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The present study is based on the nonlinear bending analysis of an FGM plate with Von-Karman strain based 

on the non-linear classical plate theory (NLCPT) with in-plane displacement and moderate rotation. Non-linear 

bending analysis based on stresses and transverse deflections is then carried out for the plate for the complex 

solution obtained using an analytical method viz. Navier’s method. The equations of motion and boundary 

conditions are obtained using the Principle of Minimum Potential Energy (PMPE) method and material property 

is graded in thickness direction according to simple power-law distribution in terms of volume fractions of the 

constituents. The effect of the span-to-thickness ratio and FGM exponent on the maximum central deflection and 

stresses are studied. The results show that the response is transitional with respect to ceramic and metal and the 

complex solution predicts the real behavior of stresses and deflections in the functionally graded plate. The 

functionally graded plate is found to be more effective for moderately thick and thick plates, which is inferred by 

a complex nature of the solution. For FGM plates, the transverse deflection is in-between to that of metal and 

ceramic rich plates. The complex nature of the solution also gives information about the stress distribution in the 

thickness direction. 

 

Key words:  functionally graded materials (FGM) plate, Von-Karman strain, nonlinear classical plate theory 

(NLCPT); Navier’s method. 

 

1. Introduction 

 
 Plates are the structural components that are initially straight and having a thickness much smaller 

than other dimensions. The transverse loading applied to the plate surface is supported by the bending 

moment, torsional moment, axial, transverse shear force and central shear force depending upon the type of 

plate in the application. In recent years, a new class of materials known as smart materials has been 

introduced in engineering applications. Functionally Graded Materials (FGM) are one of the smart materials 

introduced nowadays, in which material properties of two materials are graded in one particular direction 

resulting in corresponding changes in the properties of the material. The ultimate purpose of development of 

this advanced material is to explore quiescent applications in actual structures. FGMs may be incorporated in 

the form of a beam, plate, or shell as structural components and have great potential in applications where 

the operating conditions are severe, including spacecraft heat shields, heat exchanger tubes, biomedical 

implants, flywheels, and plasma facings for fusion reactors, etc. Functionally Graded Materials (FGMs) were 

substantially advanced in the early 1980’s in Japan, where this new material concept was proposed to 

increase adhesion and minimize the thermal stresses in metallic-ceramic composites developed for reusable 

rocket engines [1]. Meanwhile, FGMs concepts have triggered worldwide research activity and are applied to 

metals, ceramics and organic composites to generate improved components with superior physical properties 

[2]. Depending on the application and the specific loading conditions, varying approaches can be followed to 

                                                            
* To whom correspondence should be addressed 



708 S.J.Singh and S.P.Harsha  

generate the structure gradients. A functionally graded material eliminates the sharp interfaces existing in a 

composite material where failure is initiated [3]. It replaces this sharp interface with a gradient interface 

which produces a smooth transition from one material to the next [4, 5]. Functionally graded materials can 

withstand a very high thermal gradient, this makes it suitable for use in structures and space plane body, 

rocket engine component, etc. [6]. FGMs are used in energy conversion devices. They also provide a thermal 

barrier and are used as a protective coating on turbine blades in a gas turbine engine [7, 8]. Levy et al. [9] 

obtained solutions for a wide range of values of the loading parameter and the aspect ratio for the large 

deflections of rectangular plates using an asymptotic solution. Kant et al. [10] presented a model based on 

the refined Higher-order Shear Deformation Theory (HSDT) for laminated composite and sandwich plates 

and it was also assumed that the thickness coordinate is not constant, thus giving a more accurate result in 

comparison to other theories. Huang et al. [11] presented a generalized Fourier series solution for a 

moderately thick rectangular plate of variable thickness and arbitrary boundary conditions based on the 

linear First-order Shear Deformation Theory (FSDT). Liao et al. [12] studied the size effect on dynamic 

stability of functionally graded microbeams based on a modified couple stress theory using Hamilton’s 

principle for deriving the equation of motion and the Differential Quadrature Method (DQM) for converting 

the governing differential equations into a linear system of Mathieu–Hill equations from which the boundary 

points on the unstable regions are determined by Bolotin’s method. Size-dependent functionally graded 

Kirchhoff and Mindlin plate models [13], Reddy plate model [14], sinusoidal plate model [15] based on 

modified couple stress theory, and functionally graded new sinusoidal shear deformation theory [16] have 

been developed for vibration, bending and buckling analysis. The analysis was carried out by making use of 

Hamilton’s principle for the equation of motion and solving it by Navier’s approach. Reddy et al. [17] 

presented a paper on the static analysis of FGM plates using HSDT without enforcing zero transverse shear 

stress on the top and bottom surfaces of the plate, thus incorporated the transverse extensibility which 

accounts for the transverse effects and absence of shear correction factor. Kumar et al. [18] investigated the 

flexural response of FGM plates by utilizing different algebraic shear deformation theories and solved the 

resulting governing differential equations using Multiquadric radial basis function (MQRBF). Setoodeh et al. 

[19] formulated the DQM in conjunction with the introduced transformed weighing coefficients (TW-DQ) to 

solve geometrically nonlinear free vibration of FG-CNTRC quadrilateral plates. In the present study, the 

CPT together with von Karman’s strain-displacement assumptions was employed to derive the nonlinear 

governing partial differential equations with geometric nonlinearity. Neves et al. addressed the analysis of 

functionally graded plates by collocation with radial basis functions, according to a sinusoidal shear 

deformation formulation [20],quasi-3D hyperbolic sine shear deformation theory [21], quasi-3D sinusoidal 

shear deformation formulation [22], quasi-3D higher-order shear deformation theory and a meshless 

technique [23]. Hassaine et al. [24] presented a theoretical formulation, of Navier solutions of rectangular 

plates based on a new higher order shear deformation model for the static response of functionally graded 

plates (FGPs). Kulkarni et al. [25] attempted to extend the inverse trigonometric shear deformation theory 

(ITSDT) for the static and buckling analysis of FGPs using an analytical solution. 

 It has been observed from the available literature that static and dynamic analysis of FGM plates 

based on different theories, viz. classical theories have been studied which analyzed stresses, deflection and 

vibration using different numerical and analytical solutions. In the present study, the CPT together with von 

Karman’s strain-displacement assumptions have been employed to derive the nonlinear governing partial 

differential equations with geometric nonlinearity.  

 

2. Geometry 

 
 The thin plate is a planar structure having the transverse dimension much smaller as compared to the 

length and width dimensions. Let us consider a stiff plate whose transverse dimensions are small as 

compared to the other two dimensions and, therefore, the plate is considered to be a two-dimensional lamina. 

Assume a mid-plane of the plate as a reference surface in the x-y plane and the z- axis along the transverse 
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direction, with the z coordinate positive upward, forming a right-handed coordinate system. The reference 

surface is at the distance of h
2

  from both top and bottom surfaces of the plate as shown in Fig.1. 

 

 
 
 

Fig.1. Coordinate system and reference surface. 

 

2.1. Sign convention 

 

 The positive moment will make the upper fiber in compression and lower fiber in tension, and the 

negative moment will make the upper fiber in tension and lower fiber in compression. Since the curvature is 

proportional to the moment, therefore, the positive moment will create a positive curvature and the negative 

moment will create a negative curvature. As the positive moment results in a concavity on the top surface of 

the FGM plate, therefore, concave upward is considered to be positive and concave downward is considered 

to be negative. 

 

3. Governing equations and boundary conditions 

 
 Kinematics of the plate theory deals with the displacement of the mid surface without considering 

the forces causing the displacements. The kinematic equation results in developing the relationship between 

strain and displacement. The plate under transverse loading, as shown in (a), bends and a slope of the mid-

surfaces cause displacement in the x and y-direction as a linear function of transverse dimension (z). Let u, v 

and, w are the real displacements of the body and u , v  and w  be the displacements of the mid-surface, 

where, u  and v  are in-plane displacements and w is the out of plane displacement of the mid surface as 

shown in (b). 

 

             
                       (a)                                                (b) 

 

Fig.2. (a) Plate under transverse loading in the direction of Z (b) Kinematics of the plate. 

 

From the kinematics of the plate, displacement can be written as 
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                                                                                  (3.1) 

 

 The nonlinear Lagrangian strain tensor is given as 

 

  
ji k k

ij
j i i j

uu u u1
E

2 x x x x

   
        

.                                                                      (3.2) 

 

 On expanding and neglecting square terms of the displacement gradient on account of small 

deformation but assuming the rotation of transverse normal to be moderate (10°-15°), the following terms are 

not neglected, , ,

22
w w w w

x y x y

         
               

. 

 This will induce geometric nonlinearity and thus strain becomes nonlinear and denoted by epsilon (ε) 
and substituting Eq.(3.1) in Eq.(3.2), we get 

 

  

2 22

xx 2
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z

x 2 x x 2 xx
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,                                          (3.3a) 

              

  

2 22

yy 2

v 1 w v w 1 w
z

y 2 y y 2 yy

       
              

,                                                           (3.3b) 
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,              (3.3c)                      

 

zz xz yz 0       ( , there is no transverse linear and shear strain) 

 In matrices form, Eq.(3.3c) can be written as 

 

  [ ]
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x y
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x 2 x x

v 1 w w
z

y 2 y y

1 v u w w w

2 x y x y x y

                   
                             
                                     

.           (3.4)                     

 

Thus, 
0 1z      
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where,   
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=membrane strains (stretching), 
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= flexural or bending strains (curvature). 

 

 The linear generalized Hooke’s law for an orthotropic functionally graded material is given as 

 

  ; toi j i, j 1 6   ijC z( )  

 

where i =stress vector; ijC z( ) =stiffness matrix; and j = engineering strain vector of the material. For an 

isotropic material, Hooke’s law reduces to 

 

  

xx xx11 12

yy 12 22 yy

66xy xy

C C 0

C C 0

0 0 C

     
          
            

                                                                       (3.5) 

 

where,  
( ) ( ) ( )

,11 22 122 2 2

E z E z E z
C C C

1 1 1

 
   

     
,        

( )

( )
66

E z
C

2 1


 
. 

 
 

E(z) is the elastic modulus that is graded in the thickness direction and Poison’s ratio   is constant, Cij’s are 

reduced stiffnesses and σij is the Piola-Kirchhoff stress tensor. 

 

4. Equilibrium equation 
 

 The equilibrium equation can be derived using the principle of virtual displacement given by the 

equation 

 

  U V 0                (4.1) 

 

where U = virtual strain energy or variation of strain energy due to internal stresses. 

          V = virtual potential energy or variation of potential energy due to external forces. 

Now, the virtual strain energy U  can be written as 
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  : ij ij

V

U dv dzdxdy                                                                             (4.2) 

 

where, σ=stress tensor  

 ε=Green Lagrangestrain tensor  

 : =operator calledasdoubledot product .  

 

Therefore,      xx xx yy yy zz zz xy xy yz yz zx zxU 2 dv                     .                 (4.3) 

        

In the stiff plate problem,                   zz yz zx 0                                                                          

 

 Thus, substituting the above in Eq.(4.3), we get 

 

  xx xx yy yy xy xyU 2 dv            . 

 

 Taking a variation of it, we get 
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



, 

 

     0 0 0 1 1 1
xx xx yy yy xy xy xx xx yy yy xy xy

A

U N N N M M 2M dA               . (4.4) 

 

 The virtual work done by the external force is given as 

 

  zV q wdxdy                                                                                        (4.5) 

 

where, qz = distributed transverse load applied on the top of the surface 

          w =applied virtual displacement 

 Now, substituting Eqs (4.4) and (4.5) into Eq.(4.1) , we get 
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 Now solving the above equation term by term and on rearranging, we get 
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 The Euler-Lagrange equation can be obtained by the fundamental lemma of variational calculus as 
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xyxx
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x y
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 
,                                                                       (4.8a) 
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 The boundary conditions are given by equating the term equal to zero of domain  . We get 

 

  

or ,
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x y y x

                
               

, 
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 

 

or ,

or .

xx x yx y

yy y xy x

w
0 M n M n 0

x

w
0 M n M n 0

y

       

 
      

 

 

4.1 Relationship between stress resultants and middle surface displacements 

 

 The plate theory reduces the 3-D continuum problem to a 2-D Lamina problem by applying certain 

assumptions, thus, the plate is treated as a plane and therefore all the quantities depend on x and y alone. This 

is done by integrating the quantities in the z- direction i.e., through the plate thickness and thus the three-

dimensional problem reduces to two-dimensional. Therefore, the three stress components on the cross 

section are replaced by a set of resultant forces and moments and are known as stress resultants. 

Mathematically, a stress resultant is defined as the integral of stress over the thickness of the plate yielding 

the following set of stress resultants 

 

  

h
xx xx2

yy yy

h
2xy xy

N

N dz

N


   
          
         

        and      

h
xx xx2

yy yy

h
2xy xy

M

M z dz

M


   
          
         

 . 

 

 Now, stress resultants and moment resultants given in terms of stiffness are 

 

  

0 1
xx xxxx 11 12 11 12

0 1
yy 12 22 yy 12 22 yy

0 166 66xy xy xy

N A A 0 B B 0

N A A 0 B B 0

0 0 A 0 0 BN

                                
                      

,                                    (4.9) 

 

  

0 1
xx xxxx 11 12 11 12

0 1
yy 12 22 yy 12 22 yy

0 166 66xy xy xy

M B B 0 D D 0

M B B 0 D D 0

0 0 B 0 0 DM

                                
                      

,                    (4.10) 

 

and in a compact form 
 

  

0

1

N A B

B DM

          
     
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where, ( ) extensionalstiffnesses

h
2

ij ij

h
2

A C z dz



  , ( ) bending-extensionalstiffnesses

h
2

ij ij

h
2

B zC z dz



  ,

( )  bending stiffnesses

h
2

2
ij ij

h
2

D z C z dz



  . 

 The expressions for the curvatures and slopes defined in Eq.(3.4) are now substituted in Eqs (4.9) 

and (4.10) and finally substituted in Eqs (4.8a) - (4.8c) to obtain the equilibrium equations in terms of 

displacements. The equilibrium equation in terms of displacement can be written as 

 

  

 

2 2 2 2 2 2

11 12 662 2 2

2 2 3 3

11 12 662 3

u w w v w w v u
A A A

x x y y x y x yx x y

w w w w w w
B B 2B

x x y yy x

                                                            

                                        
,

2
0

x y

       

 (4.11) 

 

  

 
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12 22 662 2 2

2 2 3 3

22 12 662 3
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                                                           

                                         
,

2
0

x y

       

  (4.12) 
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                                                                     

        
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x yx y x y x y x x y
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       
                                                 

                            

(4.13) 

 

5. Analytical solution 

 
 Navier’s type solution is used to obtain the deflections and stresses for the functionally graded plate. 

The displacement fields that satisfy the boundary conditions and the governing equilibrium equations can be 

written as follows 

 

  sin sinmn

m 1 n 1

m x n y
u U

a b

 

 

        
   

 ,                                                               (5.1a)                
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  sin sinmn

m 1 n 1

m x n y
v V

a b

 

 

        
   

 ,                                                              (5.1b) 

                                                                                  

  sin sinmn

m 1 n 1

m x n y
w W

a b

 

 

        
   

 .                                                              (5.1c)                     

 

 The transverse load qz(x, y) using the double Fourier series is written as 
 

  ( , ) sin sinz mn

m 1 n 1

m x n y
q x y Q

a b

 

 

        
   

                                                             (5.2) 

where 

  ( , )sin sin

a b

mn z

0 0

4 m x n y
Q q x y dx dy

ab a b

        
     . 

 

 Let us assume the solution for uniform loading of q0, that is, ( , )z 0q x y q . 
 

Therefore,    0
mn 2

16q
Q

mn



. 

 

 Thus, the transverse load qz(x, y) is defined as 
 

  

sin sin

( , ) 0
z 2
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m x n y

16q a b
q x y
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 

 
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 The governing equation in a matrix form can be written as 
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 
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                            (5.3) 

where 

   sin sin 2
1

2
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6. Numerical results and discussions 

 
 A functionally graded plate with a different span-to-thickness ratio (a/h) is investigated to analyze 

the simply supported square plates (a=b) subjected to uniform transverse load (qz) on the top surface

 z h 2 , /5 2
0q 1 10 N m   . Six different span-to-thickness ratios considered are 4, 10, 50, 70, 80, and 

100 for analyzing the maximum central deflections.  

 The plate properties are graded from Aluminium (bottom) to Alumina (top) using rules of mixture. 

Keeping the temperature and Poisson ratio constant, the Young modulus is graded in the thickness direction 

using the following functional relationship 

 

  m c mE(z)  E E - E

f
1 z

2 h

    
 

                                                           (6.1) 

 

where Em=70 GPa and Ec=380 GPa are the Young modulus for the metal (Aluminium) and ceramic 

(Alumina) respectively; f is the volume fraction exponent; h is the thickness of the plate. The Poisson ratio 

(υ) for both metal and ceramic is 0.3.  
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6.1. Analysis of deflection 

 

 In deflection analysis, six different volume fraction exponents are considered, viz., 0.5, 2, 4, 6, 8, and 

10. On applying Navier’s solution, the solution so obtained is complex and plotted on a complex plane as 

shown in Fig.3 and the absolute solution is shown in Fig.4. The following observations have been made for 

the functionally graded and pure metal and ceramic plate for the complex solution of deflection: 

1) The solution of deflections in the case of pure metal and ceramic has only approximately real part with 

the imaginary part approaching zero, but for functionally graded part the solution is complex. 

2) Although the magnitude of the imaginary part of deflection is very small, still it shows the real behavior 

of the plate deflection in the context of the volume fraction exponent. 

3) With decreasing the thickness for the case of a stiff plate (a/h=10 to 50), the effect of gradation of 

mechanical properties reduces and there will be a little difference between deflections for different 

volume fraction exponents, so the first peak for a/h= 4 takes place at volume fraction 2 and it goes on 

increasing to 6 and 8 in the case of a/h= 10 and 50, respectively. 

4) As thickness goes on decreasing, in the case of membranes (a/h = 80 to 100), the behavior reverses and 

deflection of the plate is due to the presence of metal and little effect of the functionally graded material 

according to the NLCPT. 

 

 
 

Fig.3.  Complex solution of deflection/thickness of the functionally graded plate for various volume fraction 

exponents (C, 0.5, 2, 4, 6, 8, 10, M) and span-to-thickness ratios (4, 10, 50, 70, 80, 100) (C and M 

stands for ceramic and metal, respectively). 

 

 The following observations have been made for the functionally graded and pure metal and ceramic 

plate for the absolute solution of deflection based on Fig.4: 

1) For a thick (a/h<10) and stiff (a/h =10-50) plate, there is a gradual increase in the deflection of the plate 

for the constant volume fraction exponent (excluding metal). 
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2) For a flexible plate (a/h =50-80), there is a constant increase in the deflection of the plate for the 

constant volume fraction exponent (excluding metal). 

3) For membranes (a/h =80-100), there is a sudden increase in the deflection of the plate for the constant 

volume fraction exponent (excluding metal). 

4) In the case of metal, there is a gradual increase in the deflection for a thick, stiff and a flexible plate but 

a sudden increase in deflection takes place for membranes. 

 

 
 

Fig.4.  Absolute solution of deflection/thickness of the functionally graded plate for various volume 

fraction exponents and span-to-thickness ratios (C and M stands for ceramic and metal, 

respectively). 

 

6.2. Analysis of stresses 

 

 Two different aspects are analyzed in the stress analysis: 

(i) the effect of variation of the volume fraction exponent on stress, 

(ii) variation of stress along the thickness. 

 

6.2.1. Effect of variation of volume fraction exponent (f) on stress 

 

 Ten different volume fraction exponents are considered, 1-10. On applying Navier’s solution, the 

solution obtained is complex, so the analysis for stresses is made on the basis of a real and absolute 

solution.  

 The following observations have been made for the functionally graded and pure metal and ceramic 

plate stresses: 

1) The stresses in the functionally graded material lie in between the stresses in metal and ceramic due to a 

reduction in stiffness property of a material which lies in between metal and ceramic. 

2) For metal, the actual value of stresses is always greater than for the real part of the solution as shown in 

Fig.5 - Fig.8. 

3) The stresses on top of the plate are always greater than those of the bottom of the fibers and also of an 

opposite nature for the functionally graded material as shown in Fig.5 - Fig.8. 

4) For ceramics and metals, the normal stresses at hz
2

    of the plate are approximately equal as shown 

in Fig.5 - Fig.6. 

5) A negligible amount of shear stresses is induced for a thick (a/h <10), stiff (a/h =10-50) and flexible 

plate (a/h =50-80) but a considerable amount of shear stresses is induced in the case of membranes (a/h 

=80-100) as shown in Fig.7 - Fig.8. 
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                                  (a)                                                                         (b) 

 

Fig.5.  (a) Real and (b) absolute solution for normal stresses (σXX, σYY) in the X or Y-direction at hz
2

   for 

various volume fraction exponents and span-to-thickness ratios (C and M stands for ceramic and 

metal respectively). 
 

    
                               (a)                                                                             (b) 
 

Fig.6.  (a) Real and (b) absolute solution for normal stresses (σXX, σYY) in the X or Y-direction at hz
2

   for 

various volume fraction exponents and span-to-thickness ratios (C and M stands for ceramic and 

metal, respectively). 

 

    
                                 (a)                                                                          (b) 
 

Fig.7.  (a) Real and (b) absolute solution for shear stresses (σXY) at hz
2

   for various volume fraction 

exponents and span-to-thickness ratios (C and M stands for ceramic and metal, respectively). 
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                                 (a)                                                                        (b) 
 

Fig.8.  (a) Real and (b) absolute solution for the shear stresses (σXY) at hz
2

   for various volume fraction 

exponents and span-to-thickness ratios (C and M stands for ceramic and metal, respectively). 

 

6.2.2. Variation of stress along the thickness 

 

 Three different volume fraction exponents (1, 4, and 10) with a/h= 4 are considered. On applying 

Navier’s solution, the solution so obtained was complex and plotted on a complex plane as shown in Figs 9 

and 12 and the real part of the solution is shown in s Figs 13 and 16. The stresses in the transverse direction 

are neglected according to the classical plate theory, but transverse stresses can be calculated using 3D 

elasticity equation. So, along with normal and shear stresses, a variation of transverse stresses along the 

thickness is also considered. 

 The following observations have been made for the functionally graded plate for the complex 

solution of stresses: 

1) The variation of stresses, excluding transverse stresses, across the thickness are uniformly distributed 

when the volume fraction exponent exhibits a linear behavior but as its value increases from 1 to 10, the 

stresses are distributed in a non-uniform way and stresses are more concentrated towards the bottom 

surface of the plate but dispersed on the top surface of the plate as shown in Fig.9 and Fig.11. 

2) The transverse normal stress does not depend on the volume fraction exponent and, therefore, does not exhibit 

any transformation on the changing volume fraction exponent according to NLCPT as shown in Fig.10. 

3) The transverse shear stress shows a reverse behavior compared to linear stresses in a way such that it is 

more concentrated at the top of the plate and dispersed towards the bottom of the plate, as the volume 

fraction exponent increases as shown in Fig.12. 

 
 

Fig.9.  Complex solution for normal stresses (σXX, σYY) in the X or Y-direction across the thickness for the 

volume fraction exponent (f) and a/h=4. 
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Fig.10.  Complex solution for transverse normal stresses (σZZ) in the Z-direction across the thickness for the 

volume fraction exponent (f) and a/h=4. 

 

 
 

Fig.11.  Complex solution for shear stress (σXY) across the thickness for the volume fraction exponent (f) and 

a/h= 4. 

 

 

 

Fig.12.  Complex solution for transverse shear stress (σXZ or σYZ) across the thickness for the volume fraction 

exponent (f) and a/h=4. 
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 The following observations have been made for the functionally graded plate for the real part of the 

complex solution of stresses: 

1) As the volume fraction exponent increases, the stress behaves linearly at the bottom of the plate and 

becomes nonlinear as it approaches towards the top of the plate as shown in Figs 13 and 15. 

2) The transverse normal stress is approximately zero at the bottom of the plate and varies non-linearly as 

it approaches towards the top of the plate. Also, it can be seen that for the volume fraction exponent 4, 

the stress generated across the thickness is least as shown in Fig.14. 

3) The transverse shear stress varies parabollically along the thickness of the plate with maximum at z=0 

and minimum at the top and bottom surfaces of the plate. Again, it can be seen that for the volume 

fraction exponent 4, the transverse shear stress generated across the thickness is least as shown in 

Fig.16. 

 

 
 

Fig.13.  Real part of the solution for normal stress in the X or Y-direction across the thickness for the volume 

fraction exponent (f) and a/h= 4. 

 

 
 

Fig.14.  Real part of the solution for transverse normal stress in the Z-direction across the thickness for the 

volume fraction exponent (f) and a/h= 4. 
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Fig.15.  Real part of the solution for shear stress (σXY) across the thickness for the volume fraction exponent 

(f) and a/h= 4. 

 

 
 

Fig.16.  Real part of the solution for transverse shear stress (σXZ or σYZ) across the thickness for the volume 

fraction exponent (f) and a/h= 4. 

 

7. Conclusions 

 
 In this study, an analytical solution to a functionally graded plate based on the two-dimensional non-

linear classical plate theory is carried out. The solution obtained using Navier’s method is complex and 

hence a complex analysis is made in the present study. Non-linear bending and stress under a transverse 

uniform distributed load with diaphragm edge conditions are analyzed. The material property variation 

across the thickness according to simple power law is more effective for moderately thick (a/h= 5-10) and 

thick plates (a/h<5). The complex nature of the solution also gives information about the stress distribution 

and indicates the severity of stress in the thickness direction. The stresses in a functionally graded material 

lie in between the stresses in metal and ceramic due to a reduction in stiffness property of a material. The 

shear stresses are more induced in thin plates rather than thick and moderately thick plates. Also, the stresses 

induced in pure ceramic and metal are equal, so for homogeneous materials, stresses are independent of 

elastic stiffnesses. The material with the volume fraction exponent 4 is subjected to much smaller transverse 

normal and shear stress in comparison to other volume fraction exponents. 
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Nomenclature 

 
 a, b   plate dimensions 

 a/h   span-to-thickness ratio 

 C   reduced stiffness of the plate 

 Em, Ec    modulus of elasticity for metal and ceramic material, respectively 

 f   volume fraction exponent 

 h   thickness of the plate 

 N, M   stress and moment resultant 

 u, v, w   displacement of the plate in the x-, y- and z- direction, respectively 

      u,v    in-plane displacement of the plate in the x- and y- direction, respectively 

         w    transverse displacement of plate in the z-direction 

 w /h   dimensionless central deflection of the plate 

     Poison’s ratio of plate material 

 σXX, σYY    normal stresses in the x- and y- direction 

 σXY    shear stresses in the x-y plane 

 σXZ, σYZ    transverse shear stresses in the  x-z and y-z plane, respectively 

 σZZ    transverse normal stresses 
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