H(C U {{x} S r(mex))}) = k(x) Sr(B) | x € U NC}
gC[PlJF PZ]me = gC'[Pl]ImeUgC[PZ]Ime

gC[Pl|P2]lme = gCI[PﬂlmeUgC[P2]lme

gC[(UXX)P]Ime = gC'[P]IdeH)(]

Gellx = yIPlme = Geuir max)nrmey)zs) [ Pl me
gC[! P]Ime = gCl[P]Ime
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The Semantics of the Constraints

To relate Tables 2 and 3 we need to interpret a set of constraints with respect to a proposed s
(p, k). First we define an evaluation function for left-hand sides:

DeriniTion 4.2, We defind/, [ n] as follows:

p(B) ifn=r(B)
V(p,K)I[n]I =1{x} if n= r(X)
k(x) it n=k(x).

Next we define a satisfaction relation.

DeriniTion 4.3, We define

(p,k)satny € ny iff Vip.olnd € Vip.olnal
(o,k)sat{x}<n iff x {h} € Vi,.0ln]
(p,k)satninng# @ iff Vi, 0Nl N Ve.0lned # 9
and also
m
(p,k)sat{icy,...,icn} = ic ff (/\(p,x)satici> = ((p, k) satic)
i=1
and finally

(p,x) SAT C iff Vcce C: (p,«) satcc

The relationship between Tables 2 and 3 is now given by the following result.
Lemma 4.4, ((o, k) SAT Ge[ Plmé) iff (0, k) SAT C) = ((p. ) Eme P)).

Proof. We proceed by structural induction & Most cases are straightforward and here we or
consider two of the more interesting cases.

The Case x(§)-P. We have thatg, k) SAT Gc[X(Y?). Pl meis equivalent to

(0, k) SAT Ge[Plmgyp1
(p. 1) SAT{C U {{x} S r(mex)}) = k(x) Sr(B) | x € U NC}.

Using the induction hypothesis this is equivalent to
(0. k) SATC) = (Vx e U NC : x € p(MEX)) = k(x) S p(B))

and given the assumptions about the univéfséhis is equivalent to the desiredo((x) SAT C) =
(0. k) Eme X(yF).P.

The Casdx = y]P. We have thatg, ) SAT Gc[[x = Y] P]meis equivalent to

(0, k) SAT Geugr mex)ur mey))2a1 [ P me-

Using the induction hypothesis and the definitiorB#{T this is equivalent to

(0. k) SAT C A (p, «) sat (r(me(x)) N r(mey)) # #)) = (0. €) Fme P).



80 BODEI ET AL.

which using the definition of sat may be rewritten as

(0. ) SAT C A (p(megx)) N p(MEy)) # 4)) = (0, €) FEme P)
that is equivalent to the desiregh((x) SAT C) = (p, &) Eme[X=VY]P). =

Solving the Constraints

We now demonstrate how to solve a set of constraints as might have been generated above.
purposes, merely obtaining an algorithm runnin@igN®) time, it suffices to perform a simple iterative
procedure upon a functiofy associated with the set of constraifits

Derinimion 4.5, Given a se€ of constraints, the functiofic maps a proposed solution into anothe
one as

fC(p’ K) = (10/7 K/)v

where
o'(B) = U {V(ﬂ«)[”] if /\imzl_(p,x) satic;
(licy....icmsncr(g)ec | 2 otherwise
and
/ Viwolnl it ALi(p, «) satic;
K'(x) = ; o
(licy....icm}=nck(x))eC otherwise.

Arelated functionf ¢ is given by

fe(o, k) = (o, k) U T lp, k).

The relationship between the two functiorig,and f ¢, and satisfactiorSAT C, of the set of constraints
is given by the following result.

Lemva 4.6. (o, k) SAT Ciff fc(p, k) CE (p, k) iff fc(p, k) = (p, k) whenever C is a set of com
posite constraints.

Proof. The second “iff” is immediate so consider the first. A composite constraldhias the form
{ice,...,icm} = Ny C ny; there are two possibilities far, and here we just consider the case whe
n,isr(B). Then

(p, k) sat ({icy, ...,icm} = Ny S 1 (B))

is equivalent to

(/\(p, «) sat ici) = V.ol € p(B),
i=1

which can be rewritten as

( iv(p_K)[nl] it A™,(p.«)satic;

7] otherwise

) C p(B).

It follows that

(p. k) SAT {({icy, ....icm} = n S 1 (B)) € C | p' = B}
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is equivalent to

Vil it AZa(e. ) Sam) < p(B)

] otherwise

and the desired result easily followsm
To prepare for the iteration we need the following standard result.

Lemma 4.7. fc is monotone and ¢ is monotone and extensive whenever C is a set of compc
constraints.

Proof. It is immediate thatf¢ is extensive (meaning tha(p, ) : (o, k) E fc(p k)) and that
it is monotone (meaning that(p, ) C (o', k') fc(p k) C fc(p k")) if fc is. To see thatfc is
monotone let 6, ¥) C (o, ¥’) and consider a composite constrafit;, ...,icm} = ny € nyin C;
there are two possibilities far, and here we just consider the case wherés r (8). It is immediate
thatV, [Nl <€ Vi .«)[ni] and we also haveq «) satici = (p’, ') sat ic; becausec; is either
of the formn; NN, # P or {x} € n'. This establishes the resultm

SettingC = Gy[ P.]me it now follows that the leastd, «) (above a givend; «), typically (L, L)) that
satisfies f, k) Eme P, equals the least fixed point dt (above p, «)). Because of our assumption:
about the universey,, the seC is finite andf ¢ operates over a complete lattice of finite size. Stand:
fixed point theory then ensures that the desiredc] is obtained asfc(p ) upon stabilisation, i.e.,
for the least such thatf ! clp. k)= fJ+ (0, k), where itis certain that suglexists. We may summarise
the development as foIIows

Treorem 4.8. Writing C = Gy[ P.]me there is a least natural number j such thﬁé(ﬁ, K) =
fL(p, i); it satisfies that

fJC(E» E) |:ma P*

and that (7, i) = N{(p, k) | (0. k) E=me P A (0, €) 3 (7, <)).

The tuple p, ) containsO(N) elements taking values in a set of si€N). Hence at mosO(N?)
iterations of the function will be needed. Each iteration can be performed by considering each
O(N?) constaints of fornficy, ..., icm} = N1 C ny, calculatingcy, . . ., icy andny in time O(N)and
then updating the entry for, accordingly. Hence the desired solution can be obtained in @gi¢°)
and spacé(N3).

ExampLE 4.9. As an example suppose that,(«1) is the least solution foP; and that p,, «2) is the
least solution forP, (w.r.t. the sameng. It follows that there also is a least solutign, ) for Py | P,
and since this is a solution fé?, and for P, we have

(01, k1) U (p2, k2) E (p, k).
We therefore know thaty(, «) equals

fL((p1, k1) U (02, k2))

upon stabilisation.

To see thaj cannot always be taken to be 0 consider the two proceRses x(y*).(vx*)xx and
P, = (vx*t)(vz*2)Xxz the marker environmemhgx) = x;, and the following definitions of; andx;:

ki(x1)  pi(Bo)

=1 {x {xi
i=2 {x2 ]
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Setting @', ) = (p1, k1) U (02, k2) we havex'(x1) = {x1, x2} andp’(Bo) = {x1} and hence the
constraintc’(x1) < p'(Bo) fails.

5. PREVENTING LEAKAGE

A common approach to system security is based on putting objects and subjects into security ¢
We demonstrate that control flow analysis helps in statically detecting useful information on sec
We consider in this section a static property ensuring that a channel, devised to be secret to a |
P, is never communicated to an external user. In the next section, we statically check another pr
that concerns how information flows between processes at different levels.

The w-calculus does not distinguish between data, that may be secret, and channels that
seen as capabilities of accessing data. More refined calculi, notabgpticalculus [3], make such
a distinction and permit a finer description of security properties. We choose here a pure calct
computations, without encryption and decryption primitives, in order to concentrate on the ap
bility of the control flow analysis to security issues. In fact, the scoping rules ofrthalculus are
sufficient for a careful use of channels, because processes can generate and pass hew names
the channels they denote available for communication. In a sense, learning the name of a ¢
amounts to possessing the capability to communicate on it, and restriction governs the visibi
names.

A processP could have the security requirement of keeping secret (some of) its channels, i.e.,
communicate them to the external environment. A process matches this requirement if it never pe
an extrusion of a secret channel, as made precise below. In the following, we assuiastiaaset
of secretchannels given by a designated authority, e.g., the designer or the user of a B osbss
implicitly introduces also the sé? of public channels as the complement®f A priori, binders are
neither public nor secret; the actual solution of the analysis establishes which kind of channels
bound to each binder.

Derinimion 5.1, The pairP, meis admissiblefor the setS C C of secret channels, if and only if
mgfn(P)] € C andmdfn(P)] NS = @. Then, the set of public channelsfs= C\S.

Note that the condition of admissibility is equivalentwg/fn(P)] < P; i.e., all free names are public
channels.

A Dynamic Notion

Now, we characterize a procd3shat never discloses its secrets. We describe this property by sa
thatP has no leakdntuitively, P enjoys this property if neither it nor any of its derivatives can perfol
an extrusion of a name bound to a secret channel. For this to make sense it is important to ¢
that the environment (or an external user) cannot guess any secret channels. We formalise tt
constrained notion of computation calleensoredEssentially, a computation is censored if no nar
y, with mgy) € S, can be read from the environment through an input.

Derinmion 5.2, GivenP, me S a censoredstep @, meni (Q, mé) is defined whenever the fol-
lowing conditions hold:

1.P5Q
2. (a) ifu = xy, then mey) € P
(b) if u = x(y*), theny € P

me if w =1, Xy,xy
wheremée = . Z
{me[y = x]if = X(y*), x(y%).

A censoreccomputation P, mé —* (Q, m¢€) s (R, mé&’) is made of censored steps, whose labels
all immaterial, apart from the last one.
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The following proposition shows that admissibility is preserved under censored computations
vided that there is no extrusion of a name marked secret. It also reveals the role played by the
condition of a censored step.

Lemma 5.3. Let P, me be admissible férand(P, mé ni(Q, me€) be such thapr = X(y*) implies
x € P;then Q mé are admissible fosS.

Proof. The proof is by cases op. If © = 7 or u = Xy thenmé = me from the hypotheses
and Fact 2.3 we have thaté [fn(Q)] € P. If u = X(y*) we have thameé = mdy~ x]; from the
hypotheses and Fact 2.3 we get thre[fn(Q)] € P. If u = xy, mdy) € P (by censored step) anc
me = me therefore the hypotheses and Fact 2.3 ensurenbffin(Q)] < P. If u = x(y*) we have
thaty € P (by censored step) and thag = mdy — x] so that the hypotheses together with Fact 2
ensure thame€[fn(Q)] C P. m

We are ready to define our dynamic notion of security for seymaethat are admissible for the se
S of secret channels.

Derinmion 5.4, The procesB hasno leakswith respect t&5, meif and only if (P, me —* (Q, mé€)
implies that there is no paiR, mé&’) such that Q, me€) Ly) (R, m&) with x € S.

Of course wherP is stuck, it has no leaks. Note thattthas no leaks, with respect & me andP,
meare admissible fof, then for allQ such that P, me —* (Q, mé€), Q, mé& are admissible fof,
due to Lemma 5.3.

A Static Notion

The notion of no leaks above is dynamic. We now introduce a static notion, in order to pred
compile time if a process has no leaks. It is caltemfinemertand we prove that it is a sufficient
condition for a process to have no leaks.

Derinmion 5.5, Let P, mebe admissible for a givei. A processP is confinedwith respect taS,
meif and only if there existsd, «) such that

@@, k) Eme P and  (b)k(x) =P if x €P.

Hereafter, we will say tha® is confined via the confining solutiom («).

Note that if a procesB is confined, by admissibility we also have tmagfn(P)] < P. Intuitively,
condition (b) above implies that only public information can be transmitted along a public channel
Uxep k(x) € P; conversely, any channel, be it secret or public, can pass along secret channels
restriction is put on them. We now show that confinement is preserved by censored computatior

Lemma 5.6 (Subject reduction for confinement).et P be confined(w.rt. S, mé and
(P,me ri(Q, mé€); then Q is confine@w.r.t. S, me).

Proof. The proof is by cases op and considers the confining solutiop, ) for P. If © = 1
or © = Xy we have thame& = me it follows from Theorem 3.10 thato( ) Eme Q and from
Lemma 5.3 tha®Q, mé€ is admissible folS. If © = X(y*) we havemé = mgy — x]andx < fn(P) (by
Fact 2.3); it follows from Theorem 3.10 and confinement thak{) =me Q andthaty € k(meXx)) = P;
then, by Lemma5.3itfollows th&, meis admissible foS. If © = xyoru = x(y*) we havex € fn(P)
(because of Fact 2.3). In the first subcas® = meandmgy) € P = «(mgx)) (by censored step anc
confinement); Theorem 3.10 guarantees that] =me« Q and Lemma 5.3 thad, mé is admissible for
S. Inthe second subcasee = mdy — x], x € P = k(megXx)) (by censored step and confinement
Theorem 3.10 guarantees that k) =me Q and Lemma 5.3 tha, mé is admissible folS. =

We are finally ready to show that confinement is sufficient to guarante® thest no leaks.

THeoREM5.7. If P is confinedwith respect taS, me then P has no leak@vith respect taS, me.

L1n the literature on security, confinement is also used with different meanings.
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Proof. By Lemma 5.6 it is enough to prove thaP,(me)M(Q, mé€) implies x € P. Since

x € fn(P) by Fact 2.3, we have thatgx) € P andx(megXx)) = P (by confinement). By Theorem
3.10,x € x(mgx)) and hence € P as was to be shown.m

ExampLE 5.8.  We consider here an abstract version of the Wide Mouthed Frog protocol, adaptec
[3]. Intuitively, two principalsA andB wish to communicate using classical shared-key cryptograr
and the first forwards a secret key, sayg, to the second one, with the help of a server. The ser
shares the secret kegas andcsg with A andB, respectively. So, the principal passes its kegag,
encrypted witlc s, to the server. The server decrypts the message, encrypts itapiind passes it to
B. AfterwardsA sends the messa@ encrypted witlcag, to B.

Here principals will be represented by processes and keys by secret channels, becawsddhles
has no cryptographic primitives. The specification follows:

A= (vMM)(vck 5" CasCas - CasM
S = cag(x?).Cspx

B = csa(y?). y(z%)

P = (vei8)(ved3 ) (AISIB)

The following solution is the least one:

{xm} ifx = xas
k(x) = {{xasl if x = xas, xsB
0 if x = xm

 [txas} it B =Bx By
PO = V) i B = B,

If we takeS = {xaB, xas, XsB, xm}, for all choices ofP there is a solution confining (with respect
to S). Thus, secrecy dfl is guaranteed.
Suppose to have a new namg:, with megcac) = xc € P. Let A be extended as follows

AB\— — A ——
A= (UMxM)(\)C£B )CAscAB.CAsM.CACcAB.

Intuitively, A sendscag alongcac after the completion of the protocol. For all solutions, it turns o
thatx(xc,.) 2 {xas} € P. Therefore, there is no solution confiniry with respect taS. Indeed,
the analysis reveals the extrusionoafs. With our specification in the -calculus, this action does no
affect the secrecy dff, yet it signals a potential problem, as an extrusion represents the public:
of the corresponding secret key. Indeed, if we takegpiecalculus, where encrypted messages ¢
transmitted as cleartext, an enemy may interééphcrypted, store it, and then decrypt it afteg has
been extruded (this violates the so-called forward-secrecy property, see e.g., [2]).

Itis immediate to see that confinement is not a necessary conditi®rhforing no leaks. For instance
the processyx*)xy. yx has no leaks but it is not confined with respecSte= {x} andmgy) # x.
Indeed not all deadlocks can be detected statically. So the extrusion of thexrsdomg channey is
considered a possible violation of secrecy.

Checking the Static Condition

One approach to checking confinement of a proBasih respect ta&S, meis to use the polynomial
time algorithm devised in the previous section. First, we check Bhaime (or P,, me) is indeed
admissible for theS given. Next, we construct sets of constrai@tsandCy, corresponding closely to
the two conditions in Definition 5.5. F@, we may simply us€[ P] me. FOrCy, we generate constraints
for half of the equality, namely for the inclusioP"” To be specific, writé?, = PN, and letCy, consist
of the constraint®, < k(x) for all x € P,. (These constraints can be expanded into a form allow
by Definition 4.1 unlike what would be the case if we @&f take care of the entire equality.) We the
solve the set of constraints in polynomial time so as to get the least solution Plikeonfined if and
only if the least solution hasacomponent equal to the one displayed in Definition 5.5. This appro
to determining whether or nétis confined (w.r.t. taS, mé clearly operates in polynomial time.
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6. MULTILEVEL SECURITY

Another way of enforcing security is by defining a hierarchy of levels for processes. The sec
requirement is that a process classified at a high level cannot write any value to a process at lov
while the converse is allowed; symmetrically a process at low level cannot read data from one of .
level. Sometimes this noninterference property is referred tmasad-up/no write-dowfiL6]. These
requirements amount to the simple security property that is part of the multilevel access control |
of [5, 14].

To study the no read-up/no write-down property we need an extension to the syntax efafmilus
to assign security levels to processes. Accordingly, the operational semantics requires a little exte
Moreover, we will adapt the static analysis as well to take care of these levels.

In the following we will only introduce the necessary extensions to the setting of the previous sec

Syntax

In order to simplify our presentation, we make here two assumptions that are common in the lite
(see e.g., [43]). First, we consider only two levels of security cleardnfs: low andH for high. So,
we introduce the sef = {L, H}. The case with a hierarchy of levels is studied in [8]. Second,
assume to have systems made of processes in parallel, and only these top-level components are
by clearance levels.

The new syntax, defined below, imports the syntax in Definition 2.2 for processes.

Derinimion 6.1, Systems, denoted I/ S, S, S, . .. € Sys are built from processes according t
the syntax

Su=(P) | (wx)S| §S|!S,

where(P)' expresses tha® has level € L.

The definition of free names is trivially extended by letting

fn((P)') = fn(P) fn((vx*)S) = fn(9\{x}
(S | ) = (S) Un(S) fn('S) = fn(S).

Semantics

The structural congruence now takes care of systems, i.e.:

e S= S'if SandS arex-equivalent;

e (0)" = (0L, and Byg-, |, (0)") is a commutative monoid;

o (VXX)(vy¥)S=(vyX)(WxX)S, if x#Yy, WX)S|=wx)S|S if x¢n(S), and
(vx¥)S= Sif x ¢ fn(S);

e !S=S|!S

The operational semantics is defined in Table 4, and uses the transition relation defined in T:
The transitions have the forS»—>S with| € LU {e}. When different fron¥, the additional level label
| records the clearance of the system performing the transition. When a communication |s deriv

levels of the sende®, and of the receive§ are discarded, leading to a transition of the f&m S —> S
(see the rule€omSandCloseSn Table 4).

Analysis

The solution of our new analysis is a triple, (¢, o) and the flow logic judgements are on either fort

(,O,K,O’) EmeS or (p,/(7g) 'Zlmep
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TABLE 4

Early Transition System for the-Calculus with Security Levels

$=5. 80 % 9=5

m
Lev: P: Q VarS: I
(P)! 7 ! sl—r S,
5 sSe
ParS: 5117151 bn(u) NIn(S) = @ ResS +{ X ¢ n(u)
S T 8|S (1)XX)S—|> (vxx)S
X(vX X T
slx(li>) .Szx(liQ% s¥y
CloseS —*— 2 OpenS ';( Y # X
Q%> (vy*)(S1S) (vyx)s—y> g
I

Xy Xy
ComS %
SL\Sz—E> SIS,

The role of p, k, meis exactly as in the previous sections. The purpose of the new ehtaed
o = (oin, oout), theabstract communication structuris the following:

o | € L keeps track of the current security level of the process under validation and is not need
systems.

e oin, oout: L — (C — (C)) give the set of the channels that can be bound to the possible ob
of an input and an output action respectively, performed by the subprocesses labélleddhyn a
given channek € C.

The analysis in Table 5 extends the analysis in Table 2, to deal with the levels of security clearal
imposing two further conditions while checking an input and an output prefix. The channels the
be bound to the object of an input (respectively, an output) action along chammakt be included
in ain(1)(x) (respectivelygou(l)(x)), wherel is the current security level. This is determined by, and
the only task of, the clause for the analysis of the systBjph. The rules for the other systems are ju:
as the rules for the corresponding processes. The technical results of Section 3 concerning th
solutions forming a Moore family, as well as the computation of solutior@(N°®) time andO(N?)
space via the generation of constraints, are easily adapted to the setting at hand. We therefore c
with the details.

TABLE 5

Control Flow Analysis for ther-Calculus with Security Levels

(0, K, 0) EheO iff true
(p.k,0) Ehet. P itf (o, k,0) Ele P

Iz . I . p(mey)) S k(x)A
(i) EneXrP WHee) Fine Pra¥ce pmebo): (p(me(y»gaout(l)(x)>

(0K,0) FheX(¥).P il (p.6,0) Fhgypy P AV € pme): ( <00 € 2l )

(x) S on()(x)

(0.k.0) FmePL+ P2 iff (0,x,0) Fne PLA (0,k,0) e P2
(0,k.0) Fme PLIP2  iff (p.k,0) Fine PLA(p.4.0) e P2
(0.%,0) Ehe GXOP it (9.6.0) Ehguy P

(p. k. 0) Ehelx=YyIP iff (p(M&X)) N p(MEY)) # # = (p. k. 0) e P
(p,x,0) |='me!P iff (p,«,0) |='meP

(0., 0) FEme (P) iff (0, %, ) Fme P

(0,%,0) Eme (vXX)S iff (0, k,0) Emdx—yx] S

(0,4,0) FmeSL| S iff (0, k,0) Eme SLA(0,k,0) EmeS
(0,k,0) Fme'S iff (0, k,0) FEmeS
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ExampLE 6.2. Consider the following syste® It consists of the processBandQ of low level and

of P of high level.

e R=ab.abbc

e Q = a(x#).xx

o P =a(y").y(z") - (ly = 2ya+ y(w))
o S=I((R)E Q| (PYY),

where the marker environmemteis such thame(fv) = xy for all the free namebr € {a, b, c}. The
triple (o, x, o) is defined as follows, where the bound namesare({x, y, z, w}:

{xb} if bv=x,y

PP = {{Xav Xb» Xc}

if bv=1z w

oin(L)(xa) = {xo}
oin(L)(xb) =9
oin(L)(xc) =9

oout(L)(xa) = {xo}
oout(L)(xb) = {Xb, Xc}
oout(L)(xc) =9

{Xb} if fv=a
K(XfV) = {Xaa sz XC} If fV = b
9 iffv=c

oin(H)(xa) = {xb}
oin(H)(xb) = {xa> Xbs Xc}
oin(H)(xc) =¥

oou(H)(xa) = 9
aout(H)(xp) = {xa}
oout(H)(xc) = 2.

Recall thato(x) = {x}. A simple check shows thap(«, o) Eme S.

The semantic soundness of our new analysis is stated by the new subject reduction theorem
is almost indentical to Theorem 3.10. The only differences are the new judgemeris) Eme S
and the obvious conditions about the new componerasdl. Its proof is a straightforward adaptatior
of the proof of Theorem 3.10, so we omit it. We also omit the easy extensions of the relevant len
in Section 3. As before g, «, o) =S, Sstands for g, «, o) =, SAmg fn(S)] < C.

THEOREMB.3. If (0, k., 0) ¢, S and slﬁ> S we have

if © = then(o, k, o) =5, S; (1)
if 1w = Xy then(p, k., o) e S, Me(y) € k(Mex)), and méy) € oou(l )(MEX)); (2a)
it 11 = X(y") then(p, x, 0) Egyg Ss x € x(mex) andy € oou()Mex));  (2)
if © = xy and méy) € «(mgXx)) then(p, «, o) |:fne S, and mgly) € ain(1)(mgx));  (3a)
if © = x(y*) and x € «(me(x)) then(p, «, o) |=anny] S,andy € oin(l) (MmegXx)), (3b)

with | € {L, H} in all cases except for the casgl) where le {L, H} U {&}.

A Dynamic Notion

We now introduce the dynamic version of the no read-up/no write-down property. As we did
censored steps, we impose a restriction on the channels that can be read by a Proddssa
given clearancé. We assume that the environment is always willing to listefPtdut it can select
which information is to be transmitted . To formalize the intentions of the environment, we use
function

c:L— (C— p)
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that maps a labéle £ and a channe} < C to the set of channels that the environment considers se«
to communicate tgP)'.

DeriniTion 6.4, GivenS, me ¢, agrantedstep is S, még r—|“>(5“, mé), and is defined whenever
1. S+—|“> S, and
2. (a) if u = xy, thenmdy) € ¢(I)(mgXx))
(b) if n = x(y*), theny € c(I)(meXx)),
me if w =1, XYy, Xy
mdy — x] if u=X(y*), x(y*)

wheremeé =

A granted computationg, me —* (S, me) r—|“> (S’, m¢) is made of granted steps.
The definition of our version of the no read-up/no write-down property follows.

Derinimion 6.5, A systenSis no read-up/no write-dow(nru/nwdfor short) with respect tg, meif
and only if: whenever$, mé —* (S, m€) F> (S, me’), where the last granted step is a communicati
(betweens, and §) that has been deducéd with either

(a) the ruleCom$ using the premiseS§, g 54 andST—¥S, or

(b) the ruleCloseSusing the premise§fﬁ—>m S and§ X(I—yx>) S,

thenl, = H impliesl; = H.

A Static Notion

We define now a static property that guarantees that a process is nru/nwd. Besides finding a s
(p, k, o) for a process?, we require that the channels that can pass along a given charinelude
those that can be read and sent algngecorded by the abstract communication strucsu¢eondition
2a below). More interesting is item (b) of the same condition, where the channels reagabogld
include those that the environment is willing to supply, expressed. hhe last condition is the key
condition. It requires that a channelcannot be used for sending an object from a process with h
level H to a process with low levdl.

DeriniTion 6.6.  LetS, mebe such thaine[fn(S)] € C. ThenSis discreet(w.r.t. ¢, mg) if and only
if there exists f, «, o) such that

1. (0,k,0) Eme S

2.Vl e{L,H}, x eC: (@)« (x) 2 oin(1)(x) U ooul!)(x)

(b) ain()(x) 2 s (1)(x)
3. Vx € C:oou(H)(x) Noin(L)(x) = ¥.
Below, we show that the property of being discreet is preserved under granted steps.

Lemma 6.7 (Subject Reduction for Discreetness) S is discreet with respect tg, me and
(S,me |—|”>(S, mée), then Sis discreet with respect to, mé.

Proof. Theorem 6.3 suffices to prove bothg fn(S)] < C and (p, x, ) EEme S. The proof of
the second and third items of discreetness is immediate, because the solution does not chan
only delicate point for the application of Theorem 6.3 is when the granted step is an input, wh
the other cases the proof is trivial. For input, consider first the pasexy. It suffices to show that
megy) € «(mex)). Conditions (2a) and (2b) of Definition 6.6 guarantee tifate(x)) 2 oin(1)(MgXx)) 2
¢ (N(mgXx)). Furthermoremdy) € ¢(I)(mgXx)) because the step is granted. The case whenx(y*)
is similar. =

THeoREM6.8. If S is discreefw.r.t. ¢, mé, then S is nru/nwdw.r.t. ¢, me.
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Proof. Since our computations are granted, by Lemma 6.7 it is enough to check the
(S, m& > (S, mé) then S is nru/nwd, witht being a communication betweel and S, defined
as in Definition 6.5. Without loss of generality we may assume that all restrictidhsdour outermost
orinside somé- - -). Assume, per absurdum, thgt= H andl; = L. Then there exist&éP,)™ and(P, )t
such that either

(a) (P} =2 (Pg)M and () =2 (P)*, or

(b) (P “ (Py) " and (P 2 (R,
given the assumptions abo&tandS. Giventhatp, «, 0) Eme Swe obtainthatg, «, o) Eme (Po)"

and (p, «x,0) Eme (P)L, for some suitablénetaking care of the restrictions mentioned above. T
analysis and Theorem 6.3 tell us that

(a) M) € oou(H)(MEX)) andmyy) € oin(L)(MEX)), or
(b) x € oou(H)(MEX)) andx € oin(L)(MEX)).
This contradicts item 3 of Definition 6.6, that demands the intersection of the two sets to be emp

ExampLE 6.9. Itis easy to prove that the procé&sgalidated in Example 6.2 is discreet. In particula
the following two conditions hold.

e oout(H)(xa) Noin(L)(xa) =9 N {xp} = 9.
e aout(H)(xp) Noin(L)(xb) = {xa} NV = 0.

As was the case for confinement, the polynomial time algorithm of Section 4 can be used tc
form a polynomial time check of whether or not a procésss discreet with respect to gives,
me

7. RELATED WORK

There are two strains of related work: the first concerns static analysis techniques, the second (r
their applications to security.

Static analysis of programs aims at developing efficient techniques that may be used to obte
proximate answers about how a program executes without actually executing it. Traditionally, th
been a main component in the construction of efficient implementations of programming langu
There is a vast literature on static program analysis and we here survey some of the more imj
approaches; we refer to [31] for further details.

Control Flow Analysis (e.g., [40]) deals with the problem of dynamic dispatch whereitiap-
parent which function (or method) is actually being invoked and where an analysis is needed in
to determine this information. This is a problem that appears all the time in higher order funct
languages and many developments of control flow analysis have indeed been performed fol
tional languages, but also object-oriented languages [35] and languages with concurrency [18]
addressed.

Recently, Venet [41, 42] has used Abstract Interpretation [11] to analyse processes in a fragn
therwr-calculus, with particular attention to the usage of channels. Type Systems are intimately cont
to ensuring the well-formedness of programs. In recent years they have been extended with annc
and effects and are becoming a very popular tool for the analysis of calculi of computations (e.g.,
34, 43, 44]); in our view, type systems are particularly useful when they admit principal types, an
is not the case for all of the developments cited.

These approaches are not so dissimilar as might appear at first sight. In fact, Control Flow An
can be expressed in the Constraint Based Formulation used here, in the terminology of Type S
and using abstract interpretation. We refer to [10, 31] and their references for further information:
the relationships among these approaches.

We now turn to the second strain of related work. The first studies in system security reach
to the 1970s and were mainly carried out in the area of operating systems; see the detailed sul
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Landwehr [24]. Denning’s book [14] reports her pioneering work, inspired also by the work by
and LaPadula [5], Fenton [15], and Lampson [23]. They developed methods for detecting violatic
secure flow while statically analysing the code.

Recently, security classes have been formalized as types and the control of flow is based c
checking. Heintze and Riecke [22] refine Denning’s analysis and study a noninterference property
SLam Calculus (Securecalculus). Well-typed processes are such that values of low-level expres:
are independent of the values of high-level parameters. Volpaabdevelop a type system to ensur
secure information flow in a sequential imperative language [44]; this work was later extended |
first two authors in a concurrent, shared-memory based setting [43].

The work closest to our proposal in Section 5 is that by Abadi[1], who studies the secrecy of che
and of encrypted messages using specalculus, an extension of the-calculus devised for writing
secure protocols. His is a more ambitious goal than ours, becausg-ttedculus also has cryptographi
primitives. Semantic correctness of the type system, formalised using testing equivalence, gua
that there is no leaking of secret information. As for the disciplined use of channels, Abadi’s an
aims are very close, as well as for the assumptions made (except that Abadi has a further otipn
besides those ¢fublicandSecre}. We conjecture that the two approaches are comparable in preci
Indeed our solutiond, «) can be seen as an explicit type annotation of processes (in the manr
Exercise 5.4 of [31]) and our notion of validation corresponds to validate the type annotation. Hov
whereas we established that a best solution always exists (via Moore families) and gave a procec
constructing solutions, Abadi [1] does not establish the existence of the analogous notion of pri
types, and hence it is unclear whether or not a sound and complete typing algorithm exists. The se
correctness is checked against two different dynamic notions (testing equivalence versus no lea

Other interesting papers in this area are [4, 12, 13, 17, 36—39]. Particularly relevant are Henne:s
Riely’s papers [37, 38] that give a type system far [& variant of ther-calculus with explicit sites that
harbour mobile processes. A well-typed process correctly uses its capabilities and never compr
the integrity of well-behaved sites. Recently also Cardelliand Gordon [9] proposed a type system
ambient calculus ensuring that a well-typed mobile computation cannot cause certain kinds of rul
faults, even when capabilities can be exchanged between processes.

The idea of static analysis for security has been followed also in the Java world, for example
Java Bytecode Verifier [25]. Also, Abadi faces in [2] the problem of implementing secure system
proposes to use full abstraction to check that the compiled code enjoys the same security prope
the source program.

The dynamic point of view has been adopted by a certain number of information flow models [1
26, 27] (to cite only a few). Here, only the external observable behaviour is the object of the analy
classical example is the noninterference model of [19, 20], where the actions of the group of higt
users have no effect on what the group of low level users can observe. McCullough [26, 27] e
this definition to cope with non determinism. Focardi and Gorrieri [16] use a process algebras s
by using SPA (Security Process Algebra), an extension of CCS [28]. Our property of no read-
write-down could be considered a variant of the noninterference property, studied by most of the a
mentioned above.

8. CONCLUSIONS

We presented a control flow analysis for thecalculus that statically predicts how names will b
bound to actual channels at run-time. The only extensions made to the syntax of processes ar
channely is explicitly assigned to a restricted name, and that an input action has the(gfinmaking
explicit the role of the placeholder; this change was motivated by the inclusionae€onversion in
the semantics. Annotations can be done mechanically and do not affect the behaviour of pro
typically, all markers will be different. The results of our analysis approximate the actual solut
because they may give a super-set of the corresponding actual values.

We defined judgements on solutions and processes and a set of clauses that operate on jud
so as to validate the correctness of the solution. We proved that a best solution always exists
also presented a constructive procedure for generating solutions, whidslit).2 Note that the only

2 A recent result [33] shows that time complexity can be reduce@(to?).
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point where we addressed reachability is in the two clauses for matching in Tables 2 and 5. The
avoid analysing the “continuation” if the match cannot possibly be passed. Similar considerations
be applied to input and output actions, so as to avoid analysing the continuation, e.g., in case the
set is associated with the subject of the action (see [8]).

We described how our analysis can be used to establish two simple properties of security. Tt
property we called confinement, the second property we called discreetness. The two propert
orthogonal, as the first puts constraints on the communications to the environment, and the ¢
property enforces a discipline on the communications internal to the process under analysis. S
can separately check them on a process.

An immediate extension to our (two-level) notion of confinement consists of defining a hierarcl
classification levels associated with channels. Equally immediate is extending our analysis in Se
to statically check that a high level of information is never transmitted on a channel with a lower
of security classification.

We did not consider, but we plan to, the more general notion of the no read-up/no write-down prc
that assigns levels of confidentiality also to the exchanged data (i.e., the objects of input and
actions). Processes with low level clearance are then not allowed to access (i.e., they can neith
nor receive) highly classified data. Note in passing that (an extension of) our first security property
enough for getting the full version of the nru/nwd property; indeed, processes with different clear:
are allowed to send objects with different classification along the same channel, while this is forb
in the case considered in Section 5. A further extension to the nru/nwd property might consider tc
a partial order of clearance levels (see Chapter 5 of [14]).

Future work will consider calculi more oriented to security. The last two authors have already co
ered in [21, 32] the ambient calculus [9] that extendsthealculus with an explicit notion of mobility
of computation. The main application concerns validating the protectiveness of a firewall, me:
that it does not allow agents to enter unless they know the required passwords. We are also int
in the spicalculus [3] that enriches the-calculus with primitives for encryption and decryption an
distinguishes between data and channels. The core analysis fpiHtaculus should remain the sam
as presented here, while some sort of data flow analysis seems necessary to track data manipulz
would also be interesting to study authentication properties. Preliminary work on a control flow an:
for the spi-calculus can be found in Bodei's thesis [6], where a notion of secrecy and a restrictec
of authentication are considered.
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