
Static Analysis of Aspects

Damien Sereni
Oxford University Computing Laboratory

damien.sereni@ magd.ox.ac.uk

Oege de Moor
Oxford University Computing Laboratory

oege @ comlab.ox.ac, uk

ABSTRACT

Aspects are a novel p rogramming language feature, to ex-

press concerns in p rogram design t h a t crosscut t radi t ional

abs t rac t ion boundaries. The focus of this paper are dynamic
aspects. Such aspects are specified as pointcut designators
(pa t te rns in the call stack), coupled with advice (code whose

execution is tr iggered by the given pa t te rn) . We propose a

more pr imit ive syn tax for po in tcu t designators, based on

regular expressions. This pr imit ive syn tax facilitates a new

stat ic analysis t h a t in t u rn enables a more efficient imple-

menta t ion of aspects.

Categories and Subject Descriptors

D.3.3 [P r o g r a m m i n g L a n g u a g e s] : Language Cons t ruc t s

and Features

General Terms

Languages

Keywords

aspects, compilers, analysis, regular expressions, meet-over-

a l l -paths

1. INTRODUCTION
Some aspects of program design, such as t racing and log-

ging, crosscut the t radi t ional abs t rac t ion boundar ies of pro-

cedures and modules. W h e n such crosscut t ing occurs, it

is desirable t h a t the aspect can be added later, as a sepa-

ra te program unit , t h a t is then woven into the original base

program. This is the mot iva t ion for the parad igm of aspect-
oriented programming [20]. The most popular implementa-

tion of this paradigm is an extension of Java, called Aspec tJ

[191.
One way to describe the weaving process is akin to the ob-

server pa t t e rn [14]: the aspect code moni tors the execution

of the base program, and when cer tain sequences of events

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 2003 Boston, MA USA
Copyright ACM 2003 1-58113 -660-9/031002... $5.00

occur, addi t ional code t h a t belongs to the aspect is run. An

aspect can be applied recursively, moni to r ing its own execu-

tion, and splicing in code at appropr ia te times. In Aspect J,

the sequences t h a t are observed are an abs t rac t ion of the

call stack, and the pa t t e rn s in the aspect t h a t tr igger the

execution of new code refer to pa t t e rns in the call stack. A

definitional in te rpre te r (in the style of [12]) for this dynamic

view of aspect weaving was described in a pioneering paper

by W a n d e t a / . [28]. An a l te rna t ive formal model can be

found in [10].

Natura l ly dynamic weaving is costly, and it is i m p o r t a n t

to find more efficient compila t ion strategies, and indeed As-

pec t J does implement one such strategy. The salient fea-

tures of the Aspec t J opt imizer are explained by Masuha ra

e ta / . , t h rough par t ia l evaluat ion of Wand ' s in te rpre te r [23].

In brief, the pa t t e rn s are compiled to match ing au tomata ,

and the compiled p rogram main ta ins a stack of s ta tes for

each such au tomaton . By inspect ing the top of this stack,

one can tell in cons tan t t ime whe the r new aspect code needs

to be executed. The run t ime overhead of main ta in ing these
stacks is however significant.

This paper makes two cont r ibu t ions to the compilat ion of

aspects:

• We propose a more pr imit ive language for describing

pa t t e rns in the call stack, based oll regular expressions.

The Aspec t J pa t t e rn combina tors can be expressed in

our language. The more pr imit ive na tu re of our pro-

posal makes s ta t ic analysis easier, and it may be a l i t t le

more familiar to readers outside the Aspec t J commu-

nity.

• We present a new meet-over-al l -paths analysis, which

enables a compiler to de te rmine s tat ical ly whe the r any

call s tack at a given poin t in the program could ma tch

one of the pa t t e rn s in the aspect. This el iminates most

of the run t ime overheads in the s t ra tegy of Masuha ra

eta/.

We i l lustrate these ideas in the context of an exper imenta l

implementa t ion of aspects as an extension to a Pascal-like

language, which was carried out by the first author .

The s t ruc tu re of the paper is as follows. Section 2 reviews

the terminology of aspect-or iented p rogramming and it in-

t roduces our new language of pa t te rns . We then i l lustrate

these with an example, namely count ing swap operat ions in

an implementa t ion of quicksort. W i t h reference to t h a t ex-

ample, we briefly review previous work on in te rpre t ing and

compil ing aspects. Section 3 proposes our new analysis, and

the way it is implemented. Section 4 discusses the results of

30

this analysis on some sample programs. Next, in Section 5,

we outline the optimisations that the new analysis enables.
The paper concludes with a discussion of related work, and

possible directions for future investigation. In particular,
we indicate how the results of this paper could be used in a
refactoring tool, which gives automatic assistance in factor-

ing out aspects in legacy code.

2. ASPECT-ORIENTED PROGRAMMING
Aspect-oriented programming builds upon a long tradi-

tion of meta-programming systems (especially [18]) and sev-

eral variants of the same ideas exist, e.g. [1, 16, 21]. The

most widely adopted, however, is that in AspectJ [19], and

therefore we follow the terminology of that exposition. Space
does not allow an in-depth review of the applications of as-

pects, and the reader is referred to [5] for a comprehen-
sive overview. AJD is a much smaller aspect-oriented lan-

guage than Aspect J, designed as part of the Aspect SandBox

project, which aims to build a set of tools to experiment with

aspects [23, 28].
To illustrate the ideas of this paper, we use a small pro-

cedurai language, which is a variant of Pascal. It could be
regarded as a subset of AJD that lacks features for object

orientation. The restriction is not fundamental, and the

techniques of this paper could be easily extended to richer

languages. We shall return to this point in Section 6.

2.1 Preliminaries

Base program, aspects and advice. An aspect-oriented
program consists of a base program and a number of as-

pects. The aspects can be viewed as observers of the base
program, taking action when certain events occur in its exe-

cution. A piece of code that describes an intervening action
is called advice. Aspects are thus understood relative to an

operational semantics of the base language.

Join points. Machine configurations where advice might in-

tervene are called join points. Variations of aspect-oriented

programming can be explained as variations in the level of

abstraction of these join points. We follow AJD by defining
join points as an abstraction of the control stack, ignoring

all other notions of machine configuration. To wit, a join
point is a sequence of procedure calls (call), procedure exe-

cutions (ezec), and advice executions (aezec). A procedure

call corresponds to the invocation of a procedure at the call

site, whereas an execution refers to entry into the proce-
dure's body. The following grammar describes the language
of possible join points:

jp : := jp_element*

jp_element ::== call (name, name,

actual_param*)

I exec n a m e

I aexec name

Note that the join point for a procedure call includes not

only the name of the called procedure, but also that of the
calling context, as well as the values of actual parameters.
Strictly speaking, the calling context is redundant, but it
simplifies the description of useful sets of join points. In

Aspect J, a much richer join point model is assumed, in par-
ticular reflecting the inheritance hierarchy. All these enrich-

ments are however of a static nature, and the focus of this

paper are dynamic join points. A semantics of such static

aspects is sketched in [2].

Pointcut designators. To specify where advice should in-

tervene, each piece of advice is coupled with a predicate that

singles out the set of join points where that advice should

be executed. Such a set of join points is called a pointcut,

and the predicate that describes it is called a pointcut des-

ignator, or PCD for short. A PCD may include variables,

to match against the actual parameters of a procedure call.

We deviate from A J D and AspectJ in the syntax for ex-
pressing pointcut designators. A pointcut designator is a

regular expression whose alphabet consists of element des-

ignators (EDs). An element designator is a predicate over

join point elements. The syntax of element designators is

given by:

ed ::= peall name

pwithin name

args var*

ed A ed
ed V ed

~ed

true

The pcall n designator matches join point elements of the

form call (n, _, _). The next designator is pwithin n; it ma-
tches calls that are made from the context n, that is a

join point element of the form call (_, n, _). Finally, one can

match for actual parameters using

args (Xl, ~2, . . . , Zn)

This element designator matches call (_, _, [al, a2 , . . . , a,~]),

binding each variable xl to al. The logical operators are in-
terpreted as expected; in particular, negation can only be

applied to element designators that do not contain free vari-

ables. Note that there are no designators to match on pro-

cedure or advice executions.

Within a PCD, a variable may only be repeated in the

branches of a logical disjunction. Furthermore, variables

cannot be used under the Kleene star. These restrictions
simplify the matching of PCDs against join points at run-

time. Indeed, PCDs cannot make tests that depend on dy-

namic values bound using the args primitive. We shall re-
turn to this point later.

Before, after, and around. As explained above, a point-
cut designator describes where advice applies - - but there is

still the choice of executing the advice code before or after

the selected join points. Each piece of advice is therefore

also coupled with an indication of whether it happens be-

fore or after a join point. In AJD, there is furthermore the

option of execution advice around a join point. In the corre-

sponding advice execution, the s ta tement proceed describes
the original join point. This is a powerful feature, allowing

the programmer to substi tute completely different code for

a procedure call. Our present implementation does not sup-

port around advice, and its possible inclusion will be further
discussed in Section 6.

2.2 Example: Profiling quieksort
To illustrate the above definitions, consider a program

that calls Hoare's quicksort routine [17], to sort the lines in

31

compare (i, j)

swap(i, j)
readln(i)

wri te ln(i)
part i t ion(a, b)

quicksort(a, b)

returns true if

linesbuf[i] < linesbuf[j]
swaps lines i and j

read a line into linesbuf[i]

print linesbuf[i]

partitions l inesbuf[a. .b),

with pivot linesbuf[a]

sorts l inesbuf [a.. b)

F i g u r e 1: Q u l c k s o r t p r o c e d u r e s .

an array of strings. The program has a global variable called

l inesbuf to hold the array of strings, and Figure 1 shows the

procedures that are relevant to the discussion below. Each

entry in the figure briefly describes what the procedure does
- - the open interval notation x[a..b) denotes a consecutive

segment of array x inclusive of x[a], up to but not including
x[b]

Now suppose that we wish to augment this program, to

gather some statistics about the performance of quicksort,

printing out the statistics after each run of the algorithm.

We intend to count the number of calls to parti t ion, as well

as the number of swap operations. Note that there may be
other uses of swap apart from the obvious ones within the

parti t ion routine.

To achieve the desired effect, we use the aspect shown in

Figure 2. The first piece of advice says that before each

call to parti t ion from the body of quicksort, the parti t ions

counter should be increased. The next piece of advice says

that before any call from swap within the context of a call to

quicksort, the swaps counter should be increased. To achieve

initialisation, we specify a pointcut that contains only non-

recursive calls to quieksort , and of course the initialisation
should be carried out before encountering any join point in

that cut. By contrast, the results should be reported after
each non-recursive call to quicksort.

2.3 Interpreting Aspects
Most programmers will agree that it is nice to localise

the code that gathers the statistics in the quicksort example

- - provided the runtime cost is negligible. To assess those

runtime overheads, let us first consider a straightforward
interpreter for aspects.

Such an interpreter is described in detail by [28]. Sereni

has ported those ideas to a variant of Pascal, implemented

in OCAML [4], and the code can be downloaded from [25].

The basic idea is simple: an interpreter for the base lan-

guage is augmented to keep track of the current join point.
Whenever a new join point is created (at a procedure call,

entry to a procedure body or advice execution), that new
join point is matched against all the PCDs in the aspects

that were applied to the program. If a match is found, the
corresponding advice is executed, with an environment that

contains values for the PCD variables that were bound in
matching.

The maintenance and matching of join points is poten-

tially costly. Consider, for example, the PCD we used to

trigger initialisation in the quicksort example. To check that

a join point satisfies this PCD, one must traverse the whole
join point. It follows that upon each new join point creation,

the interpreter may have to traverse the whole join point for
each PCD that is in scope.

aspect Counts
var swaps, partitions : int;

advice PCount
before: {pcall(partition) A pwithin(quicksort) } ; {true}*
begin

partitions : : partitions + 1
end

advice SCount
before: { pcaU (swap) } ; { true } * ; { pcall (quicksort) } ; {true}*
begin

swaps : : swaps -t- 1
end

advice lnit
before: { pcaU(quieksort) } ; {-~(pcaU(quicksort)) } *
begin

partitions := O;
swaps := 0

end

advice Print
after: {pcaU(quicksort) } ; {-~(pcall(quicksort)) } *
begin

println "Partitions: " ÷ + partitions;
println "Swaps: " ++ swaps

end
end Counts

F i g u r e 2: P r o f i l i n g a s p e c t for q u i c k s o r t .

2.4 Compiling Aspects
Clearly such interpretative weaving of base program and

aspects is too costly to be practical; some form of com-

pilation must be used to transfer work from the dynamic
matching to compile time. This is a clear case for partial

evaluation [13]. Indeed, in [23], it is shown how the first

Futamura projection yields a compiler from the interpreter
of [28]. Unfortunately, however, without further improve-

ments, that compiler still generates code that potentially
traverses the whole join point for each PCD.

The same paper [23] explains how the AspectJ compiler
solves this problem. A PCD pcd corresponds to a deter-

ministic finite automaton, say M. This automaton is con-

structed as follows. First, we collect all potential join point

elements from the program text, in a set called .,4. Note that

this is possible, because all relevant values are available at

compile time, except for the argument values in a call: we

just represent these by dummy place holders. It is likely

that we overestimate the set of join point elements (because
some of them do not occur in actual program runs), but

that does not matter. Next, for the relevant pcd, we de-
termine the set X of element designators that occur within

pcd. Now, for each element designator, we can compute the
set of join point elements that are true of it, giving a map

validates : X ~ .4 set

That is, validates takes an element designator e, and returns

the set of join point elements in A that validate e. Take the

finite automaton that corresponds to the regular expression

that makes up pcd: this is an automaton where the tran-
sitions are labelled with element designators. Replace each

transition labelled with e by a set of transitions, taking the
labels from val idates(e) . Finally determinise the result: thus

32

we obtain the finite automaton M that corresponds to pcd.
We now describe how M is used for efficient implemen-

tation of PCD matching. Write M(x) for the state that is

reached via a join point x. Instead of repeatedly running M
on each new join point x = [xa,z2,...,xn] from scratch,

we could keep a stack [M (x) , . . . , M([x,~-l, xn]), M([~])] .
When a new PCD is constructed, it is either by pushing new

elements on to the front of x, or by popping some, and thus
the transitions can be computed in constant time. It follows

that the overheads of matching are reduced to a constant,
for each individual PCD. Similary we need to keep a stack

of variable bindings for each PCD that contains args(x) des-

ignators.
This is certainly an improvement, but keeping these stacks

of states is still a significant overhead, roughly proportional

to the number of PCDs. The paper [23] describes further
methods of reducing the constant factor (one of which we

shall elaborate on in Section 5), but the overhead remains

proportional to the number of PCDs.

Intuitively, in examples such as that shown above, it seems
possible to completely eliminate the matching process, and

determine for each point in the program exactly what PCDs
will apply at runtime, and which cannot apply. It would

then be possible for a compiler to generate the tangled pro-
gram that one might have written prior to the invention of

aspects. This is what we set out to do in the remainder of
this paper.

3. ANALYSING ASPECTS
Our objective is to determine for each procedure call in

the abstract syntax tree of the program the set of all possible

call stacks (or equivalently, join points) at that call. Given
this information, it would be possible to obtain a source-to-

source program transformer that takes an aspect-oriented

program, and returns the base program with some addi-
tional code inserted (corresponding to applicable aspects),

but without any code for matching pointcut designators.

It is important to note, however, that we cannot hope to

achieve this for all possible advice. Both with the regular
expressions we use for denoting PCDs and with the language

used in the Aspect SandBox project, it is possible to write

a pattern which makes compile-time determination impos-

sible. We will come back to this point in Section 5. In the

meantime, we shall describe our approach to computing the

relevant analysis information.

3.1 The Analysis
With each piece of advice is associated a pointcut desig-

nator pcd, which denotes a set of join points. As discussed
in Section 2, it is possible in our language to compute (an

over-approximation of) the set of join point elements in a

program at compile time, which we denote by .4. We may
hence define a function:

join_points :pcd ~ ..,4* set

which associates to each pointcut designator the (usually in-

finite) set of join points that it represents. This simplifies
our discussion of the analysis and is part of the reason for the
restrictions we have placed on pointcut designators. In the
remainder of this paper, for notational convenience, we iden-
tify a pointcut designator pcd with the set join_points(pcd).

Now during the execution of the base program, a piece

of advice with pointcut designator pcd is executed if the

current join point lies in pcd. It therefore suffices to com-

pute, for each procedure call p in the program text, a set
L(p) containing all possible join points at evaluation of the
call p. We shall define L(p) to be a regular language, and

in general it is an over-approximation; however it reduces
the problem of determining advice applicability to tests on

regular languages. Indeed,

• If L(p) C pcd, then the advice always applies at p, and

• if pcd N L(p) = 0, then the advice can never apply at
p.

Observe that both tests can be reduced to language contain-
ment, as

pcdfqL(p)=O ~ L(p) C-~pcd

where -~X = A* \ X.

3.2 The Call Graph

Aims. We now proceed to describe how L(p) may be com-

puted. Our approach will be to construct a call graph for
the program, in which each procedure call appears as a node.

Furthermore there will be nodes related to aspects. Edges

in this graph correspond to elementary operations affecting

the control stack (such as procedure calls) and hence are la-

belled with join point elements - - recall that a join point is
a string of join point elements, and thus a path in the graph

corresponds to a join point. The set L(p) will in fact be the

set of paths from the source vertex (the procedure main) to
the vertex corresponding to p. We denote the source vertex

b y v .

The graph must thus be built such that every path from

v to p is a valid join point at p (although it need not occur
in actual program runs), and that every valid join point is

represented by a path. There are therefore three kinds of

edges, corresponding to the three join point kinds - - proce-

dure calls, procedure executions and advice executions. A

join point that is a path in the graph, but that cannot occur

in an actual program run is said to be infeasible (the dis-
tinction between feasible and infeasible paths is common in

this type of analysis, see e.g. [24]).

The nodes in the graph correspondingly, represent pro-

cedure bodies (the procedure node), procedure calls (call
nodes) and advice bodies (advice nodes). Note however that
while there is a single procedure node in the graph for each

procedure in the program, advice nodes are replicated at
each procedure call.

Below we shall explain the construction of the graph in
four steps. These informal explanations are then made pre-

cise in a piece of pseudocode.

Procedure calls in base program. We can now describe
the relationship between these nodes by considering a sin-

gle procedure call to f from 9. For simplicity, we will first
consider the case where there are no procedure calls within

the bodies of advice, and return to the more general case
later. See also Figure 3 for an illustration of this. The

graph includes nodes for procedures f and 9 respectively.
The call is represented by a node n, and edges are added:

from 9 to n, labelled call(f, 9); and from n to f , labelled
exec(f). This represents the direct, or unadvised path to f
from 9. However, any advice that applies modifies this path

33

aexec
.."'°'"" ~

® ~ ~ ® - - , ~ . . . ~ ® . ,

".. i ,~
• : ." ~. X. \
• ~ . X

........ i "-, \ \
.......... i " , ,

...... i
......

Q calla g) - ~xTc-(O~

Key:

Procedure Call

. . . . "~ Procedure Execution

............... ~" Advice Execution

Q Procedure Node

0 Call Node

@ Advice Node

F i g u r e 3 : A n a d v i s e d p r o c e d u r e cal l

by adding an advice execution event between the call to f

and its execution. As we assume at present no knowledge of
applicability of advice, any subset of the program advice can

apply, chained however in the order in which they appear

in the program text. To achieve this, a new node is created
for each piece of advice in the program. Each of these has
an aezec edge leading from the call node, and an exec edge

leading to the execution node.

Muhiple pieces o f advice. The previous construction only

decribes the execution of a single piece of advice only. We
now consider the interaction of different pieces of advice at a

single• In this, we follow the semantics given in [28], which

differ from that of AspectJ. We therefore consider that if

more than one piece of advice apply at a procedure call, the
resulting aexec join point elements are stacked, regardless

of the type of advice (in Aspect J, this is only the case for

around advice)• Thus there is an additional set of edges,

describing the possibility of chaining aspects. Assuming that

aspects are ordered as ao , . . . , an, there is an edge from ai
to aj for all j > i. This construction is illustrated in Figure

3 for the case of three aspects.

Procedure calls in advice. In the previous paragraphs,
we have described the construction of the call graph in a
restricted case (namely, that the only procedure calls occur
in the base program). This is thoroughly unrealistic, and

we now must complete the description in the general case.

The same construction cannot be applied for procedure calls
within advice bodies, as this would be a potential cause of
infinite regress. Indeed, recall that a fresh copy of each of
the advice nodes is created for each procedure call in the text
(ignoring the quick pruning described in the next paragraph,
ms we are considering the worst case). Therefore if a piece

of advice al contains a procedure call pc, a fresh copy of a~

is created to advise that call, which in turn creates a new

instance of pc, leading to nonterminating behaviour. To
remedy this problem, procedure calls from advice bodies are

not t reated in the same way as calls from the base program.
A procedure call pc from an advice node ni does not give

rise to new copies of the advice nodes, instead it shares the

set S of advice nodes to which nl belongs• This is illustrated

in Figure 4.

Reducing the size o f the call graph. The above construc-
tion leads to a call graph that has many infeasible edges.

In particular, it is possible to dramatically reduce the size

of the graph prior to analysis by considering the topmost

element of the call stack. In practice, many pointcut desig-

nators are of the form

{pcall(f) A . . . } ; . . .

Indeed, PCDs which are not of this form can often cause

infinite loops (more details are given in [28]). Now in this

case it is easy to see that this can never apply to a call to

a procedure 9 -~ f , and hence it is unnecessary to include

the node for this advice for such calls• Generalising this, it

is usually possible to eliminate a large proportion of advice

nodes and edges by checking whether the first element of the

PCD can apply to the call being considered• The top of the

call stack will always be a call event, and this corresponds

to the label of the edge leading to the procedure call node.

There is a final complication to the construction, as our
quick pruning means that S will not in general contain the

entire set of advice in the program. If the call pc requires an

advice aj not in S, a fresh copy of aj is created and added

to S, and is chained with the other nodes in S.

Putting it all together. To make this discussion precise,

we have included the algorithm used for this construction

in ML-like pseudocode in Figure 5. This defines a function

add_call_advice which is invoked for all procedure calls in the

base program, and adds the advice nodes and edges for the

call, as well as those for calls from advice bodies. A mention

is appropriate here of the effect that this sharing of advice

nodes has on the analysis. In principle, it could lead to

a certain loss in sharpness, by introducing new and usually

spurious paths in the call graph. We note that sharpness can
be improved considerably by iterating the analysis, pruning

infeasible edges from the graph upon each iteration.

3.3 Meet-Over-all-Paths Analysis
We have constructed a graph from the source program

such that the set of paths from the source vertex v to any
vertex p is an superset of the set of possible call stacks at

point p in the execution of the program. Using this, it is pos-
sible to obtain a regular expression L(p) describing the set of

join points at p, using an algorithm of Tarjan [27]• This reg-
ular expression can then be tested for inclusion with respect

to each PCD in the program. This solves the problem but

implies much duplicated computation• Indeed, the regular
expressions L(pl) and L(p2) are closely related for vertices

Pl and P2 that are "close" in the graph, and hence testing
the same pointcut designator against both of them indepen-
dently is wasteful. In the next section we will describe a
method for performing these tests compositionally.

34

/ \
/ \

/ ~ ! \
/ ~

@

F i g u r e 4: P r o c e d u r e cal ls w i t h i n a d v i c e b o d i e s

let add_call_advice procedure_call =

le t (applicable, notapplicable)
= partition all advice in the program with the quick

pruning method for procedure_call
le t new_advice.nodes

= make a fresh node for each advice in applicable

let to_process = r e f new_advice_nodes

a n d added = r e f new_advice_nodes

:For e a c h anode in to_process do

le t pcalls
= get all procedure calls from the body of the

advice corresponding to anode

for e a c h pcall in pcalls do

add the edges for pcall
le t (app', notapp')

= quick pruning for pcall

for e a c h anode' in app' do

i f name(anode') in names(added) t h e n

add the advice edges for advising peall with

the advice corresponding to anode'
e l se

let newv
= create a fresh copy of anode'

add the advice edges for pcall and newv

added := {newv} U added;
to_process := { newv} U to_process

e n d
d o n e

d o n e
d o n e

chain the nodes in added together

F i g u r e 5: C o n s t r u c t i n g t h e Cal l G r a p h

main

F i g u r e 6: E f f ec t o f cal ls w i t h i n a d v i c e b o d i e s o n

s h a r p n e s s

3.4 Compositional Analysis: Chips and Chops
We can accurately regard the number of advices as fixed

and small in comparison to the number of procedure calls.

It is feasible, therefore, to do some precomputat ion on the

PCDs prior to the analysis proper.
We define two predicates on regular expressions r:

Subset pcd r ~ r C_ pcd

Disjoint pcd r ~ r C -~pcd

_= Subset (-sped) r

The values that we are interested in are Subset pcd L(p)
and Disjoint ped L(p). By our previous observation, it is

desirable to compute those compositionally in terms of p,
that is by induction on the structure of L(p).

In a companion paper [8] we have described a composi-

tional algorithm for achieving just that (presented in the
context of program analysis with side conditions specified

as regular expressions). In this algorithm, a matr ix C(pcd)

of regular expressions (the "chip-chop matrix" for pcd) is
associated with each pointcut designator. We can think of

C(ped) as a systematic arrangement of the parts of pcd (de-

tails can be found in [6, 8]). By generalising Subset and

Disjoint to these matrices, so that:

(S pcd r)~,y _= r C C(pcd)~,~

(D ped r)~,u -= r C C(-~pcd),,u

S and D may be computed compositionally on the structure

of L(p).
More specifically, we have:

Sped(r1; r2) = (S p c d r l) . (S pcdr2)

Spcd (rl + r2) = (S pcd r~) A (S pcd r2)

where we define multiplication of Boolean matrices taking

Y for addition and A for multiplication. These rules force

Spcd (r*) to be the greatest fixed point of the equation:

X = (S ped ~) A (Sped r) • X

where v denotes the empty string.
This defines a regular algebra which may be used directly

in Tarjan's algorithm. As pcd itself occurs as an entry of
C(pcd), the original problem is an instance of the general-
isation. Note also that the performance advantage of this

algorithm is increased if the analysis is i terated (to obtain

35

Procedure calls:

1: main

2: main

3: main

4: readln

5: partition

6: partition

7: partition

8: quicksort

9: quicksort

10: quicksort

readln(N)

quicksort(O, N)

writeln(i)

swap(O, i)
compare(i, a)

swap(i , j)

swap(a, i - 1)

partition(a, b)

quicksort(a, i)

quicksort(i + 1, b)

Results:

Call PCount SCount

1 x x

2 × ×

3 × ×

4 × ×

5 × ×

6 x

7 ×

8 ~ x

9 × ×

10 x x

Init Print
× x

X ×

× ×

× ×

× x

× X

× ×

X X

× ×

Figure 7: Results of analysing the quicksort example

better estimates of L(p) in some cases, as previously men-

tioned), as the chip-chop matrices do not need to be recom-
puted.

An alternative (non-compositional) algorithm for testing

inclusion of regular languages can be found in [7, 22].

4. RESULTS

In the previous section we have described our method for

analysing aspect-oriented programs with the aim of stati-
cally determining the points of application of advices, thus

reducing the runtime overhead associated with dynamic as-

pects (we will give more details as to exactly how this might

be reduced in Section 5). In this section, we will explore

the effectiveness of this analysis on the small example from
the introduction - - unfortunately space does not allow us

to present larger examples, or indeed an example where it-
eration of the analysis is beneficial.

Recall that we had augmented the behaviour of quicksort

with an aspect Count made up of four advices: SCount and

PCount for counting calls to swap and calls to partition re-
spectively, Init for initialising counters, and Print for print-

ing the tracing information (note that for clarity we use
identifiers beginning with a capital letter for aspects and

advices only). There were in total ten procedure calls in our
program, which we have detailed in Figure 7, along with the

results of the analysis. Our results are presented as follows
(for a procedure call pc and an advice a):

• A 4" means that a always applies at pc.

• An x means that a can never apply at pc.

• A blank entry means that the analysis is inconclusive.

Calls 5 to 10 are the heart of the actual quicksort routine,
while 1 to 4 make up the interface with the user. This

program demonstrates the use of three different kinds of

pointcut designators (recall that advices Init and Print have

the same pointcut designator). The advice for PCount only

matches on the topmost i tem of the stack and in this sense is

static - - it only depends on the textual location of the call.
In contrast, the other two kinds of advice are dynamic and

depend on the call stack. This is used to express the two

properties that a call is within dynamic scope of quicksort

and that a call to quicksort is not recursive, respectively.
In this case, the analysis has been successful in determin-

ing applicability for each advice at each procedure call. Thus

the pointcut designators which we just described as dynamic

are in fact static in the context of this base program. Given

the table in Figure 7, it would be possible to transform the
aspect-oriented program into its tangled, or statically wo-

ven counterpart by just inserting the body of the relevant

advice at each point marked with a (. The programmer can

thus write the clear, neatly separated version of the program

without loss of efficiency.

5. OPTIMISATIONS

The analysis tha t we have described in Section 3 deter-

mines, for each procedure call in the program, the "status"

of each advice at that call (based on the advice's pointcut

designator). T h i s status is one of three possibilities: the
advice can never apply at that call, or the advice always

applies at this call, or applicability of the advice cannot be

statically determined (that is, the analysis has been unsuc-
cessful for this part icular advice and call).

In the case that the analysis has been successful at a call p

for a piece of advice with pointcut designator pcd, the advice
body may be either discarded or inserted directly at the ap-

propriate point in the code. The analysis thus eliminates the

need for run-t ime matching of pointcut designators, which
is certainly desirable and a significant performance saving if

matching is implemented in the straightforward way. How-

ever, when the matching algorithm from the AspectJ com-
piler (as presented in [23]) is used, the savings will be less

important - - more t ime is spent keeping the current state

of the automaton Mp~a for each pointcut designator pcd.

It is however easy to see how this may be eliminated:

suppose that the analysis has been successful for a given

pointcut designator pcd at every procedure call in the pro-
gram. In this case, the current state of the corresponding

automaton Mp~d will never be used, as pcd will never need to
be matched during the execution of the program. I t there-

fore becomes unnecessary to keep and update the state of

Mpc~, and the functionality of the advice is woven with no
run-time overhead.

Thus far, we have made the restriction that no free vari-

ables appear in ped. We shall now extend the previous de-
scription to include the possibility of free variables in pcd.

Recall that in our language, free variables are introduced by
the args construct and bind to the values of parameters to

procedures. Also, due to the restrictions that we have placed

on the use of variables in our pointcut designators, they act
as place holders only and have no influence on matching

(and hence static analysis). It follows that whenever we can
determine that a pointcut designator cannot apply at a pro-

gram point p, we can eliminate the relevant code, just as in
the absence of variables.

However, it is not possible to eliminate the matching code
in the presence of variables, since we still must maintain a

36

stack of variable bindings. Of course there are a number
of common special cases where the stack is unnecessary, for
instance when the variables are bound only in the leftmost

element designator.

Unfortunately, it is in general impossible to statically de-
termine applicability for arbitrary pointcut designators. As

an example, consider the case of a simple procedure f with

a single recursive call to f from within its body. Now the
pointcut designator:

{pcall(f)}; {true}*;
{pcall(f)}; {true}*;

{pcall(f)}; {true}"

matches exactly those calls to f that occur within the scope

of two previous calls to f (that is, the depth of recursion is at

least three). Certainly this may apply to the recursive call

to f from within its body, but this is not always the case - -

in the first, non-recursive execution of f it will not. There-

fore no static analysis can in general solve the problem for
this particular situation. It is worth noting that this phe-

nomenon is not introduced by our new language for pointcut

designators, as the previous expression has an equivalent in
the AJD syntax [28], namely

pcall(f)
A cflowbelow(pcall(f)

A cflowbelow(pcall(f)))

(We discuss the primitives in this expression, and its re-

lation to our notation, further in Section 6.) Because of

this restriction on the power of static analysis of aspects,
it would be desirable to reduce run-time overhead when we

have determined some, but not all, of the information about
applicability of a piece of advice.

One such optimisation was explained by [23], based on

the observation that not all join point elements actually up-

date the state of the automaton associated with a pointcut
designator. This optimisation is implemented in AspectJ.

Another optimisation is based on the observation that of-

ten the static undecidability of aspects will be limited to a

few procedure calls in the program, and hence there will be
large portions of the call graph in which this may be com-

puted statically. We say that such portions of the call graph

are "aspect-free", in reference to the fact that they can be

compiled without the code responsible for matching point-
cut designators (we are not saying that no advice can apply

in those components of the graph, however). For concision,

we say a procedure call node is "good" if all advice can be
statically determined for that node. Given a node v, we also

define reachables(v) to be the set of nodes reachable from

v in the graph. The crucial point is that due to the stack

nature of join points, the events occurring in reachables(v)
do not influence the join point at any predecessor of v (as

the graph may not be acyclie, we only say that a node is a

predecessor of v if it is not also a successor of v). There-
fore if all nodes in reachables(v) are good, we may safely

eliminate all bookkeeping code (i.e. code that updates the

current state of au tomata for pointcut designators) from all

calls within reachables(v), as this will not affect the states
of the automata at other points in the program.

If this property is true of the source node (that corre-
sponding to the body of the procedure main), then this just
boils down to eliminating all PCD matching code from the

program. However, it is much more general than that, as

there may be several aspect-free components in the graph
even if it is not globally aspect-free.

6. R E L A T E D W O R K

As we indicated earlier, the research reported here is very
closely related to and much inspired by the Aspect SandBox

project at UBC, and in particular its implementations of the
experimental language AJD. In this section, we discuss some
of the differences.

6.1 R e g u l a r e x p r e s s i o n s vs. cflow

The main difference is our language of pointcut designa-

tors, which is that of regular expressions over element desig-

nators. By contrast, in AJD the abstract syntax of pointcut
designators is given by

ajd_pcd ::= top ed

] cflow ajd_pcd
] ajd_pcd A ajd_ped

as well as some further logical combinators that are not rel-

evant to the present discussion. The first form matches a
join point whose head matches the given element designa-

tor. The form cflow p is matched against a join point x as

follows. First, p is matched against x. If that succeeds, so

does the matching of cflow p. Otherwise, the process is re-

peated with the tail of x, until a match is found, or no more
elements remain. A PCD of the form and(p, q) matches x
if both p and q match x.

From the above description, it is easy to deduce a trans-

lation from the PCDs in AJD to our notation:

trans : ajd_pcd ~ pcd

To wit, we define (using abstract syntax on the left, and for
brevity, concrete syntax on the right):

tran~ (top e) = {e} ; {true}*

t rans (¢ o ~ p) = {the}* ; t~n~ p

trans (p A q) = trans p N trans q

This translation is faithful in the absence of variables, in

the sense that matching an ajd_pcd (say p) against a join

point x yields the same result as matching trans p against

z. In the presence of variables however (introduced using

the args element descriptor), the situation is more complex.

AJD defines the matching process of cflow so that it takes
a "minimal munch" from the left of the join point. This

characteristic is not reflected in the above translation, al-

though our implementation of regular expression matching
does produce the same behaviour.

We have only very limited experience with writing point-

cut designators, but it would seem that the regular expres-
sion syntax is just a more primitive counterpart to the nota-

tion in AJD. Admittedly, however, regular expressions tend

to be somewhat more verbose. For example, consider

{pcall(swap) } ; {true}* ; {pcall(quicksort) } ; {true}"

In AJD, one would write the much shorter

pcall (swap) A cflow(quicksort)

(in the concrete syntax of AJD, the top constructor is invis-
ible).

The A J D pointcut language is however complicated by
some subtle variants of cflow, like cflowbelow, which is the

37

same as eflow, but it operates on the tail of a join point.
This extra operator is necessary to express pointcuts such

a s

{ pcall (quicksort) } ; {-~(pcall (quicksort)) }*

Which would be written

pcall (quicksort) A-~(cflowbelow(quicksort))

It is our belief that regular expressions provide a nice set of

primitives to define higher-level constructs, including those
of the AJD pointcut language. We are not advocating that

the cflow notation is replaced by regular expressions: we
merely suggest that it may be worthwhile to offer the more

primitive notation for situations where the current set of
higher-level constructs proves awkward or inadequate.

6.2 around advice
We earlier described the notion of around advice. At a

matching join point, the corresponding piece of advice is ex-
ecuted. When proceed statement is encountered, the proce-

dure that originated this join point is executed, after which

advice execution resumes. It is not necessary for the ad-

vice to contain a proceed statement, and it is thus possible

to completely replace the existing procedure. Furthermore,

the proceed statement takes pararneters, which are used in-
stead of those in the original procedure call.

This powerful feature does not present any conceptual dif-

ficulties for the analysis we have outlined. It certainly com-

plicates the construction of the call graph, which so fax did

not need to take the type of advice (before or after) into

account. It is thus for expository reasons that we decided

not to consider around advice in this paper.

6.3 Objects
The construction of the call graph is also complicated by

considering virtual methods. At each virtual method call,
we need to determine what instances might be called from
that point in the code. Fortunately, however, a great deal

of research has been devoted to such virtual method call

resolution (e.g. [15, 26]), and we foresee no problems in
combining it with the analysis presented here.

7. CONCLUSION AND FUTURE WORK
This paper has reported on a first exploration of static

analysis of aspects. In particular, it has been shown how

the runtime overheads of matching pointcut designators can

be reduced, and sometimes completely eliminated. This is

encouraging, and we feel it warrants a larger research ef-
fort, where these and similar techniques are applied to a

realistic aspect language, so that meaningful performance
experiments can be conducted.

The efficiency of our analysis is acceptable for small ex-
amples, taking seconds on programs of a few hundred lines.

The running t ime of the analysis itself is linear in the size of
the call graph, so we expect it to scale. The main bottleneck

is in the preprocessing phase, where the chip-chop matr ix is

constructed. This new application of chip-chop matrices, in

addition to that in [8], suggests that it is worthwhile investi-
gating efficient algorithms for their construction. Conway's

monograph (where chip-chop matrices originated) [6] and
Backhouse's thesis [3] contain a wealth of theory that can
guide this research.

The first AspectJ compiler was a whole-program compiler,
and currently it is being re-engineered to allow separate com-

pilation, and use incremental recompilation where necessary.
We are hopeful that our analysis can fit this setting: to re-

use the work from a previous pass of the analysis, one can

store the S and D matrices (Section 3.4) for each procedure.

If a program change is known not to affect the call graph of

a procedure, the matrices can be re-used.

Another interesting direction for future work is the ap-
plication of static analysis to aid the refactoring of legacy

code [11], extract ing slices of the original program into as-
pects. Consider the tangled version of our quieksort exam-

ple, where the relevant counters have been manually placed
in the program. Standard program slicing [29] will extract

the computations from the original program, thus giving us

the relevant pieces of advice. If the original program al-

ready contains aspects, we can use the results of [30]. To

then construct a new aspect, suitable pointcut designators

have to be associated with each piece of advice: a static

analysis could assist in finding suitable regular expressions.

For this purpose, the output of Tarjan's algorithm on the

call graph needs to be simplified, as the resulting regular

expressions are seldom in the simplest possible form. It is

our belief tha t tools to easily move from traditional code to

aspect-oriented views are indispensable for the acceptance

of this new paradigm. The present paper has investigated

how to translate from aspects to traditional programs, but

the reverse direction is equally important .
Finally, in large aspect-oriented programs, it is important

for programmers to be warned of potential interactions be-

tween aspects. A static analysis for this problem was first

proposed in [9]. We are hopeful that the results of this paper

can be used similarly, namely to detect when two different

pieces of advice may both be executed at the same program

point.

Acknowledgements

The authors axe grateful to Gregor Kiczales for helpful com-

ments on an early draft, especially concerning AspectJ. They
would like to thank Kris de Volder and Hidehiko Masuhara,

for patiently explaining the finer points of aspects and their

compilation during a very productive visit to Oxford in May

2002. Hidehiko pointed out some inaccuracies in a draft of
this paper. Members of the tools group at Oxford also pro-

vided valuable discussion and feedback. Four anonymous

referees made many suggestions that helped to improve the

paper.

.

[1]

[2]

REFERENCES

M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and

A. Yonezawa. Abstract ing object interactions using

composition filters. In R. Guerraoui, O. Nierstrasz,

and M. Riveill, editors, ECOOP '93 Workshop on
Object-based Distributed Programming, volume 791

of Lecture Notes in Computer Science, pages 152-184.

Springer, 1994.

U. Aflmann and A. Ludwig. Aspect Weaving by
Graph Rewriting. In U. W. Eisenecker and

K. Czarnecki, editors, Generative Component-based
Software Engineering (GCSE), number 1799 in
Lecture Notes in Computer Science, Erfurt, 1999.

38

[3] R. C. Backhouse. Closure algorithms and the
star-height problem of regular languages. Ph.d. thesis,
Imperial College, London, 1975.

[4] The Carol language, 2002. h t tp : / /carol , inr:i.a, f r / .

[5] Communications of the ACM. Volume 44:10, October
2001. Special issue on aspect-oriented programming.

[6] J. H. Conway. Regular Algebra and Finite Machines.
Chapman and Hall, 1971.

[7] O. de Moor. Universal regular path queries.
Higher-Order and Symbolic Computation, to appear.

[8] O. de Moor, S. Drape, D. Lacey, and G. Sittampalam.
Incremental program analysis via language factors.
submitted for publication, 2002.

[9] R. Douence, P. Fradet, and M. Siidholt. A framework
for the detection and resolution of aspect interactions.
In Proceedings of the ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and
Component Engineering (GPCE'02), 2002.

[10] R. Douence, O. Motelet, and M. Sudholt. A formal
definition of crosscuts. In A. Yonezawa and
S. Matsuoka, editors, Third International Conference
on Metalevel Architectures and Separation of
Crosscutting Concerns (Reflection 2001), volume 2192
of Lecture Notes in Computer Science, pages 170-186.
Springer, 2001.

[11] M. Fowler. Refactoring: improving the design of
existing code. Addison Wesley, 2000.

[12] D. P. Friedman, M. Wand, and C. T. Haynes.
Essentials of Programming Languages. MIT Press,
second edition, 2001.

[13] Y. Futamura. Partial evaluation of computation
process - - an approach to a compiler-compiler.
Higher-order and Symbolic Computation,
12(4):381-391, 1999. Reprinted from Systems,
Computers, Controls 2(5):45-50, 1971.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, 1995.

[15] D. Grove, G. Furrow, J. Dean, and C. Chambers. Call
graph construction in object-oriented languages. In
ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA).
ACM Press, 1997.

[16] W. Harrison and H. Ossher. Subject-oriented
programming (a critique of pure objects). In
A. Paepcke, editor, ACM Conference on
Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), pages 411-428. ACM
Press, 1993.

[17] C. A. R. Hoare. Quicksort. Computer Journal,
5:10-15, 1962.

[18] G. Kiczales and J. des Rivieres. The Art of the
Metaobject Protocol MIT Press, 1991.

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In J. L. Knudsen, editor, European
Conference on Object-oriented Programming, volume
2072 of Lecture Notes in Computer Science, pages
327-353. Springer, 2001.

[201 G. Kiczales, J. Lumping, A. Menhdekar, C. Maeda,
C. Lopes, J. Loingties, and J. Irwin. Aspect-oriented

programming. In M. Aksit and S. Matsuoka, editors,
European Conference on Object-oriented
Programming, volume 1241 of Lecture Notes in
Computer Science, pages 220-242. Springer, 1997.

[21] K. J. Lieberherr. Adaptive Object-Oriented Software:
The Demeter Method with Propagation Patterns.
PWS Publishing Company, 1996.

[22] Y. A. Liu and F. Yu. Solving regular path queries. In
Proceedings of the 6th International Conference on
Mathematics of Program Construction (MPC),
volume 2386 of Lecture Notes in Computer Science,
pages 195-208. Springer Verlag, 2002.

[23] H. Masuhara, G. Kiczales, and C. Dutchyn.
Compilation semantics of aspect-oriented programs. In
Foundations of Aspect-Oriented Languages (FOAL),
Workshop at AOSD 2002, Technical Report TR
#02-06, pages 17-26. Iowa State University, 2002.

[24] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In pop195, pages 49-61, jan 1995.

[25] D. Sereni. A definitional interpreter for aspects.
http ://w~. comlab, ox. ac. uk/oucl/research/

areas/progtools/aspects, 2002.
[26] V. Sundaresan, L. Hendren~ C. Razafimahefa,

R. Vall6e-Rai, P. Lam, E. Gagnon, and C. Godin.

Practical virtual method call resolution for Java.
ACM SIGPLAN Notices, 35(10):264-280, 2000.

[27] R. E. Tarjan. Fast algorithms for solving path
problems. Journal of the Association for Computing
Machinery, 28(3):594-614, 1981.

[28] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. In Foundations of Aspect-Oriented
Languages (FOAL), Workshop at AOSD 2002,
Technical Report TR #02-06, pages 1-8. Iowa State
University, 2002.

[29] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10:352-357, 1984.

[30] J. Zhao. Slicing aspect-oriented software. In lOth
IEEE Workshop on Program Comprehension, pages
251-260, 2002.

39

