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ABSTRACT 

Aspects  are a novel p rogramming  language feature,  to ex- 

press concerns in p rogram design t h a t  crosscut t radi t ional  

abs t rac t ion  boundaries.  The  focus of this  paper  are dynamic 
aspects. Such aspects  are specified as pointcut designators 
(pa t te rns  in the  call stack), coupled with advice (code whose 

execution is tr iggered by the  given pa t te rn) .  We propose a 

more pr imit ive syn tax  for po in tcu t  designators,  based on 

regular expressions. This  pr imit ive syn tax  facilitates a new 

stat ic  analysis t h a t  in t u rn  enables a more efficient imple- 

menta t ion  of aspects. 

Categories and Subject Descriptors 

D.3.3 [ P r o g r a m m i n g  L a n g u a g e s ] :  Language Cons t ruc t s  

and  Features 

General Terms 

Languages 

Keywords 

aspects,  compilers, analysis, regular expressions, meet-over- 

a l l -paths  

1. INTRODUCTION 
Some aspects of program design, such as t racing and  log- 

ging, crosscut the  t radi t ional  abs t rac t ion  boundar ies  of pro- 

cedures and  modules. W h e n  such crosscut t ing occurs, it 

is desirable t h a t  the aspect  can be added later, as a sepa- 

ra te  program unit ,  t h a t  is then woven into the  original base 

program. This  is the  mot iva t ion  for the  parad igm of aspect- 
oriented programming [20]. The  most  popular  implementa-  

tion of this  paradigm is an extension of Java, called Aspec tJ  

[191. 
One way to describe the  weaving process is akin to the  ob- 

server pa t t e rn  [14]: the  aspect  code moni tors  the  execution 

of the  base program, and when cer tain sequences of events 
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occur, addi t ional  code t h a t  belongs to the  aspect  is run. An 

aspect  can be applied recursively, moni to r ing  its own execu- 

tion, and  splicing in code at  appropr ia te  times. In Aspect  J, 

the  sequences t h a t  are observed are an abs t rac t ion  of the  

call stack, and  the  pa t t e rn s  in the  aspect  t h a t  tr igger the  

execution of new code refer to pa t t e rns  in the  call stack. A 

definitional in te rpre te r  (in the  style of [12]) for this  dynamic  

view of aspect  weaving was described in a pioneering paper  

by W a n d  e t a / .  [28]. An a l te rna t ive  formal model can be 

found in [10]. 

Natura l ly  dynamic  weaving is costly, and  it is i m p o r t a n t  

to find more efficient compila t ion strategies,  and  indeed As- 

pec t J  does implement  one such strategy. The  salient fea- 

tures  of the  Aspec t J  opt imizer  are explained by Masuha ra  

e ta / . ,  t h rough  par t ia l  evaluat ion of Wand ' s  in te rpre te r  [23]. 

In brief, the  pa t t e rn s  are compiled to match ing  au tomata ,  

and  the  compiled p rogram main ta ins  a stack of s ta tes  for 

each such au tomaton .  By inspect ing the  top of this  stack, 

one can tell in cons tan t  t ime  whe the r  new aspect  code needs 

to be  executed.  The  run t ime  overhead of main ta in ing  these 
stacks is however significant. 

This  paper  makes two cont r ibu t ions  to the  compilat ion of 

aspects: 

• We propose a more pr imit ive  language for describing 

pa t t e rns  in the  call stack, based oll regular expressions. 

The  Aspec t J  pa t t e rn  combina tors  can be  expressed in 

our  language. The  more pr imit ive  na tu re  of our  pro- 

posal makes s ta t ic  analysis easier, and  it may be a l i t t le  

more familiar  to readers outside the  Aspec t J  commu-  

nity. 

• We present  a new meet-over-al l -paths  analysis, which 

enables a compiler  to de te rmine  s tat ical ly  whe the r  any 

call s tack at  a given poin t  in the  program could ma tch  

one of the  pa t t e rn s  in the  aspect.  This  el iminates most  

of the  run t ime  overheads in the  s t ra tegy of Masuha ra  

eta/. 

We i l lustrate  these ideas in the  context  of an exper imenta l  

implementa t ion  of aspects  as an extension to a Pascal-like 

language, which was carried out  by  the  first author .  

The  s t ruc tu re  of the  paper  is as follows. Section 2 reviews 

the  terminology of aspect-or iented p rogramming  and  it in- 

t roduces  our  new language of pa t te rns .  We then  i l lustrate  

these with an  example,  namely  count ing  swap operat ions  in 

an implementa t ion  of quicksort.  W i t h  reference to t h a t  ex- 

ample,  we briefly review previous work on in te rpre t ing  and  

compil ing aspects.  Section 3 proposes our new analysis, and  

the  way it is implemented.  Section 4 discusses the  results  of 
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this analysis on some sample programs. Next, in Section 5, 

we outline the optimisations that  the new analysis enables. 
The paper concludes with a discussion of related work, and 

possible directions for future investigation. In particular, 
we indicate how the results of this paper could be used in a 
refactoring tool, which gives automatic  assistance in factor- 

ing out aspects in legacy code. 

2. ASPECT-ORIENTED PROGRAMMING 
Aspect-oriented programming builds upon a long tradi- 

tion of meta-programming systems (especially [18]) and sev- 

eral variants of the same ideas exist, e.g. [1, 16, 21]. The 

most widely adopted, however, is that  in AspectJ  [19], and 

therefore we follow the terminology of that  exposition. Space 
does not allow an in-depth review of the applications of as- 

pects, and the reader is referred to [5] for a comprehen- 
sive overview. AJD is a much smaller aspect-oriented lan- 

guage than Aspect J, designed as part  of the Aspect SandBox 

project, which aims to build a set of tools to experiment with 

aspects [23, 28]. 
To illustrate the ideas of this paper, we use a small pro- 

cedurai language, which is a variant of Pascal. It  could be 
regarded as a subset of AJD that  lacks features for object 

orientation. The restriction is not  fundamental, and the 

techniques of this paper could be easily extended to richer 

languages. We shall return to this point in Section 6. 

2.1 Preliminaries 

Base program, aspects  and advice. An aspect-oriented 
program consists of a base program and a number of as- 

pects. The aspects can be viewed as observers of the base 
program, taking action when certain events occur in its exe- 

cution. A piece of code that  describes an intervening action 
is called advice. Aspects are thus understood relative to an 

operational semantics of the base language. 

Join points. Machine configurations where advice might in- 

tervene are called join points. Variations of aspect-oriented 

programming can be explained as variations in the level of 

abstraction of these join points. We follow AJD by defining 
join points as an abstraction of the control stack, ignoring 

all other notions of machine configuration. To wit, a join 
point is a sequence of procedure calls (call), procedure exe- 

cutions (ezec), and advice executions (aezec). A procedure 

call corresponds to the invocation of a procedure at the call 

site, whereas an execution refers to entry into the proce- 
dure's body. The following grammar describes the language 
of possible join points: 

jp : := jp_element* 

jp_element ::== call ( name, name, 

actual_param* ) 

I exec  n a m e  

I aexec name 

Note that  the join point for a procedure call includes not 

only the name of the called procedure, but  also that  of the 
calling context, as well as the values of actual parameters. 
Strictly speaking, the calling context is redundant,  but it 
simplifies the description of useful sets of join points. In 

Aspect J, a much richer join point model is assumed, in par- 
ticular reflecting the inheritance hierarchy. All these enrich- 

ments are however of a static nature, and the focus of this 

paper are dynamic join points. A semantics of such static 

aspects is sketched in [2]. 

Pointcut  designators.  To specify where advice should in- 

tervene, each piece of advice is coupled with a predicate that  

singles out  the set of join points where that  advice should 

be executed. Such a set of join points is called a pointcut, 

and the predicate that  describes it is called a pointcut des- 

ignator, or PCD for short. A PCD may include variables, 

to match against the actual parameters of a procedure call. 

We deviate from A J D  and AspectJ  in the syntax for ex- 
pressing pointcut  designators. A pointcut designator is a 

regular expression whose alphabet consists of element des- 

ignators (EDs). An element designator is a predicate over 

join point elements. The syntax of element designators is 

given by: 

ed ::= peall name 

pwithin name 

args var* 

ed A ed 
ed V ed 

~ed 

true 

The pcall n designator matches join point elements of the 

form call (n, _, _). The next  designator is pwithin n; it ma- 
tches calls that  are made from the context n, that  is a 

join point element of the form call (_, n, _). Finally, one can 

match for actual parameters using 

args (Xl, ~2, . . . ,  Zn) 

This element designator matches call (_, _, [al, a2 , . . . ,  a,~]), 

binding each variable xl to al. The logical operators are in- 
terpreted as expected; in particular, negation can only be 

applied to element designators that  do not contain free vari- 

ables. Note that  there are no designators to match on pro- 

cedure or advice executions. 

Within a PCD, a variable may only be repeated in the 

branches of a logical disjunction. Furthermore, variables 

cannot be used under the Kleene star. These restrictions 
simplify the matching of PCDs against join points at run- 

time. Indeed, PCDs cannot make tests that  depend on dy- 

namic values bound using the args primitive. We shall re- 
turn to this point later. 

Before, after, and around. As explained above, a point- 
cut designator describes where advice applies - -  but  there is 

still the choice of executing the advice code before or after 

the selected join points. Each piece of advice is therefore 

also coupled with an indication of whether it happens be- 

fore or after a join point. In AJD, there is furthermore the 

option of execution advice around a join point. In the corre- 

sponding advice execution, the s ta tement  proceed describes 
the original join point. This is a powerful feature, allowing 

the programmer to substi tute completely different code for 

a procedure call. Our  present implementation does not sup- 

port  around advice, and its possible inclusion will be further 
discussed in Section 6. 

2.2 Example: Profiling quieksort 
To illustrate the above definitions, consider a program 

that  calls Hoare's quicksort routine [17], to sort the lines in 

31 



compare ( i, j )  

swap( i, j ) 
readln(i)  

wri te ln(  i) 
part i t ion(a,  b) 

quicksort(  a, b) 

returns true if 

linesbuf[i] < linesbuf[j] 
swaps lines i and j 

read a line into linesbuf[i] 

print linesbuf[i] 

partitions l inesbuf[a. .b ), 

with pivot linesbuf[a] 

sorts l inesbuf  [ a.. b ) 

F i g u r e  1: Q u l c k s o r t  p r o c e d u r e s .  

an array of strings. The program has a global variable called 

l inesbuf  to hold the array of strings, and Figure 1 shows the 

procedures that  are relevant to the discussion below. Each 

entry in the figure briefly describes what the procedure does 
- -  the open interval notation x[a..b) denotes a consecutive 

segment of array x inclusive of x[a], up to but  not including 
x[b] 

Now suppose that  we wish to augment this program, to 

gather some statistics about  the performance of quicksort, 

printing out the statistics after each run of the algorithm. 

We intend to count the number of calls to parti t ion,  as well 

as the number of swap operations. Note that  there may be 
other uses of swap apart  from the obvious ones within the 

parti t ion routine. 

To achieve the desired effect, we use the aspect shown in 

Figure 2. The first piece of advice says that  before each 

call to parti t ion from the body of quicksort,  the parti t ions 

counter should be increased. The next piece of advice says 

that  before any call from swap within the context of a call to 

quicksort,  the swaps counter should be increased. To achieve 

initialisation, we specify a pointcut  that  contains only non- 

recursive calls to quieksort ,  and of course the initialisation 
should be carried out before encountering any join point in 

that  cut. By contrast, the results should be reported after 
each non-recursive call to quicksort.  

2.3 Interpreting Aspects 
Most programmers will agree that  it is nice to localise 

the code that  gathers the statistics in the quicksort example 

- -  provided the runtime cost is negligible. To assess those 

runtime overheads, let us first consider a straightforward 
interpreter for aspects. 

Such an interpreter is described in detail by [28]. Sereni 

has ported those ideas to a variant of Pascal, implemented 

in OCAML [4], and the code can be downloaded from [25]. 

The basic idea is simple: an interpreter for the base lan- 

guage is augmented to keep track of the current join point. 
Whenever a new join point is created (at a procedure call, 

entry to a procedure body or advice execution), that  new 
join point is matched against all the PCDs in the aspects 

that  were applied to the program. If a match is found, the 
corresponding advice is executed, with an environment that  

contains values for the PCD variables that  were bound in 
matching. 

The maintenance and matching of join points is poten- 

tially costly. Consider, for example, the PCD we used to 

trigger initialisation in the quicksort example. To check that  

a join point satisfies this PCD, one must traverse the whole 
join point. It follows that  upon each new join point creation, 

the interpreter may have to traverse the whole join point for 
each PCD that  is in scope. 

aspect  Counts 
var swaps, partitions : int; 

advice  PCount 
before: {pcall(partition ) A pwithin( quicksort ) } ; {true}* 
begin 

partitions : :  partitions + 1 
end 

advice  SCount 
before: { pcaU ( swap) } ; { true } * ; { pcall ( quicksort ) } ; {true}* 
begin 

swaps : :  swaps -t- 1 
end 

advice  lnit 
before: { pcaU( quieksort ) } ; {-~( pcaU( quicksort ) ) } * 
begin 

partitions := O; 
swaps := 0 

end 

advice  Print 
after: {pcaU( quicksort ) } ; {-~(pcall( quicksort ) ) } * 
begin  

println "Partitions: " ÷ +  partitions; 
println "Swaps: " ++ swaps 

end 
end Counts 

F i g u r e  2: P r o f i l i n g  a s p e c t  for  q u i c k s o r t .  

2.4 Compiling Aspects 
Clearly such interpretative weaving of base program and 

aspects is too costly to be practical; some form of com- 

pilation must be used to transfer work from the dynamic 
matching to compile time. This is a clear case for partial 

evaluation [13]. Indeed, in [23], it is shown how the first 

Futamura  projection yields a compiler from the interpreter 
of [28]. Unfortunately, however, without further improve- 

ments, that  compiler still generates code that  potentially 
traverses the whole join point for each PCD. 

The same paper [23] explains how the AspectJ  compiler 
solves this problem. A PCD pcd corresponds to a deter- 

ministic finite automaton,  say M. This automaton is con- 

structed as follows. First, we collect all potential join point 

elements from the program text,  in a set called .,4. Note that  

this is possible, because all relevant values are available at 

compile time, except for the argument  values in a call: we 

just  represent these by dummy place holders. It  is likely 

that  we overestimate the set of join point elements (because 
some of them do not occur in actual program runs), but  

that  does not matter.  Next, for the relevant pcd, we de- 
termine the set X of element designators that  occur within 

pcd. Now, for each element designator, we can compute the 
set of join point elements that  are true of it, giving a map 

validates : X ~ .4 set 

That  is, validates takes an element designator e, and returns 

the set of join point elements in A that  validate e. Take the 

finite automaton that  corresponds to the regular expression 

that  makes up pcd: this is an automaton where the tran- 
sitions are labelled with element designators. Replace each 

transition labelled with e by a set of transitions, taking the 
labels from val idates(e) .  Finally determinise the result: thus 
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we obtain the finite automaton M that  corresponds to pcd. 
We now describe how M is used for efficient implemen- 

tation of PCD matching. Write M(x) for the state that  is 

reached via a join point x. Instead of repeatedly running M 
on each new join point x = [xa,z2,...,xn] from scratch, 

we could keep a stack [ M ( x ) , . . . ,  M([x,~-l, xn]), M([~])] .  
When a new PCD is constructed, it is either by pushing new 

elements on to the front of x, or by popping some, and thus 
the transitions can be computed in constant time. It follows 

that  the overheads of matching are reduced to a constant, 
for each individual PCD. Similary we need to keep a stack 

of variable bindings for each PCD that  contains args(x) des- 

ignators. 
This is certainly an improvement,  but  keeping these stacks 

of states is still a significant overhead, roughly proportional 

to the number of PCDs. The paper [23] describes further 
methods of reducing the constant factor (one of which we 

shall elaborate on in Section 5), but  the overhead remains 

proportional to the number of PCDs. 

Intuitively, in examples such as that  shown above, it seems 
possible to completely eliminate the matching process, and 

determine for each point in the program exactly what PCDs 
will apply at runtime, and which cannot apply. It  would 

then be possible for a compiler to generate the tangled pro- 
gram that  one might have written prior to the invention of 

aspects. This is what we set out to do in the remainder of 
this paper. 

3. ANALYSING ASPECTS 
Our objective is to determine for each procedure call in 

the abstract syntax tree of the program the set of all possible 

call stacks (or equivalently, join points) at that  call. Given 
this information, it would be possible to obtain a source-to- 

source program transformer that  takes an aspect-oriented 

program, and returns the base program with some addi- 
tional code inserted (corresponding to applicable aspects), 

but  without any code for matching pointcut designators. 

It is important  to note, however, that  we cannot hope to 

achieve this for all possible advice. Both with the regular 
expressions we use for denoting PCDs and with the language 

used in the Aspect SandBox project, it is possible to write 

a pattern which makes compile-time determination impos- 

sible. We will come back to this point in Section 5. In the 

meantime, we shall describe our approach to computing the 

relevant analysis information. 

3.1 The Analysis 
With each piece of advice is associated a pointcut desig- 

nator pcd, which denotes a set of join points. As discussed 
in Section 2, it is possible in our language to compute (an 

over-approximation of) the set of join point elements in a 

program at compile time, which we denote by .4. We may 
hence define a function: 

join_points :pcd ~ ..,4* set 

which associates to each pointcut designator the (usually in- 

finite) set of join points that  it represents. This simplifies 
our discussion of the analysis and is part of the reason for the 
restrictions we have placed on pointcut designators. In the 
remainder of this paper, for notational convenience, we iden- 
tify a pointcut  designator pcd with the set join_points(pcd). 

Now during the execution of the base program, a piece 

of advice with pointcut designator pcd is executed if the 

current join point lies in pcd. It  therefore suffices to com- 

pute, for each procedure call p in the program text, a set 
L(p) containing all possible join points at evaluation of the 
call p. We shall define L(p) to be a regular language, and 

in general it is an over-approximation; however it reduces 
the problem of determining advice applicability to tests on 

regular languages. Indeed, 

• If L(p) C pcd, then the advice always applies at p, and 

• if pcd N L(p) = 0, then the advice can never apply at 
p. 

Observe that  both tests can be reduced to language contain- 
ment, as 

pcdfqL(p)=O ~ L(p) C-~pcd 

where -~X = A* \ X.  

3.2 The Call Graph 

Aims. We now proceed to describe how L(p) may be com- 

puted. Our approach will be to construct a call graph for 
the program, in which each procedure call appears as a node. 

Furthermore there will be nodes related to aspects. Edges 

in this graph correspond to elementary operations affecting 

the control stack (such as procedure calls) and hence are la- 

belled with join point elements - -  recall that  a join point is 
a string of join point elements, and thus a path in the graph 

corresponds to a join point. The set L(p) will in fact be the 

set of paths from the source vertex (the procedure main) to 
the vertex corresponding to p. We denote the source vertex 

b y v .  

The graph must thus be built such that  every path from 

v to p is a valid join point at p (although it need not occur 
in actual program runs), and that  every valid join point is 

represented by a path. There are therefore three kinds of 

edges, corresponding to the three join point kinds - -  proce- 

dure calls, procedure executions and advice executions. A 

join point that  is a path in the graph, but  that  cannot occur 

in an actual program run is said to be infeasible (the dis- 
tinction between feasible and infeasible paths is common in 

this type of analysis, see e.g. [24]). 

The nodes in the graph correspondingly, represent pro- 

cedure bodies (the procedure node), procedure calls (call 
nodes) and advice bodies (advice nodes). Note however that  
while there is a single procedure node in the graph for each 

procedure in the program, advice nodes are replicated at 
each procedure call. 

Below we shall explain the construction of the graph in 
four steps. These informal explanations are then made pre- 

cise in a piece of pseudocode. 

Procedure calls in base program. We can now describe 
the relationship between these nodes by considering a sin- 

gle procedure call to f from 9. For simplicity, we will first 
consider the case where there are no procedure calls within 

the bodies of advice, and return to the more general case 
later. See also Figure 3 for an illustration of this. The 

graph includes nodes for procedures f and 9 respectively. 
The call is represented by a node n, and edges are added: 

from 9 to n, labelled call(f, 9); and from n to f ,  labelled 
exec(f). This represents the direct, or unadvised path to f 
from 9. However, any advice that  applies modifies this path 
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F i g u r e  3 :  A n  a d v i s e d  p r o c e d u r e  cal l  

by adding an advice execution event between the call to f 

and its execution. As we assume at present no knowledge of 
applicability of advice, any subset of the program advice can 

apply, chained however in the order in which they appear 

in the program text. To achieve this, a new node is created 
for each piece of advice in the program. Each of these has 
an aezec edge leading from the call node, and an exec edge 

leading to the execution node. 

Muhiple pieces o f  advice. The previous construction only 

decribes the execution of a single piece of advice only. We 
now consider the interaction of different pieces of advice at a 

single• In this, we follow the semantics given in [28], which 

differ from that  of AspectJ.  We therefore consider that  if 

more than one piece of advice apply at a procedure call, the 
resulting aexec join point elements are stacked, regardless 

of the type of advice (in Aspect J, this is only the case for 

around advice)• Thus there is an additional set of edges, 

describing the possibility of chaining aspects. Assuming that  

aspects are ordered as ao , . . . ,  an, there is an edge from ai 
to aj for all j > i. This construction is illustrated in Figure 

3 for the case of three aspects. 

Procedure calls in advice. In the previous paragraphs, 
we have described the construction of the call graph in a 
restricted case (namely, that  the only procedure calls occur 
in the base program). This is thoroughly unrealistic, and 

we now must complete the description in the general case. 

The same construction cannot be applied for procedure calls 
within advice bodies, as this would be a potential cause of 
infinite regress. Indeed, recall that  a fresh copy of each of 
the advice nodes is created for each procedure call in the text  
(ignoring the quick pruning described in the next paragraph, 
ms we are considering the worst case). Therefore if a piece 

of advice al contains a procedure call pc, a fresh copy of a~ 

is created to advise that  call, which in turn creates a new 

instance of pc, leading to nonterminating behaviour. To 
remedy this problem, procedure calls from advice bodies are 

not t reated in the same way as calls from the base program. 
A procedure call pc from an advice node ni does not  give 

rise to new copies of the advice nodes, instead it shares the 

set S of advice nodes to which nl belongs• This is illustrated 

in Figure 4. 

Reducing the size o f  the call graph. The above construc- 
tion leads to a call graph that  has many infeasible edges. 

In particular, it is possible to dramatically reduce the size 

of the graph prior to analysis by considering the topmost  

element of the call stack. In practice, many pointcut  desig- 

nators are of the form 

{pcall(f) A . . . } ;  . . .  

Indeed, PCDs which are not  of this form can often cause 

infinite loops (more details are given in [28]). Now in this 

case it is easy to see that  this can never apply to a call to 

a procedure 9 -~ f ,  and hence it is unnecessary to include 

the node for this advice for such calls• Generalising this, it 

is usually possible to eliminate a large proportion of advice 

nodes and edges by checking whether the first element of the 

PCD can apply to the call being considered• The top of the 

call stack will always be a call event, and this corresponds 

to the label of the edge leading to the procedure call node. 

There is a final complication to the construction, as our 
quick pruning means that  S will not  in general contain the 

entire set of advice in the program. If the call pc requires an 

advice aj not in S, a fresh copy of aj is created and added 

to S, and is chained with the other nodes in S. 

Putting it all together. To make this discussion precise, 

we have included the algorithm used for this construction 

in ML-like pseudocode in Figure 5. This defines a function 

add_call_advice which is invoked for all procedure calls in the 

base program, and adds the advice nodes and edges for the 

call, as well as those for calls from advice bodies. A mention 

is appropriate here of the effect that  this sharing of advice 

nodes has on the analysis. In principle, it could lead to 

a certain loss in sharpness, by introducing new and usually 

spurious paths in the call graph. We note that  sharpness can 
be improved considerably by iterating the analysis, pruning 

infeasible edges from the graph upon each iteration. 

3.3 Meet-Over-all-Paths Analysis 
We have constructed a graph from the source program 

such that  the set of paths from the source vertex v to any 
vertex p is an superset of the set of possible call stacks at 

point p in the execution of the program. Using this, it is pos- 
sible to obtain a regular expression L(p) describing the set of 

join points at p, using an algorithm of Tarjan [27]• This reg- 
ular expression can then be tested for inclusion with respect 

to each PCD in the program. This solves the problem but  

implies much duplicated computation• Indeed, the regular 
expressions L(pl) and L(p2) are closely related for vertices 

Pl and P2 that  are "close" in the graph, and hence testing 
the same pointcut  designator against both of them indepen- 
dently is wasteful. In the next section we will describe a 
method for performing these tests compositionally. 
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F i g u r e  4: P r o c e d u r e  cal ls  w i t h i n  a d v i c e  b o d i e s  

let  add_call_advice procedure_call = 

le t  (applicable, notapplicable) 
= partition all advice in the program with the quick 

pruning method for procedure_call 
le t  new_advice.nodes 

= make a fresh node for each advice in applicable 

let  to_process = r e f  new_advice_nodes 

a n d  added = r e f  new_advice_nodes 

:For e a c h  anode in to_process do  

le t  pcalls 
= get all procedure calls from the body of the 

advice corresponding to anode 

for  e a c h  pcall in pcalls do  

add the edges for pcall 
le t  ( app', notapp') 

= quick pruning for pcall 

for  e a c h  anode' in app' do  

i f  name(anode') in names(added) t h e n  

add the advice edges for advising peall with 

the advice corresponding to anode' 
e l se  

let  newv 
= create a fresh copy of anode' 

add the advice edges for pcall and newv 

added := {newv} U added; 
to_process := { newv} U to_process 

e n d  
d o n e  

d o n e  
d o n e  

chain the nodes in added together 

F i g u r e  5: C o n s t r u c t i n g  t h e  Cal l  G r a p h  

main 

F i g u r e  6: E f f ec t  o f  cal ls  w i t h i n  a d v i c e  b o d i e s  o n  

s h a r p n e s s  

3.4 Compositional Analysis: Chips and Chops 
We can accurately regard the number of advices as fixed 

and small in comparison to the number of procedure calls. 

It  is feasible, therefore, to do some precomputat ion on the 

PCDs prior to the analysis proper. 
We define two predicates on regular expressions r: 

Subset pcd r ~ r C_ pcd 

Disjoint pcd r ~ r C -~pcd 

_= Subset (-sped) r 

The values that  we are interested in are Subset pcd L(p) 
and Disjoint ped L(p). By our previous observation, it is 

desirable to compute those compositionally in terms of p, 
that  is by induction on the structure of L(p). 

In a companion paper [8] we have described a composi- 

tional algorithm for achieving just  that  (presented in the 
context of program analysis with side conditions specified 

as regular expressions). In this algorithm, a matr ix C(pcd) 

of regular expressions (the "chip-chop matrix" for pcd) is 
associated with each pointcut designator. We can think of 

C(ped) as a systematic arrangement of the parts of pcd (de- 

tails can be found in [6, 8]). By generalising Subset and 

Disjoint to these matrices, so that:  

(S pcd r)~,y _= r C C(pcd)~,~ 

(D ped r)~,u -= r C C(-~pcd),,u 

S and D may be computed compositionally on the structure 

of L(p). 
More specifically, we have: 

Sped(r1;  r2) = (S p c d r l ) . ( S  pcdr2) 

Spcd  (rl + r2 ) = ( S pcd r~ ) A ( S pcd r2 ) 

where we define multiplication of Boolean matrices taking 

Y for addition and A for multiplication. These rules force 

Spcd (r*) to be the greatest fixed point of the equation: 

X = (S ped ~) A (Sped r )  • X 

where v denotes the empty  string. 
This defines a regular algebra which may be used directly 

in Tarjan's algorithm. As pcd itself occurs as an entry of 
C(pcd), the original problem is an instance of the general- 
isation. Note also that  the performance advantage of this 

algorithm is increased if the analysis is i terated (to obtain 
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Procedure calls: 

1: main 

2: main 

3: main 

4: readln 

5: partition 

6: partition 

7: partition 

8: quicksort 

9: quicksort 

10: quicksort 

readln( N ) 

quicksort(O, N)  

writeln( i) 

swap(O, i) 
compare(i, a) 

swap( i , j )  

swap(a, i - 1) 

partition(a, b) 

quicksort( a, i) 

quicksort(i + 1, b) 

Results: 

Call PCount  SCount 

1 x x 

2 × × 

3 × × 

4 × × 

5 × × 

6 x 

7 × 

8 ~ x 

9 × × 

10 x x 

Init Print  
× x 

X × 

× × 

× × 

× x 

× X 

× × 

X X 

× × 

Figure 7: Results  of  analysing the quicksort example  

better  estimates of L(p) in some cases, as previously men- 

tioned), as the chip-chop matrices do not need to be recom- 
puted. 

An alternative (non-compositional) algorithm for testing 

inclusion of regular languages can be found in [7, 22]. 

4. RESULTS 

In the previous section we have described our method for 

analysing aspect-oriented programs with the aim of stati- 
cally determining the points of application of advices, thus 

reducing the runtime overhead associated with dynamic as- 

pects (we will give more details as to exactly how this might 

be reduced in Section 5). In this section, we will explore 

the effectiveness of this analysis on the small example from 
the introduction - -  unfortunately space does not allow us 

to present larger examples, or indeed an example where it- 
eration of the analysis is beneficial. 

Recall that  we had augmented the behaviour of quicksort 

with an aspect Count made up of four advices: SCount and 

PCount for counting calls to swap and calls to partition re- 
spectively, Init for initialising counters, and Print  for print- 

ing the tracing information (note that  for clarity we use 
identifiers beginning with a capital letter for aspects and 

advices only). There were in total ten procedure calls in our 
program, which we have detailed in Figure 7, along with the 

results of the analysis. Our results are presented as follows 
(for a procedure call pc and an advice a): 

• A 4" means that  a always applies at pc. 

• An x means that  a can never apply at pc. 

• A blank entry means that  the analysis is inconclusive. 

Calls 5 to 10 are the heart of the actual quicksort routine, 
while 1 to 4 make up the interface with the user. This 

program demonstrates the use of three different kinds of 

pointcut  designators (recall that  advices Init and Print  have 

the same pointcut  designator). The advice for PCount  only 

matches on the topmost  i tem of the stack and in this sense is 

static - -  it only depends on the textual  location of the call. 
In contrast, the other two kinds of advice are dynamic and 

depend on the call stack. This is used to express the two 

properties that  a call is within dynamic scope of quicksort 

and that  a call to quicksort is not  recursive, respectively. 
In this case, the analysis has been successful in determin- 

ing applicability for each advice at each procedure call. Thus 

the pointcut  designators which we just  described as dynamic 

are in fact static in the context  of this base program. Given 

the table in Figure 7, it would be possible to transform the 
aspect-oriented program into its tangled, or statically wo- 

ven counterpart  by just  inserting the body of the relevant 

advice at each point marked with a ( .  The programmer can 

thus write the clear, neatly separated version of the program 

without loss of efficiency. 

5. OPTIMISATIONS 

The analysis tha t  we have described in Section 3 deter- 

mines, for each procedure call in the program, the "status" 

of each advice at that  call (based on the advice's pointcut  

designator). T h i s  status is one of three possibilities: the 
advice can never apply at that  call, or the advice always 

applies at this call, or applicability of the advice cannot be 

statically determined ( that  is, the analysis has been unsuc- 
cessful for this part icular  advice and call). 

In the case that  the analysis has been successful at a call p 

for a piece of advice with pointcut  designator pcd, the advice 
body may be either discarded or inserted directly at the ap- 

propriate point in the code. The analysis thus eliminates the 

need for run-t ime matching of pointcut  designators, which 
is certainly desirable and a significant performance saving if 

matching is implemented in the straightforward way. How- 

ever, when the matching algorithm from the AspectJ  com- 
piler (as presented in [23]) is used, the savings will be less 

important  - -  more t ime is spent keeping the current state 

of the automaton Mp~a for each pointcut  designator pcd. 

It  is however easy to see how this may be eliminated: 

suppose that  the analysis has been successful for a given 

pointcut  designator pcd at every procedure call in the pro- 
gram. In this case, the current state of the corresponding 

automaton Mp~d will never be used, as pcd will never need to 
be matched during the execution of the program. I t  there- 

fore becomes unnecessary to keep and update the state of 

Mpc~, and the functionality of the advice is woven with no 
run-time overhead. 

Thus far, we have made the restriction that  no free vari- 

ables appear in ped. We shall now extend the previous de- 
scription to include the possibility of free variables in pcd. 

Recall that  in our language, free variables are introduced by 
the args  construct  and bind to the values of parameters to 

procedures. Also, due to the restrictions that  we have placed 

on the use of variables in our pointcut  designators, they act 
as place holders only and have no influence on matching 

(and hence static analysis). It  follows that  whenever we can 
determine that  a pointcut  designator cannot apply at a pro- 

gram point p, we can eliminate the relevant code, just  as in 
the absence of variables. 

However, it is not  possible to eliminate the matching code 
in the presence of variables, since we still must maintain a 
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stack of variable bindings. Of course there are a number 
of common special cases where the stack is unnecessary, for 
instance when the variables are bound only in the leftmost 

element designator. 

Unfortunately, it is in general impossible to statically de- 
termine applicability for arbitrary pointcut designators. As 

an example, consider the case of a simple procedure f with 

a single recursive call to f from within its body. Now the 
pointcut designator: 

{pcall(f)}; {true}*; 
{pcall(f)}; {true}*; 

{pcall(f)}; {true}" 

matches exactly those calls to f that  occur within the scope 

of two previous calls to f (that is, the depth of recursion is at 

least three). Certainly this may apply to the recursive call 

to f from within its body, but  this is not always the case - -  

in the first, non-recursive execution of f it will not. There- 

fore no static analysis can in general solve the problem for 
this particular situation. It is worth noting that  this phe- 

nomenon is not introduced by our new language for pointcut 

designators, as the previous expression has an equivalent in 
the AJD syntax [28], namely 

pcall(f) 
A cflowbelow( pcall(f) 

A cflowbelow(pcall(f))) 

(We discuss the primitives in this expression, and its re- 

lation to our notation, further in Section 6.) Because of 

this restriction on the power of static analysis of aspects, 
it would be desirable to reduce run-time overhead when we 

have determined some, but  not all, of the information about  
applicability of a piece of advice. 

One such optimisation was explained by [23], based on 

the observation that  not all join point elements actually up- 

date the state of the automaton associated with a pointcut 
designator. This optimisation is implemented in AspectJ.  

Another optimisation is based on the observation that  of- 

ten the static undecidability of aspects will be limited to a 

few procedure calls in the program, and hence there will be 
large portions of the call graph in which this may be com- 

puted statically. We say that  such portions of the call graph 

are "aspect-free", in reference to the fact that  they can be 

compiled without the code responsible for matching point- 
cut designators (we are not  saying that  no advice can apply 

in those components of the graph, however). For concision, 

we say a procedure call node is "good" if all advice can be 
statically determined for that  node. Given a node v, we also 

define reachables(v) to be the set of nodes reachable from 

v in the graph. The crucial point is that  due to the stack 

nature of join points, the events occurring in reachables(v) 
do not influence the join point at any predecessor of v (as 

the graph may not be acyclie, we only say that  a node is a 

predecessor of v if it is not also a successor of v). There- 
fore if all nodes in reachables(v) are good, we may safely 

eliminate all bookkeeping code (i.e. code that  updates the 

current state of au tomata  for pointcut designators) from all 

calls within reachables(v), as this will not affect the states 
of the automata  at other points in the program. 

If this property is true of the source node (that  corre- 
sponding to the body of the procedure main), then this just  
boils down to eliminating all PCD matching code from the 

program. However, it is much more general than that,  as 

there may be several aspect-free components in the graph 
even if it is not globally aspect-free. 

6. R E L A T E D  W O R K  

As we indicated earlier, the  research reported here is very 
closely related to and much inspired by the Aspect SandBox 

project at UBC, and in particular its implementations of the 
experimental language AJD. In this section, we discuss some 
of the differences. 

6.1 R e g u l a r  e x p r e s s i o n s  vs. cflow 

The main difference is our language of pointcut designa- 

tors, which is that  of regular expressions over element desig- 

nators. By contrast, in AJD the abstract syntax of pointcut 
designators is given by 

ajd_pcd ::= top ed 

] cflow ajd_pcd 
] ajd_pcd A ajd_ped 

as well as some further logical combinators that  are not rel- 

evant to the present discussion. The first form matches a 
join point whose head matches the given element designa- 

tor. The form cflow p is matched against a join point x as 

follows. First, p is matched against x. If that  succeeds, so 

does the matching of cflow p. Otherwise, the process is re- 

peated with the tail of x, until a match is found, or no more 
elements remain. A PCD of the form and(p, q) matches x 
if both p and q match x. 

From the above description, it is easy to deduce a trans- 

lation from the PCDs in AJD to our notation: 

trans : ajd_pcd ~ pcd 

To wit, we define (using abstract syntax on the left, and for 
brevity, concrete syntax on the right): 

tran~ (top e) = {e} ; {true}* 

t rans  ( ¢ o ~  p) = {the}* ; t~n~ p 

trans (p A q) = trans p N trans q 

This translation is faithful in the absence of variables, in 

the sense that  matching an ajd_pcd (say p) against a join 

point x yields the same result as matching trans p against 

z. In the presence of variables however (introduced using 

the args element descriptor), the situation is more complex. 

AJD defines the matching process of cflow so that  it takes 
a "minimal munch" from the left of the join point. This 

characteristic is not  reflected in the above translation, al- 

though our implementation of regular expression matching 
does produce the same behaviour. 

We have only very limited experience with writing point- 

cut designators, but  it would seem that  the regular expres- 
sion syntax is just  a more primitive counterpart  to the nota- 

tion in AJD. Admittedly, however, regular expressions tend 

to be somewhat more verbose. For example, consider 

{pcall(swap) } ; {true}* ; {pcall(quicksort) } ; {true}" 

In AJD, one would write the much shorter 

pcall ( swap) A cflow( quicksort ) 

(in the concrete syntax of AJD, the top constructor is invis- 
ible). 

The A J D  pointcut  language is however complicated by 
some subtle variants of cflow, like cflowbelow, which is the 
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same as eflow, but  it operates on the tail of a join point. 
This extra operator is necessary to express pointcuts such 

a s  

{ pcall ( quicksort ) } ; {-~( pcall ( quicksort ) ) }* 

Which would be written 

pcall ( quicksort ) A-~(cflowbelow(quicksort)) 

It  is our belief that  regular expressions provide a nice set of 

primitives to define higher-level constructs, including those 
of the AJD pointcut  language. We are not advocating that  

the cflow notation is replaced by regular expressions: we 
merely suggest that  it may be worthwhile to offer the more 

primitive notation for situations where the current set of 
higher-level constructs proves awkward or inadequate. 

6.2 around advice 
We earlier described the notion of around advice. At a 

matching join point, the corresponding piece of advice is ex- 
ecuted. When proceed statement  is encountered, the proce- 

dure that  originated this join point is executed, after which 

advice execution resumes. It  is not necessary for the ad- 

vice to contain a proceed statement,  and it is thus possible 

to completely replace the existing procedure. Furthermore, 

the proceed statement  takes pararneters, which are used in- 
stead of those in the original procedure call. 

This powerful feature does not  present any conceptual dif- 

ficulties for the analysis we have outlined. It  certainly com- 

plicates the construction of the call graph, which so fax did 

not need to take the type of advice (before or after) into 

account. It  is thus for expository reasons that  we decided 

not to consider around advice in this paper. 

6.3 Objects 
The construction of the call graph is also complicated by 

considering virtual methods. At each virtual method call, 
we need to determine what instances might be called from 
that  point in the code. Fortunately, however, a great deal 

of research has been devoted to such virtual method call 

resolution (e.g. [15, 26]), and we foresee no problems in 
combining it with the analysis presented here. 

7. CONCLUSION AND FUTURE WORK 
This paper has reported on a first exploration of static 

analysis of aspects. In particular, it has been shown how 

the runtime overheads of matching pointcut  designators can 

be reduced, and sometimes completely eliminated. This is 

encouraging, and we feel it warrants a larger research ef- 
fort, where these and similar techniques are applied to a 

realistic aspect language, so that  meaningful performance 
experiments can be conducted. 

The efficiency of our analysis is acceptable for small ex- 
amples, taking seconds on programs of a few hundred lines. 

The running t ime of the analysis itself is linear in the size of 
the call graph, so we expect it to scale. The main bottleneck 

is in the preprocessing phase, where the chip-chop matr ix is 

constructed. This new application of chip-chop matrices, in 

addition to that  in [8], suggests that  it is worthwhile investi- 
gating efficient algorithms for their construction. Conway's 

monograph (where chip-chop matrices originated) [6] and 
Backhouse's thesis [3] contain a wealth of theory that  can 
guide this research. 

The first AspectJ  compiler was a whole-program compiler, 
and currently it is being re-engineered to allow separate com- 

pilation, and use incremental recompilation where necessary. 
We are hopeful that  our analysis can fit this setting: to re- 

use the work from a previous pass of the analysis, one can 

store the S and D matrices (Section 3.4) for each procedure. 

If a program change is known not to affect the call graph of 

a procedure, the matrices can be re-used. 

Another  interesting direction for future work is the ap- 
plication of static analysis to aid the refactoring of legacy 

code [11], extract ing slices of the original program into as- 
pects. Consider the tangled version of our quieksort exam- 

ple, where the relevant counters have been manually placed 
in the program. Standard program slicing [29] will extract  

the computations from the original program, thus giving us 

the relevant pieces of advice. If the original program al- 

ready contains aspects, we can use the results of [30]. To 

then construct a new aspect, suitable pointcut  designators 

have to be associated with each piece of advice: a static 

analysis could assist in finding suitable regular expressions. 

For this purpose, the output  of Tarjan's algorithm on the 

call graph needs to be simplified, as the resulting regular 

expressions are seldom in the simplest possible form. It  is 

our belief tha t  tools to easily move from traditional code to 

aspect-oriented views are indispensable for the acceptance 

of this new paradigm. The present paper has investigated 

how to translate from aspects to traditional programs, but  

the reverse direction is equally important .  
Finally, in large aspect-oriented programs, it is important  

for programmers to be warned of potential interactions be- 

tween aspects. A static analysis for this problem was first 

proposed in [9]. We are hopeful that  the results of this paper 

can be used similarly, namely to detect when two different 

pieces of advice may both be executed at the same program 

point. 
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