
STATIC ANALYSIS OF IMPLICIT CONTROL FLOW: RESOLVING JAVA
REFLECTION AND ANDROID INTENTS

By

PAULO DE BARROS E SILVA FILHO

M.Sc. Dissertation

Federal University of Pernambuco
posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE/2016

www.cin.ufpe.br/~posgraduacao

Universidade Federal de Pernambuco

Centro de Informática

Pós-graduação em Ciência da Computação

PAULO DE BARROS E SILVA FILHO

"STATIC ANALYSIS OF IMPLICIT CONTROL FLOW: RESOLVING JAVA REFLECTION
AND ANDROID INTENTS"

A M.Sc. Dissertation presented to the Center for Informatics

of Federal University of Pernambuco in partial fulfillment

of the requirements for the degree of Master of Science in

Computer Science.

Advisor: Marcelo d’Amorim

RECIFE, 2016

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

S586s Silva Filho, Paulo de Barros e.

Static analysis of implicit control flow: resolving Java reflection and Android
intents / Paulo de Barros e Silva Filho. – 2016.

 51 f.: il., fig., tab.

 Orientador: Marcelo d’Amorim.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2016.
 Inclui referências.

 1. Engenharia de software. 2. Compiladores. 3. Segurança da informação.
I. d’Amorim, Marcelo. (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE- MEI 2016-046

Paulo de Barros e Silva Filho

STATIC ANALYSIS OF IMPLICIT CONTROL FLOW: RESOLVING JAVA
REFLECTION AND ANDROID INTENTS

 Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação

Aprovado em: 04/03/2016.

BANCA EXAMINADORA

 __
Prof. Dr. Leopoldo Motta Teixeira

Centro de Informática / UFPE

 __
Prof. Dr. Lucas Carvalho Cordeiro

Departamento de Eletrônica e Computação / UFAM

__
Prof. Dr. Marcelo Bezerra d'Amorim

Centro de Informática / UFPE
(Orientador)

Acknowledgements

I would like to express my thanks to everyone who helped me along my journey, notably:

� My advisor, Marcelo d’Amorim, for everything he teached me during the last three
years. It was a great and memorable time of my life.

� My co-advisor, Michael D. Ernst, for every good piece of knowledge and advice he
shared with me.

� My working colleagues, both from UFPE and University of Washington, for every
shared moment of joy and pain.

� FACEPE, for funding my studies.
� My girlfriend, Lais, and friends, for being able to keep my mind away from studies

once in a while.
� My parents, Paulo and Grace Anne, for all the support and unconditional love.

—THERE’S NO SUCH THING AS A FREE LUNCH. (Milton Friedman)

Resumo

Fluxo de controle implícito, ou indireto, permite que haja uma transferência de cont-
role para um procedimento sem que esse procedimento seja invocado de forma explícita pelo
programa. Fluxo de controle implícito é um padrão de projeto comum e bastante utilizado na
prática, que adiciona flexibilidade no design de um sistema. Porém, é um desafio para uma
análise estática ter que computar e verificar propriedades sobre um sistema que usa fluxos de
controle implícito.

Quando uma análise estática encontra uma chamada a uma procedimento, geralmente
a análise aproxima o comportamento da chamada de acordo com o sumário do método, gen-
eralizando de uma forma conservadora os efeitos da chamada ao procedimento. Em trabalho
anterior, uma análise estática de segurança foi desenvolvida para aplicações Android, mas falhou
em obter uma alta precisão na presença de fluxos de controle implícito.

Este trabalho apresenta uma análise estática para dois tipos de fluxos de controle implícito
que aparecem frequentemente em aplicações Android: Java reflection e Android intents. Nas
nossas análises, o sumário de um método é a assinatura do método. Nossas análises ajudam a
descobrir para onde o controle flui e que dados estão sendo passados. Essa informação melhora
a precisão de outras análises estáticas, que não precisam mais tomar medidas conservadoras na
presença de fluxo de controle implícito.

Nós implementamos a nossa técnica em Java. Nós melhoramos uma análise de segurança
existente através de um tratamento mais preciso em casos de reflection e intents. Em um estudo
de caso envolvendo dez aplicações Android reais que usam reflection e intents, a precisão da
análise de segurança aumentou em duas ordens de magnitude. A precisão de outras duas análises
estáticas também foi melhorada.

Palavras-chave: Fluxo de controle implícito. Análise estática. Java reflection. Android intents.
Análise de segurança.

Abstract

Implicit or indirect control flow allows a transfer of control to a procedure without having
to call the procedure explicitly in the program. Implicit control flow is a staple design pattern
that adds flexibility to system design. However, it is challenging for a static analysis to compute
or verify properties about a system that uses implicit control flow.

When a static analysis encounters a procedure call, the analysis usually approximates
the call’s behavior by a summary, which conservatively generalizes the effects of any target of
the call. In previous work, a static analysis that verifies security properties was developed for
Android apps, but failed to achieve high precision in the presence of implicit control flow.

This work presents static analyses for two types of implicit control flow that frequently
appear in Android apps: Java reflection and Android intents. In our analyses, the summary
of a method is the method’s signature. Our analyses help to resolve where control flows and
what data is passed. This information improves the precision of downstream analyses, which no
longer need to make conservative assumptions about implicit control flow, while maintaining the
soundness.

We have implemented our techniques for Java. We enhanced an existing security analysis
with a more precise treatment of reflection and intents. In a case study involving ten real-world
Android apps that use both intents and reflection, the precision of the security analysis was
increased on average by two orders of magnitude. The precision of two other downstream
analyses was also improved.

Keywords: Implicit control flow. Static analysis. Java reflection. Android intents. Security
analysis.

List of Acronyms

IFC Information Flow Checker . 36

CCP Component Communication Pattern . 28

RR Reflection Resolution . 37

INT Intent Analysis . 37

LOC Lines of code. .35

List of Figures

2.1 Noninterference type-checker in the presence of reflection. 19
2.2 Noninterference type-checker in the presence of intents. 20

3.1 The type of s in C.m2 will be inferred to @T String after the call to m(). 23
3.2 Inference rules for @StringVal, @IntVal, and @ArrayLen. 24
3.3 Inference rules for @ClassVal, @ClassBound, and @MethodVal annotations. 24
3.4 Reflection resolver. 25

4.1 Type system for Android intents. Standard rules are omitted. 31
4.2 Flow-sensitive type inference rules for intent types. 33

5.1 Comparison of precision among techniques. 38

List of Tables

5.1 Selected subject apps from the F-Droid repository. 36

Contents

1 Introduction 13
1.1 Problem Overview . 13
1.2 Solution Overview . 14
1.3 Contribution . 15
1.4 History of Publications . 15
1.5 Outline . 15

2 Background and Motivation 16
2.1 Android . 16

2.1.1 Component communication . 16
2.2 Reflection . 17
2.3 Checker Framework . 17
2.4 Motivating examples . 17

2.4.1 Reflection . 18
2.4.2 Android intents . 19

3 Reflection resolution 21
3.1 Reflection type system . 21

3.1.1 Type checking . 22
3.1.2 Type inference . 22

3.1.2.1 Estimates for values of expressions 23
3.1.2.2 Inference of @ClassVal and @ClassBound 23
3.1.2.3 Inference of @MethodVal . 24
3.1.2.4 Inference of field types . 25
3.1.2.5 Method signature inference 25

3.2 Reflection resolver . 25
3.2.1 Example . 26

4 Android intent analysis 27
4.1 Component communication patterns . 28
4.2 Intent type system . 29

4.2.1 Intent types . 29
4.2.2 Type system rules . 30

4.2.2.1 Subtyping (ST) . 30
4.2.2.2 Copyable (CP) . 32
4.2.2.3 Declarations of onReceive (OR) 32
4.2.2.4 Calls to sendIntent (SI) . 32

4.2.2.5 Calls to putExtra (PE) . 32
4.2.2.6 Calls to getExtra (GE) . 32

4.3 Type inference . 33
4.4 Example . 33

5 Improving a downstream analysis 35
5.1 Subject programs and downstream analysis 35

5.1.1 How much do our reflection and intent analyses improve the precision
of IFC? . 36

5.1.2 What is the annotation overhead for programmers? 39
5.1.3 Precision improvements for other downstream analyses 39

5.2 Formal analysis . 40
5.3 Threats to validity . 40

6 Evaluation of type inference 41
6.1 Reflection resolution . 41

6.1.1 How is reflection used in practice? . 41
6.1.2 How often can reflection be resolved at compile time? 41
6.1.3 How effective is type inference for reflection resolution? 41
6.1.4 Bug detection . 42

6.2 Intent type inference . 42

7 Related work 44
7.1 Reflection . 44
7.2 Android . 45
7.3 Other . 46

8 Conclusions 47

References 48

131313

1
Introduction

Programs are easier to understand and analyze when they use explicit control flow:
that is, each procedure call invokes just one target procedure. However, explicit control flow
is insufficiently flexible for many important domains, so implicit control flow is a common
programming paradigm. For example, in object-oriented dispatch a method call invokes one
of multiple implementations at run time. Another common use of implicit control flow is in
design patterns, many of which add a level of indirection in order to increase expressiveness.
This indirection often makes the target of a procedure call more difficult to determine statically.

1.1 Problem Overview

Implicit control flow is a challenge for program analysis. When a static analysis encoun-
ters a procedure call, the analysis usually approximates the call’s behavior by a summary, which
conservatively generalizes the effects of any target of the call. If there is only one possible target
(as with a normal procedure call) or a small number that share a common specification (as with
object-oriented dispatch), the summary can be relatively precise. However, if the set of possible
targets is large, then a conservative static analysis usually uses a very weak specification, causing
it to yield an imprecise result. The imprecision is caused by a lack of information about possible
call targets and about the types of data passed as arguments at each call.

The goal of this work is to provide a sound and sufficiently precise estimate of potential
call targets and of the encapsulated data communicated in implicit invocations, in order to
improve the precision of downstream program analyses. We have previously implemented a
static analysis in the security domain (ERNST et al., 2014), and we noticed that the largest
challenge to analyze Android apps is their use of reflection and intents, and this led us to our
research on resolving implicit invocation. Therefore, our evaluation focuses on a particular
domain — Android mobile apps — but the idea could be extended to other domains where
implicit invocation may degrade the performance of downstream program analyses, such as iOS
mobile apps or Java applications.

Reflection permits a program to examine and modify its own data or behavior (SMITH,
1982). Our interest is in use of reflection to invoke procedures. For example, in Java an object m

1.2. SOLUTION OVERVIEW 14

of type Method represents a method in the running program; m can be constructed in a variety
of ways, including by name lookup from arbitrary strings. Then, the Java program can call
m.invoke(...) to invoke the method that m represents. Other programming languages provide
similar functionality, including C#, Go, Haskell, JavaScript, ML, Objective-C, PHP, Perl, Python,
R, Ruby, and Scala. For example, since (ERNST et al., 2014) is a security analysis, when it
encounters a reflective call it conservatively assumes that any method could be called. This
assumption reduces the precision of the analysis by a large factor.

Android intents are the standard inter-component communication mechanism in An-
droid. They are used for communication within an app (an app may be made up of dozens of
components), between apps, and with the Android system. An Android component can send or
broadcast intents and can register interest in receiving intents. The Android architecture shares
similarities with blackboard systems and other message-passing and distributed systems. As
another example, when (ERNST et al., 2014) encounters an intent being sent, it conservatively
assumes that this intent could be received by any component, reducing the precision of the
analysis by a large factor.

It is crucial for a static analysis in the security domain to be sound. It should also have
high precision in order to spare the time spent manually checking for false positives. We are not
aware of a previous solution that handles reflection and intents soundly and with high precision,
and this is what this work addresses.

1.2 Solution Overview

By default, a sound program analysis must treat reflection and intents conservatively —
the analysis must assume that anything could happen at uses of reflection and intents, making
its results imprecise. We have built a simple, conservative, and quite precise static analysis that
models the effects of reflection and intents on program behavior. The key idea is to resolve
implicit control and data flow first to improve the estimates of what procedures are being called
and what data is being passed; as a result, those constructs introduce no more imprecision into a
downstream analysis than a regular procedure call does.1

Both control flow and data flow are important. For reflection, our approach handles
control flow by analyzing reflective calls to methods and constructors to estimate which classes
and methods may be manipulated, and it handles data flow via an enhanced constant propagation.
For intents, our approach handles control flow by using previous work (OCTEAU et al., 2013) to
obtain component communication patterns, and it handles data flow by analyzing the payloads
that are carried by intents.

1Our approach does not change the program’s operations, either on disk or in memory in the compiler; see
Section 3.2.

1.3. CONTRIBUTION 15

1.3 Contribution

We have implemented our approach for Java. We evaluated our implementation on
open-source apps, in the context of three existing analyses, most notably an information flow
type system for Android security (ERNST et al., 2014). Most Android apps use reflection and/or
intents, so accurately handling reflection and intents is critical in this domain. Unsoundness
is unacceptable because it would lead to security holes, and poor precision would make the
technique unusable due to excessive false-positive alarms.

The reflection and intent analyses increased the precision of the information flow type
system by two orders of magnitude, and they also improved the precision of the other two
analyses. Furthermore, they are easy to use and fast to run. Our implementation is freely
available in the SPARTA toolset (http://types.cs.washington.edu/sparta/), including
source code and user manual, and the reflection analysis is also integrated into the Checker
Framework (http://checkerframework.org/).

1.4 History of Publications

This work was developed in colaboration with René Just, Suzanne Millstein, Paul Vines,
Michael D. Ernst (University of Washington), Werner Dietl (University of Waterloo) and Marcelo
d’Amorim. Together, we published a paper in the 30th Annual International Conference on
Automated Software Engineering (ASE 2015).

During that time, I was able to visit the University of Washington twice, where I stayed
for 5 months during the first time and for 3 months during the second. We have also published
the Information Flow Checker (ERNST et al., 2014) together, which was used to evaluate this
work.

Aside from that, I also had the opportunity to publish SPLat (KIM et al., 2013), a
technique for reducing the combinatorics problem when testing configurable systems. This was
done in colaboration with Sabrina Souto (Marcelo’s student at that time), a research group from
the University of Texas led by Don Batory, and a research group from the University of Illinois
led by Darko Marinov. I was responsible for performing experiments and fixing bugs.

1.5 Outline

The rest of this work is structured as follows. Chapter 2 presents a background of Android,
reflection and the Checker Framework, together with two motivating examples. Sections 3 and 4
present our analyses that resolve reflection and intents. Chapter 5 evaluates how the reflection
and intent analyses improve the precision of downstream analyses. Chapter 6 shows how the
type inference rules reduce programmer effort. Chapter 7 discusses related work, and Chapter 8
concludes.

http://types.cs.washington.edu/sparta/
http://checkerframework.org/

161616

2
Background and Motivation

This chapter presents background material related to Android, Java reflection and the
Checker Framework, which are important for the rest of this thesis, and details two motivating
examples used throughout this thesis.

2.1 Android

Android apps are packaged in compressed .apk files, which contain code files, resource
files (e.g., image and audio files), and a manifest file providing meta-data such as required
permissions and a list of system-wide events that the app is interested in listening from the
environment.

The concept of a component is central in Android. An Android app consists of a
set of components of the following types: Activities, Services, (Broadcast) Receivers, and
(Content) Providers. An Activity is a component with a screen for users to interact. A Service
is a component that can perform long-running operations in the background. Receivers are
components that listen to broadcast messages sent by other components (not necessarily from
the same app). Content providers manage access to app data.

2.1.1 Component communication

Android components communicate asynchronously through messages called intents.
An intent encapsulates data, which serves to initialize a component. It is common to refer to
a component that sends (/receives) an intent as a sending component (/receiving component).
Conceptually, an intent is a map of string keys to arbitrary objects. We describe in the following
the elements that comprise the intent payload.
Intent Extras. Intent extras are a set of key-value pairs used to communicate data between
components. For example, a component can communicate the identity of a user to another
component passing a string “extra” containing the corresponding username of that user.
Intent Filters. An intent filter specifies interest of a given component in particular (intent)
messages. The fields action, category, and data of an intent are typically used to specify these

2.2. REFLECTION 17

filters. Although filters can be defined within apps, using dynamic (Broadcast)Receivers, they
are most often declared in the manifest file.

Detailed material about Android can be found elsewhere (GOOGLE, 2008).

2.2 Reflection

Reflection is a metaprogramming mechanism that enhances the flexibility and expres-
siveness of a programming language. Its primary purpose is to enable a program to dynamically
exhibit behavior that is not expressed by static dependencies in the source code.

For example, in Java an object m of type Method represents a method in the running
program; m can be constructed in a variety of ways, including by name lookup from arbitrary
strings. Then, the Java program can call m.invoke(...) to invoke the method that m represents.

Reflection is commonly used for the following four use cases, among others. (1) Provide
backward compatibility by accessing an API method that may or may not exist at run time. The
reflective code implements a fallback solution so the app can run even if a certain API method
does not exist, e.g., on older devices. (2) Access private API methods and fields, which offer
functionality beyond what is provided by the public API. (3) Implement design patterns such as
duck typing. (4) Code obfuscation to make it harder to reverse-engineer the program, e.g., code
that accesses premium features that require a separate purchase.

The Android developer documentation encourages the use of reflection to provide back-
ward compatibility and for code obfuscation (cases 1 and 4 above), and 39% of apps in the
F-Droid repository (F-DROID, 2010) use reflection.

2.3 Checker Framework

The Checker Framework (DIETL et al., 2011) enhances Java’s type system, allowing
compiler plug-ins ("checkers") that find bugs and verify their absence. It is an open source
project that provides support for writing custom checkers.

We implemented our solutions as type-checkers for the Checker Framework. In fact,
every type system mentioned in this thesis has an associated type-checker implementation
available on the Checker Framework1, except for the noninterference type system mentioned on
the next section.

2.4 Motivating examples

Our work improves the precision of a downstream static analysis, by eliminating false
positive warnings in cases of implicit control flows. Imprecision due to implicit control flow

1http://types.cs.washington.edu/checker-framework/current/checker-framework-manual.
html

http://types.cs.washington.edu/checker-framework/current/checker-framework-manual.html
http://types.cs.washington.edu/checker-framework/current/checker-framework-manual.html

2.4. MOTIVATING EXAMPLES 18

affects every static analysis. One example of static analysis is a type-checking procedure – a type-
checker performs a static analysis to verify that all types are used correctly in a program. This is
the procedure performed by the type-checkers on the Checker Framework. In general, on every
(pseudo-)assignment a type-checker verifies that the type of the value on the right-hand-side is a
subtype of the type of the variable on the left-hand-side of the assignment. For concreteness,
consider a noninterference type system (VOLPANO; SMITH, 1997), which guarantees that the
program does not leak sensitive data.

The noninterference type system distinguishes high-security-level values from low-
security-level values; for brevity, Secret and Public values. The static property checked is
that values in Secret variables are not assigned to Public variables, which could leak sensitive
data. Variables and expressions marked Secret may hold a Public value at run time; this is also
expressed as Public <: Secret, where the symbol “<:” denotes subtyping. To use this type system,
a user annotates each type with Secret or Public, the default being Public. The type system is
conservative: if it issues no warnings, then the program has no interference and running it does
not leak any Secret data to Public contexts.

When run on the Android app Aard Dictionary2, the noninterference type system issues
false positive warnings due to its conservative handling of implicit control flows. When our
reflection and intent analyses are integrated into it, the type system remains sound but no longer
issues the false positive warnings. Below we show examples that use the noninterference type
system and suffer false positives due to implicit control flow, but other type systems suffer
similar false positives. Our reflection and intent analyses also help other downstream analyses,
as demonstrated in Section 5.1.3.

2.4.1 Reflection

Some calls to Method.invoke may return a Secret value at run time. Thus, the signature
of Method.invoke (line 15 of Figure 2.1) must have a Secret return type; any other return type in
the summary would be unsound. But some calls to Method.invoke will return a Public value. The
conservative signature of Method.invoke causes false positive warnings in such cases.

Figure 2.1 illustrates the problem in Aard Dictionary. The component ArticleViewActiv-
ity uses an ActionBar, which is a feature that was introduced in version 11 of the Android API.
In order to prevent run-time errors for a user who has an older version of Android (and also to
enable the app to compile when a developer is using an older version of the Android API), this
app uses reflection to call methods related to the ActionBar. The noninterference type-checker
issues a false positive due to the use of reflection; our reflection analysis (Chapter 3) eliminates
the false positive warning.

2http://aarddict.org/

http://aarddict.org/

2.4. MOTIVATING EXAMPLES 19

Figure 2.1: A noninterference type-checker produces a false positive warning on line 7, where
the return type of Method.invoke, of type Secret, is assigned to variable actionBar which has

declared type Public. The call on line 7 always returns a Public value at run time (even though
other calls to invoke may in general return a Secret value), so the assignment is safe. When the

noninterference type system is augmented by our reflection analysis, it no longer issues the false
positive warning. Note that since Public is the default type for the noninterference type system, all

Public annotations could be omitted.

1 class ArticleViewActivity extends Activity {
2 void onCreate(Bundle savedInstanceState) {
3 if (android.os.Build.VERSION.SDK_INT >= 11) {
4 // Android version 11 and later has Action Bar
5 Method getActionBar =
6 getClass().getMethod("getActionBar");
7 @Public Object actionBar = getActionBar.invoke(this);
8 ...
9 }

10 }
11 }
12
13 // Library annotations:
14 class Method {
15 @Secret Object invoke(Object obj, Object... args) {...}
16 }
17 class Activity {
18 // Only exists in Android SDK 11 and above.
19 @Public ActionBar getActionBar() {...}
20 }

Source: Aardict Dictionary source code.

2.4.2 Android intents

An Android component might send a Secret value via an intent message to another
component; therefore, the summary for methods that retrieve data from an intent (lines 26–27
of Figure 2.2) must conservatively assume that the data is a Secret value. This conservative
summary may cause false positive warnings when the data is of type Public at run time.

Figure 2.2 shows another example from Aard Dictionary. The components Dictionary-

Main and WordTranslator use Android intents to communicate. Android intents are messages sent
between Android components, and those messages might contain “extras”, which is a mapping
of keys to objects. Component DictionaryMain creates an intent object i, adds Public-security
extra data to i’s extras mapping, and on line 7 calls the Android library method startActivity to
send the intent. The Android system then calls WordTranslator.onCreate, which is declared on
line 12. The noninterference type-checker issues a false positive due to the use of intents; our
intent analysis (Chapter 4) eliminates the false positive warning.

Figure 2.2: A noninterference type-checker produces false positive warnings on lines 14–16,
where the return type of get*Extra, of type Secret, is assigned to variables with declared type

Public. The calls on lines 14–16 always return a Public value at run time (even though other calls
to get*Extra may in general return a Secret value), so the assignments are safe. When the

noninterference type system is augmented by our intent analysis, it no longer issues the false
positive warnings.

1 class DictionaryMain extends Activity {
2 void translateWord(int source , int target , String word){
3 Intent i = new Intent(this , WordTranslator.class);
4 i.putExtra("source", source);
5 i.putExtra("target", target);
6 i.putExtra("word", word);
7 startActivity(i);
8 }
9 }

10
11 class WordTranslator extends Activity {
12 void onCreate(Bundle savedInstanceState)
13 Intent i = getIntent();
14 @Public int source = i.getIntegerExtra("source");
15 @Public int target = i.getIntegerExtra("target");
16 @Public String word = i.getStringExtra("word");
17 showResult(translate(source , target , word));
18 }
19 String translate(int source , int target , String word) {...}
20 Intent getIntent() {...}
21 void showResult(String result) {...}
22 }
23
24 // Library annotations:
25 class Intent {
26 @Secret Integer getIntegerExtra(String key) {...}
27 @Secret String getStringExtra(String key) {...}
28 }

Source: Aardict Dictionary source code.

212121

3
Reflection resolution

Not all uses of reflection can be statically resolved, but our experiments show that many
of them can. Whenever the developer runs a code analysis, it is beneficial to the analysis if as
much reflection as possible is resolved, in order to reduce false positive warnings. Obfuscation
is not compromised, because analysis results, annotations, and other information that is used
in-house by the developer need not be provided to users of the software.

Approach for reflection resolution

Without further information about which method is reflectively called, a static analysis
must assume that a reflective call could invoke any arbitrary method. Such a conservative
assumption increases the likelihood of false positive warnings.

At each call to Method.invoke, our analysis soundly estimates which methods might be
invoked at runtime. Based on this estimate, our analysis statically resolves the Method.invoke call
— that is, it provides type information about arguments and return types for a downstream analysis.
The results are soundly determined solely based on information available at compile time.

The reflection resolution consists of the following parts:

1. Reflection type system: Tracks and infers the possible names of classes, methods, and
constructors used by reflective calls. (Section 3.1)

2. Reflection resolver: Uses the reflection type system to estimate the signatures of
methods or constructors that can be invoked by a reflective call. (Section 3.2)

3.1 Reflection type system

Our reflection type system refines the Java type system to provide more information
about array, Class, Method, and Constructor values. In particular, it provides an estimate, for each
expression of those types, of the values they might evaluate to at run time.

For arrays, the refined type indicates the length of the array: for example,
@ArrayLen({3,4}) indicates that the array will be of length 3 or 4. For expressions of type
Class, there are two possible type qualifiers, @ClassVal and @ClassBound, representing either an
exact Class value or an upper bound of the Class value. The list of possible values is expressed

3.1. REFLECTION TYPE SYSTEM 22

as an array of strings representing fully-qualified types; for example, @ClassVal("java.util

.HashMap") indicates that the Class object represents the java.util.HashMap class. Alternatively,
@ClassBound("java.util.HashMap") indicates that the Class object represents java.util.HashMap

or a subclass of it.
For expressions of type Method and Constructor, the type qualifier indicates estimates for

the class, method name, and number of parameters. For example,

@MethodVal(cn="java.util.HashMap",

mn={"containsKey", "containsValue"},

np=1)

indicates that the method represents either HashMap.containsKey or HashMap.containsValue, with
exactly 1 parameter. Likewise, the MethodVal type may have more than one value for the class
name or number of parameters. The represented methods are the Cartesian product of all possible
class names, method names, and numbers of parameters. For a constructor, the method name is
“<init>”, so no separate @ConstructorVal type qualifier is necessary.

The MethodVal type is imprecise in that it indicates the number of parameters that the
method takes, but not their type. This means that the type system cannot distinguish methods
in the uncommon and discouraged (BLOCH, 2001) case of method overloading. This was a
conscious design decision that reduces the verbosity and complexity of the annotations, without
any practical negative consequences. In our experiments with more than 300,000 lines of Java
code from 35 Android apps, this imprecision in the type system never prevented a reflective call
from being resolved.

Our implementation caps the size of a set of values at 10. This cap was never reached
in our case studies. If a programmer writes, or the type system infers, a set of values of size
larger than 10, then the type is widened to its respective top type. A top type indicates that the
type system has no estimate for the expression: the type system’s estimate is that the run-time
value could be any value that conforms to the Java type. The top type is the default, and it is
represented in source code as the absence of any annotation.

3.1.1 Type checking

The reflection type system enforces standard type system guarantees, e.g. that the right-
hand side of an assignment is a subtype of the left-hand side. These typing rules follow those of
Java, they are standard for an object-oriented programming language, and they are familiar to
programmers. Therefore, we do not detail them in this work. The reflection type system and our
implementation are compatible with all Java features, including generics (type polymorphism).

3.1.2 Type inference

Programmers do not need to write type annotations within method bodies, because
our system performs local type inference. More specifically, for local variables, casts, and

3.1. REFLECTION TYPE SYSTEM 23

Figure 3.1: The type of s in C.m2 will be inferred to @T String after the call to m().

1 public class C {
2 @T String m() { ... }
3
4 void m2() {
5 String s = m();
6 // From here , type of s is: @T String
7 ...
8 }
9 }

Source: Made by the authors.

instanceof expressions, the absence of any annotation indicates that the type system should infer
the most precise possible type from the context. For all other locations — notably fields, method
signatures, and generic type arguments — a missing annotation is interpreted as the top type
qualifier.

The local type inference is flow-sensitive. It takes advantage of expression typing rules
that yield more precise types than standard Java type-checking would. Figure 3.1 shows an
example where a method call expression refines the type of a local variable at an assignment.

3.1.2.1 Estimates for values of expressions

We have designed and implemented a dataflow analysis that infers and tracks types
providing an estimate for the possible values of each expression. Our implementation goes
beyond constant folding and propagation: it evaluates side-effect-free methods, it infers and
tracks the length of each array, and it computes a set of values rather than just one. Figure 3.2
shows selected inference rules. Our implementation is available as the Constant Value Checker 1

on the Checker Framework. The reflection type system builds on top of this dataflow analysis.

3.1.2.2 Inference of @ClassVal and @ClassBound

The reflection type system infers the exact class name (@ClassVal) for a Class literal
(C.class), and for a static method call (e.g., Class.forName(arg), ClassLoader.loadClass(arg),
. . .) if the argument has a sufficiently precise @StringVal estimate. In contrast, it infers an upper
bound (@ClassBound) for instance method calls (e.g., obj.getClass()).

An exact class name is necessary to precisely resolve reflectively-invoked constructors
since a constructor in a subclass does not override a constructor in its superclass. Either an
exact class name or a bound is adequate to resolve reflectively-invoked methods because of the
subtyping rules for overridden methods. Figure 3.3 shows selected inference rules.

1http://types.cs.washington.edu/checker-framework/current/checker-framework-manual.
html#constant-value-checker

http://types.cs.washington.edu/checker-framework/current/checker-framework-manual.html#constant-value-checker
http://types.cs.washington.edu/checker-framework/current/checker-framework-manual.html#constant-value-checker

3.1. REFLECTION TYPE SYSTEM 24

Figure 3.2: Inference rules for @StringVal, @IntVal, and @ArrayLen.

e : String val is the statically computable value of e
e : @StringVal(val)

e : int val is the statically computable value of e
e : @IntVal(val)

e : @IntVal(π)
new C[e] : @ArrayLen(π)

new C[]{e1,...,en} : @ArrayLen(n)
Source: Made by the authors.

Figure 3.3: Selected inference rules for the @ClassVal, @ClassBound, and @MethodVal annotations.
Additional rules exist for expressions with similar semantics but that call methods with different

names or signatures, and for fields/returns.

fqn is the fully-qualified class name of C
C.class : @ClassVal(fqn)

s : @StringVal(ν)
Class.forName(s) : @ClassVal(ν)

fqn is the fully-qualified class name of the static type of e
e.getClass() : @ClassBound(fqn)

(e : @ClassBound(ν) ∨ e : @ClassVal(ν))
s : @StringVal(µ) p : @ArrayLen(π)

e.getMethod(s,p) : @MethodVal(cn=ν,mn=µ,np=π)

e : @ClassVal(ν) p : @ArrayLen(π)

e.getConstructor(p) : @MethodVal(cn=ν,mn="<init>",np=π)

Source: Made by the authors.

3.1.2.3 Inference of @MethodVal

The reflection type system infers MethodVal types for methods and constructors that have
been created via Java’s Reflection API. A nonexhaustive list of examples includes calls to Class

.getMethod(String name, Class<?>... paramTypes) and Class.getConstructor(Class<?>... param-

Types). For example, the type inferred for variable getActionBar on line 5 of Figure 2.1 is
@MethodVal(cn="ArticleViewActivity", mn="getActionBar", np=0). Although Figure 2.1 uses raw
(non-parameterized) types, our inference supplies the missing type argument information.

3.2. REFLECTION RESOLVER 25

Figure 3.4: Reflection resolver: Procedure summary is narrowed based on the Reflection type
system. Program and downstream analysis remains unchanged.

Source: Made by the authors.

3.1.2.4 Inference of field types

For private fields, our type inference collects the types of all assignments to the field, and
sets the field type to their least upper bound (lub). If the lub is not a subtype of the declared
type, this step is skipped and a type-checking error will be issued at some assignment. The
same mechanism works for non-private fields, but the entire program has to be scanned for
assignments. At the end of type-checking, the type-checker outputs a suggestion about the field
types. The user may accept these suggestions and re-run type-checking to obtain more precise
results; we did so in our experiments. Field type inference works for every type system, not just
those related to reflection.

3.1.2.5 Method signature inference

Similarly to field type inference, private method parameters are set to the lub of the
types of the corresponding arguments, and private method return types are set to the lub of
the types of all returned expressions, when those are consistent with the declared types. For
non-private methods, the entire program is scanned for calls/overriding and the type-checker
outputs suggestions.

Figure 3.3 shows selected inference rules for the reflection type system.

3.2 Reflection resolver

Prior work (see Chapter 7) commonly re-writes the source code or changes the AST
within the program analysis tool, changing a call to Method.invoke into a call to the method that
is reflectively invoked before analyzing the program. This approach interferes with the toolchain,
preventing the code from being compiled or run in certain environments. This approach is

3.2. REFLECTION RESOLVER 26

also at odds with the very purpose of reflection: the program no longer adapts to its run-time
environment and loses properties of obfuscation. A final problem is that an analysis may discover
facts that cannot be expressed in source code form.

Figure 3.4 shows that our reflection resolver operates differently: it leaves the program
unmodified but narrows the procedure summary — the specification of parameter and return
types used during modular analysis — for that particular call site only. When the downstream
analysis requests the summary at a call to Method.invoke, it receives the more precise information
rather than the conservative summary that is written in the library source code. This transparent
integration means that the downstream analysis does not need to be changed at all to be integrated
with the reflection analysis.

3.2.1 Example

Recall the example of Figure 2.1. When the noninterference type system analyzes
getActionBar.invoke(this) on line 7, it uses a method summary (like a declaration) to indicate
the requirements and effects of the call. Ordinarily, it would use the following conservative
declaration for Method.invoke:

@Secret Object invoke(Object recv, Object ... args)

However, the reflection type system inferred that the type of variable getActionBar is
@MethodVal(cn="ArticleViewActivity", mn="getActionBar", np=0). In other words, at run time,
the invoked method will be the following one from class ArticleViewActivity:

@Public ActionBar getActionBar ()

Thus, the noninterference type system has a precise type, Public, for the result of the invoke call.
The reflection resolver automatically provides the following precise procedure summary to the
downstream analysis, for this call site only:

@Public Object invoke(Object recv, Object ... args)

As a result, the type system does not issue a false positive warning about the assignment to
variable actionBar on line 7.

The summary contains not just refined procedure return types as shown above, but
also refined parameter types, enabling a downstream analysis to warn about clients that pass
arguments that are not legal for the reflectively-invoked method. It would be possible to refine
the Java types as well as the type qualifiers (for instance, to warn about possible run-time type
cast errors or to optimize method dispatch), but our implementation does not do so.

If the reflectively-called method or constructor cannot be resolved uniquely, the reflection
resolver determines the least upper bound of all return values and the greatest lower bound of all
parameter and receiver types.

272727

4
Android intent analysis

An Android app is organized as a collection of components that roughly correspond to
different screens of an application and to background services.1 Some apps consist of dozens
of components. Intents are used for inter-component communication, both within an app and
among different apps. Intents are similar to messages, communicated asynchronously across
components. Sending an Android intent implicitly invokes a method on the receiving component,
just as making a reflective procedure call implicitly invokes a method. The use of intents is
prevalent in Android apps: all top 50 popular paid apps and top 50 popular free apps from the
Google Play store use intents (CHIN et al., 2011), the top 838 most popular apps contain a total
of 58,989 inter-component communication locations (OCTEAU et al., 2013), and intents are a
potential target for attackers to introduce malware (CHIN et al., 2011).

Intents present two challenges to static analyses: (i) control flow analysis, or determining
which components communicate with one another, and (ii) data flow analysis, or determining
what data is communicated. Both parts are important. An existing analysis, Epicc (OCTEAU
et al., 2013), partially solves the control flow challenge. Section 4.1 describes how our imple-
mentation uses Epicc to compute component communication. Our key research contribution
here is to address the data flow challenge, which has resisted previous researchers. Section 4.2
presents a novel static analysis that estimates the data passed in an Android intent.

The structure of Android intents

In addition to attributes that specify which components may receive the intent, an intent
contains a map from strings to arbitrary data, called “extras”. The extras map is used to pass
additional information that is needed to perform an action. For example, an intent used to
play a song contains the song’s title and artist as extras. An invocation of the putExtra method
adds a key–value entry to the intent map, which can be looked up via the getExtra method call.
Without loss of generality, we will consider that every intent attribute (including the action name,
categories and data) is an entry in the map of extras. The use of extras is prevalent in Android:
of the 1,052 apps in the F-Droid repository (F-DROID, 2010), 69% of the apps has at least one

1Activity, Service, BroadcastReceiver, and ContentProvider are the four kinds of Android components. See http:
//developer.android.com/guide/components/fundamentals.html#Components.

http://developer.android.com/guide/components/fundamentals.html#Components
http://developer.android.com/guide/components/fundamentals.html#Components

4.1. COMPONENT COMMUNICATION PATTERNS 28

intent with extra data. Figure 2.2 shows the common use case of an Android app sending and
receiving an intent containing extras.

4.1 Component communication patterns

For simplicity, this work abstracts all methods that send intents as the method sendIntent,
and all methods that receive an intent as the method onReceive. For example, in Figure 2.2,
startActivity(), called on line 7, is an example of a sendIntent method, and the method
getIntent(), declared on line 20, is an example of an onReceive method.

To precisely analyze the types of data sent through intents, our analysis requires sendIntent
calls to be matched to the declarations of onReceive methods they implicitly invoke. We ex-
press this matching as Component Communication Pattern (CCP): a set of pairs of the form
〈sendIntent(a, i), onReceive(b, j)〉. Each pair in the CCP indicates that components a and b,
possibly from different apps, may communicate through intents i and j, which intuitively denote
the actual arguments and formal parameters of the implicit invocation.

To precompute an approximated CCP, our current implementation uses APKParser (AP-
KParser, 2011), Dare (OCTEAU; JHA; MCDANIEL, 2012), and Epicc (OCTEAU et al., 2013).
Our implementation inherits Epicc’s limitations. Note, however, that Epicc’s limitations are not
inherent to our intent analysis, and they would disappear if we used a better analysis to compute
CCP. As better CCP techniques become available, they can be plugged into our implementation.
IC3 (OCTEAU et al., 2015) is Epicc’s successor, created by the same research group. We
attempted to use IC3, but we discovered a soundness bug: dynamically-registered Broadcast
Receivers were not being analyzed. The IC3 authors have confirmed but not fixed the bug2, so
we used Epicc instead. We now discuss sources of imprecision and unsoundness due to Epicc.

Epicc’s sources of imprecision. Epicc’s lack of support for URIs leads to imprecision since
intents with the same action and category but different URIs are conservatively considered equal.
As expected of a static analysis, Epicc also cannot handle cases where dynamic inputs determine
the identity of receiver components. Epicc also handles this conservatively: all components
are considered possible receivers. Furthermore, the points-to and string analyses used by Epicc
are also sources of imprecision due to limitations on their implementation. Even with these
limitations, all mentioned in (OCTEAU et al., 2013), Epicc reports 91% precision in a case study
with 348 apps (OCTEAU et al., 2013).

Epicc’s sources of unsoundness. Epicc unsoundly assumes that Android apps use no reflection.
We used the type system of Chapter 3 to circumvent this limitation; see Chapter 5. Epicc
also unsoundly assumes that Android apps use no native calls, a standard limitation of static
analysis that is shared by IC3. We do not circumvent this limitation. Another unsoundness is
the closed-world assumption; that is, Epicc assumes that it knows all the apps installed on a

2https://github.com/siis/ic3/issues/1

https://github.com/siis/ic3/issues/1

4.2. INTENT TYPE SYSTEM 29

device. Our work shares this assumption. Compatibility with Epicc’s analysis could be checked
whenever an app is installed.

Recall that while finding CCP is necessary, it is not sufficient. Since acceptable solutions
exist for finding CCP, the focus of our intent analysis is on the unsolved problem of estimating
the payloads of intents, which is discussed below.

4.2 Intent type system

This section presents a type system for Android intents. The type system verifies that
the type of data stored within an intent conforms to the declared type of the intent, even in the
presence of implicit invocation via intents.

The type system verifies that for any sendIntent method call and any onReceive method
declaration that can be invoked by the call site, the intent type of the argument in the sendIntent

call is compatible with the intent type of the parameter declared in the onReceive method
signature.

4.2.1 Intent types

We introduce intent types, which hold key–type pairs that limit the values that can be
mapped by a key.

Syntax of intent types. This work uses the following syntax for an intent map type:

@Intent("K1" → t1, ..., "Kn" → tn) Intent i = ...;

where {"K1",. . . ,"Kn"} is a set of literal strings and {t1,. . . ,tn} is a set of types. The type of
variable i above consists of a type qualifier @Intent(...) and a Java type Intent. The regular
Java type system verifies the Java type, and our intent type system verifies the type qualifier.

The actual Java syntax used by our implementation is slightly more verbose than that in
this work:

@Intent(@Entry(key="K1", type="t1"), ...,

@Entry(key="Kn", type="tn")) Intent i = ...;

Semantics of intent types. If variable i is declared to have an intent type T , then two constraints
hold.

� (C1) The keys of i that are accessed must be a subset of T ’s keys. It is permitted for
the run-time value of variable i to have more keys than those listed in T , but they
may not be accessed. It is also permitted for the run-time value of variable i to have
fewer keys than those listed in T ; any access to a missing key will return null.

4.2. INTENT TYPE SYSTEM 30

� (C2) For every key k in T , either k is missing from the run-time key set of i, or the
value mapped by k in the run-time value of i has the type mapped by k in T . This
can be more concisely expressed as ∀k ∈ domain(T) .i[k] : T [k], where “:” indicates
typing and null is a value of every non-primitive type.

Example. The example below illustrates the declaration and use of intent types. The symbols @A,
@B, and @C denote type qualifiers, such as @Secret and @Public of the noninterference type system.
On the left is the type hierarchy of these type qualifiers. (C1) and (C2) are the two constraints
described above.

@Intent("akey" → @C) Intent i = ...

@A @A int e1 = i.getIntExtra("akey"); // legal

/ \ @C int e2 = i.getIntExtra("akey"); // legal

@B @C @B int e3 = i.getIntExtra("akey"); // violates (C2)

i.getIntExtra("otherKey"); // violates (C1)

The first line is a creation of an Intent object, which is valid. According to the @Intent

type of i, the type of i.getIntExtra("akey") is @C. Therefore, on the second line there is an
assignment where the type @C is on the right-hand-side of the assignment and the type @A is on the
left-hand-side of the assignment. This is a legal assignment since @C is a subtype of @A. The third
line is also legal since @C is a subtype of itself. The fourth line is illegal because it is trying to
assign a value of type @C on the right-hand-side to a variable of type @B on the left-hand-side, but
@B and @C are not related to each other according to the type hierarchy, therefore this assignment
violates (C2). The call i.getIntExtra("otherKey") violates (C1) since "otherKey" is not present
in the @Intent type of i.

4.2.2 Type system rules

Figure 4.1 shows the typing rules for the intent type system. These rules are organized
into three categories, according to their purpose. Subtyping rules define a subtyping relation
for intent types, well-formedness rules define which constructions are acceptable, and typing
judgment rules define the types associated with different language expressions.

4.2.2.1 Subtyping (ST)

Intent type τ1 is a subtype of intent type τ2 if the key set of τ2 is a subset of the key set
of τ1 and, for each key k in both τ1 and τ2, k is mapped to the same type.

@Intent("akey" → t, "anotherkey" → t) Intent i1 = ...;

@Intent("akey" → t) Intent i2 = ...;

@Intent("anotherkey" → t)) Intent i3 = ...;

i2 = i1; // legal

i1 = i3; // illegal

4.2. INTENT TYPE SYSTEM 31

Figure 4.1: Type system for Android intents. Standard rules are omitted.

Subtyping

(ST)
∀ k ∈ keys(τ2). k ∈ keys(τ1) ∧ τ1[k] = τ2[k]

τ1 <: τ2

(CP)
∀ k ∈ keys(τ2). k ∈ keys(τ1) ∧ τ1[k]<: τ2[k]

τ1 <copyable τ2

Well-formedness

(OR)
No precondition

void onReceive(τ i)

Typing judgments

(SI)

∀ onReceive(b, j). 〈sendIntent(a, i),onReceive(b, j)〉 ∈ CCP
i : τi j : τ j τi <copyable τ j

sendIntent(a, i) : int

(PE1)
e : τ v : τ[k] k ∈ keys(τ) s : @StringVal(k)

e.putExtra(s,v) : τ

(PE2)
e : τ k /∈ keys(τ) e is unaliased s : @StringVal(k)

e.putExtra(s,v) : τ

(GE)
e : τ k ∈ keys(τ) s : @StringVal(k)

e.getExtra(s) : τ[k]

Source: Made by the authors.

The mapped types must be exactly the same; use of a subtyping requirement τ1[k]<: τ2[k]

instead of equality τ1[k] = τ2[k] would lead to unsoundness in the presence of aliasing. The
example below illustrates this problem. (On the left is the type qualifier hierarchy.)

@C String c;

@A @Intent("akey" → @B) Intent i1;

/ \ @Intent("akey" → @A) Intent i2;

@B @C i2 = i1; // illegal

i2.putExtra("akey", c);

It would be incorrect to allow the assignment i2 = i1 in this example, even though the assignment
is valid according to standard object-oriented typing. In this case, the call to putExtra would
store, in the object pointed by i1, a value of incorrect type at key akey. This happens because the
references i1 and i2 are aliased to the same intent object.

4.2. INTENT TYPE SYSTEM 32

4.2.2.2 Copyable (CP)

Copyable is a subtyping-like relationship with the weaker requirement τ1[k]<: τ2[k]. It
may be used only when aliasing is not possible, which occurs when onReceive is invoked by the
Android system, as explained in the (SI) rule below.

4.2.2.3 Declarations of onReceive (OR)

A declaration of onReceive always type-checks. The standard Java overriding rules do
not apply to declarations of onReceive: the intent type of the formal parameter of onReceive is not
restricted by the type of the parameter in the overridden declaration. This is allowable because
by convention onReceive is never called directly but rather is only called by the Android system.
The type-checker prohibits direct calls to onReceive methods; this constraint is omitted from
Figure 4.1 for brevity.

4.2.2.4 Calls to sendIntent (SI)

A sendIntent call can be viewed as an invocation of one or more onReceive methods. A
sendIntent call type-checks if its intent argument is copyable to the formal parameter of each
corresponding onReceive method. CCP (see Section 4.1) is used to determine each onReceive

method of a sendIntent call. The type comparison uses the copyable relation, not subtyping.
This is sound because the Android system passes a copy of the intent argument to onReceive, so
aliasing is not a concern.

4.2.2.5 Calls to putExtra (PE)

If the receiver of a putExtra call might have aliases, then the argument’s type must be a
subtype of the type with the specified key in the map. This prevents an alias from modifying an
intent in such a way that it violates the type of another alias. For example:

@Intent("akey" → @Public) Intent a = new Intent();

@Intent() Intent b = a;

@Secret String hs = ...;

b.putExtra("akey", hs); // does not type-check

a.getExtra("akey");

If the receiver has no aliases, then the key is permitted to be missing from the map type.

4.2.2.6 Calls to getExtra (GE)

The rule for getExtra is straightforward.
For both the PE and GE rules, the call (putExtra or getExtra) type-checks only if the key

is a statically computable expression, according to the dataflow analysis of Section 3.1.2. For all
1,052 apps in the F-Droid repository, 93% of all keys could be statically computed.

4.3. TYPE INFERENCE 33

Figure 4.2: Flow-sensitive type inference rules for intent types: the conclusion shows the type of
e after the call to putExtra. Standard rules are omitted.

e.putExtra(s,v) e : τ v : σ k 6∈ keys(τ)
e is unaliased s : @StringVal(k)

e : τ∪{k → σ}

e.putExtra(s,v) e : τ∪{k → _} v : σ

e is unaliased s : @StringVal(k)

e : τ∪{k → σ}

Source: Made by the authors.

4.3 Type inference

Annotations are rarely required within method bodies, because the intent type system
performs flow-sensitive local type inference. Consider the following example:

@Intent Intent i = new Intent(); // i has type @Intent()

i.putExtra("akey", h); // i now has type @Intent("akey"→@Secret)

i.putExtra("akey", l); // i now has type @Intent("akey"→@Public)

Because the receiver expression of these putExtra calls is an unaliased local variable, its type
can be refined by adding the key–type pair from the putExtra call. We implemented a modular
aliasing analysis that determines whether an expression is unaliased.

Figure ?? shows two cases for the putExtra type inference rules for intent types. For
both cases, the key argument of the putExtra call must be a statically computable expression
(Section 3.1.2) and the receiver expression must be unaliased. For the first case, if the intent
type of the receiver expression does not have a key–type pair with the same key passed as an
argument, then the intent type is refined with the new key mapping to the type of the value passed
as argument. For the second case, if the intent type already has a key–type pair with the same
key, then the type in this key–type pair is replaced by the type of the value passed as an argument.
A further standard condition (omitted from Figure ?? for brevity) is that the new intent type must
be a subtype of the declared type.

4.4 Example

Recall the example of Figure 2.2. A noninterference type-checker would report false-
positive warnings on lines 14–16 because the type system is unable to deduce that all extra data
from the corresponding intent is of type Public. A developer can express this intended design by
manually annotating the method WordTranslator.getIntent (inherited from class Activity):

@Override

@Intent("source" → @Public, "target" → @Public, "word" → @Public)

Intent getIntent() { return super.getIntent(); }

4.4. EXAMPLE 34

The startActivity(i) statement on line 7 still type-checks after this change because the type-
checker refines the type of i to @Intent("source" → @Public, "target" → @Public, "word" →

@Public) as a result of the putExtra calls on lines 4–6. Our implementation only has type inference
for sent intents, therefore receiving intents that retrieve extras require manual annotations.

In the method DictionaryMain.translateWord(), the copyable typing rule enforces that
the intent variable i has a compatible type with the return type of WordTranslator.getIntent().

By extending the noninterference type system with our intent type system and manu-
ally adding the correct annotations to the return type of WordTranslator.getIntent(), the Aard
Dictionary example type-checks and the developer is assured that the program does not contain
security vulnerabilities that could leak private data. Note that any developer-written annotations
in the program are checked, not trusted.

353535

5
Improving a downstream analysis

We evaluated our work in two ways. First, this chapter reports how much our reflection
and intent analyses improve the precision of a downstream analysis, which is their entire purpose.
Then, it presents a formal proof of both analyses. Second, Chapter 6 measures how well our type
inference rules reduce the programmer annotation burden.

The purpose of resolving reflection and intents is to improve the precision of a down-
stream analysis. Section 5.1.1 measures the improvement in precision, and Section 5.1.2 shows
the programmer effort required to achieve the improved precision. Section 5.1.3 shows how our
analyses can also improve other downstream analyses. Section 5.2 presents a formal analysis.

5.1 Subject programs and downstream analysis

We used open-source apps from the F-Droid repository (F-DROID, 2010) to evaluate our
approach. F-Droid contains 1,052 apps that have an average size of 9,237 Lines of code (LOC)1

and do not use third-party libraries.
415 out of 1,052 F-Droid apps (39%) use reflection, and each app that uses reflection

has on average 11 reflective method or constructor invocations. 726 out of 1,052 F-Droid apps
(69%) use intents with extra data, and each app that uses intents with extra data has on average
24 calls to putExtra or getExtra. 254 out of 1,052 F-Droid apps (24%) use both reflective calls
and intents with extra data. These numbers support our motivation to pursue static analysis of
reflection and intents.

We aimed to select subject apps of typical complexity. We excluded excessively simple
apps: those with less than 2,000 LOC or that did not have at least one call to putExtra, getExtra,
and Method.invoke. We also excluded excessively complex apps: those with more than 15,000
LOC or that used more than five Android permissions, which is the average number of permis-
sions used by an F-Droid app. Overall, 40 apps satisfied our requirements, and we randomly
sampled 10 apps, which are listed in Table 5.1. Each of the 10 apps contains on average 5,261
LOC, 3 reflective method or constructor invocations,2 and 37 calls to putExtra or getExtra.

1Non-comment, non-blank lines of code, as reported by David A. Wheeler’s SLOCCount. See http://www.
dwheeler.com/sloccount/.

2This is smaller than the F-Droid average: most uses of reflection in F-Droid appear in a few huge apps (>500

http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

5.1. SUBJECT PROGRAMS AND DOWNSTREAM ANALYSIS 36

Table 5.1: Selected subject apps from the F-Droid repository. The number of reflective invocatons
is given for Methods and Constructors, and intent uses count the number of putExtra and getExtra

calls. The last three columns show the annotation overhead for the technique IFC+INT+RR. The
column IFC shows the number of @Source and @Sink information flow annotations. The column refl

shows the number of @MethodVal and @ClassBound annotations (no @ClassVal annotations were
required). The column int shows the number of @Intent annotations.

App LOC Reflection Intent uses # of annotations
meth cons put get IFC refl int

AbstractArt 4,488 1 0 1 1 317 0 1
arXiv 3,643 14 0 70 17 130 0 13
Bluez IME 4,523 4 2 124 42 285 0 16
ComicsReader 6.612 6 0 1 2 381 1 6
MultiPicture 7,496 1 0 17 12 511 0 17
PrimitiveFTP 4,026 2 0 1 1 321 0 1
RemoteKeyboard 5,723 1 0 3 4 580 0 4
SuperGenPass 2,125 1 0 15 14 181 0 8
VimTouch 8,881 1 0 7 6 2,424 2 7
VLCRemote 5,097 1 0 12 21 453 0 22

Total 52,614 32 2 251 120 5,583 3 95

Our evaluation uses three downstream analyses. Sections 5.1.1–5.1.2 discuss the
Information Flow Checker (IFC); Section 5.1.3 briefly discusses the other two case studies. IFC
is a type system and corresponding type-checker that prevents unintended leakage of sensitive
data from an application (ERNST et al., 2014). Given a program and an information-flow policy
(a high-level specification of information flow, expressed as source–sink pairs), IFC guarantees
that no other information flows occur in the program. IFC is sound: it issues a warning if the
information flow type of any variable or expression does not appear in the information-flow
policy. IFC is also conservative: if it issues a warning, then the program might or might not
misbehave at run time.

We evaluated the effectiveness of our techniques by answering the following two research
questions.

5.1.1 How much do our reflection and intent analyses improve the precision of IFC?

We measured the precision and recall of IFC’s static estimate of possible information
flows. To compute precision and recall, we manually determined the ground truth: the actual
number of flows that could occur at run time in an app. This enormous manual effort is the
reason we did not run the experiments on all 1,052 F-Droid apps. It would be easy to run our
analyses on all the apps, but doing so would not indicate whether our analyses were useful.
Precision is the number of ground-truth flows, divided by the total number of flows reported by
the analysis. Recall is the number of real flows reported by the analysis, divided by the total
number of ground-truth flows. We confirmed that IFC has 100% recall both with and without the

kLoC) that contain hundreds of reflective calls.

5.1. SUBJECT PROGRAMS AND DOWNSTREAM ANALYSIS 37

reflection and intent analyses, i.e., IFC is sound and misses no real flows.
To evaluate this research question, we compared the precision of the following techniques.
IFC-unsound makes optimistic assumptions about every reflective and intent-related

call — it assumes that reflective and intent-related calls do not trigger new information flows. Its
recall is only 95% — it unsoundly misses 5% of the information flows in the apps, which makes
it unacceptable for use in the security domain. Its precision was 100%, for this set of apps.

IFC treats reflection and intents conservatively. Data in an intent may be from any source
and may flow to any sink. Data used as an argument to a reflective invocation may flow to any
sink, and data returned from a reflective invocation may be from any source. In the absence of
reflection and intents, IFC is an effective analysis with high precision, as shown by IFC-unsound.
However, for our subject programs, which use reflection and intents, IFC’s precision is just
0.24%.

IFC+Reflection Resolution (RR) augments IFC with reflection resolution and can there-
fore treat data that is used in reflection precisely when the reflection can be resolved. Data in
intents, however, is treated conservatively. Since all apps send intents, which may trigger the
use of any permissions, reflection resolution alone does not help; the average precision remains
0.24%. In a (non-Android) program that does not use intents, IFC+RR would outperform IFC.

IFC+Intent Analysis (INT) augments IFC with intent analysis. It reports precise infor-
mation flows for method calls involving intents. Differently from intent invocations, reflective
calls are only allowed to use permissions listed in the app’s manifest. Therefore, data passed to a
reflective invocation is treated as flowing to any sink the app may access. Similarly, data returned
from a reflective invocation is treated as if it could have come from all sources listed in the
manifest. However, since Epicc generates CCP and unsoundly assumes that reflective calls do
not invoke sendIntent methods, IFC+INT must issue a warning any time a method is reflectively
invoked. For each such warning, the developer must manually verify that the reflective method
does not invoke sendIntent. The average precision is 53%.

IFC+INT+RR augments IFC with both reflection resolution and intent analysis. When
reflection resolution cannot resolve a method or when it resolves a method to sendIntent, it still
issues a warning. The precision is 100% for each of the 10 randomly-chosen apps, but might be
smaller for other apps.

Figure 5.1 plots the precision for the sound techniques.3 Being the most basic technique,
IFC has the worst precision among all approaches. At the other extreme, IFC+INT+RR has
the highest precision for all cases. This occurs because this technique provides custom support
for both reflective calls and intents. Such high precision is obtained at the expense of adding
annotations in the code. Section 5.1.2 discusses the overhead associated with the annotation
process.

For AbstractArt, MultiPicture, PrimitiveFTP, and RemoteKeyboard IFC+INT has perfect

3All sound techniques achieve 100% recall.

5.1. SUBJECT PROGRAMS AND DOWNSTREAM ANALYSIS 38

Figure 5.1: Comparison of precision among techniques.
P

re
ci

si
o

n
 (

%
)

Abstra
ctArt

arXiv

BluezIM
E

ComicsReader

MultiP
icture

Prim
itiv

eFTP

RemoteKeyboard

SuperGenPass

VimTouch

VLCRemote0

20

40

60

80

100

IFC, IFC+RR IFC+INT IFC+RR+INT

Source: Made by the authors.

precision because these apps use reflection for control flow but not data flow — data returned
from reflective calls is not sent to a sensitive sink and no sensitive information is passed as an
argument to a reflective method call. For the other 6 apps, IFC+INT is more precise than IFC, but
still reports flows that cannot happen at run time. For these apps, the reflection resolver is needed
to reach 100% precision as reported by IFC+INT+RR. The results confirm that both techniques,
reflection resolution and intent analysis, are necessary and that they are complementary and
synergistic.

The 10 apps in Figure 5.1 use both reflection and intents with extras, like 24% of all apps
in the F-Droid repository. For apps that use just one of the features, IFC+RR or IFC+INT would
achieve the same precision as IFC+INT+RR.

All uses of reflection could be resolved except for one in the RemoteKeyboard app. For
that case, the reflection resolver could determine the name of the invoked method (createShell)
and the number of parameters (0), but the class name is obtained from preferences that the user
can edit at run time. However, this method is not sendIntent, its returned object is not sent to any
sink, and it takes no parameters; therefore, treating that call conservatively did not decrease the
precision of IFC+INT+RR.

For the 10 apps IFC-unsound takes on average 4.5 minutes to run. IFC+RR+INT takes
on average 6.7 minutes to run.

We attempted to compare our approach with IccTA (LI et al., 2015). IccTA crashed when
run on 1 of the 10 apps. For the other 9 apps, IccTA outputted some static analysis data, but no
data regarding information flows. We contacted the IccTA’s first author, Li Li, about these issues

5.1. SUBJECT PROGRAMS AND DOWNSTREAM ANALYSIS 39

but didn’t hear back from him.

5.1.2 What is the annotation overhead for programmers?

Developers must write source code annotations in order to use our analyses. This is not
extra work, since the alternative would be to spend time reviewing false-positive warnings.

Table 5.1 shows the annotations required to type-check each app. This table also includes
the number of manual annotations required by IFC. These annotations are required by IFC
regardless if our analyses are being used. Less than 2% as many annotations are required due
to reflection and intents, compared to annotations related to information flow (the downstream
analysis). If the programmer omits an annotation, or writes one that is inconsistent with the source
code or with other annotations, then the analyses issue user-friendly warnings that pinpoint and
explain the type inconsistency. The average time to add each annotation related to our analyses
was roughly one minute. Thus, the annotation overhead is small in absolute and relative terms,
especially considering the significant improvements in precision due to reflection and intent
analysis.

Part of the need for annotations is because the downstream analysis is a modular analysis
— a type-checker that verifies programmer-written types. If the downstream analysis were a
whole-program analysis such as pointer analysis, type inference, or abstract interpretation, these
would not be necessary. Other annotations are needed to express facts that no static analysis can
infer; in these cases, human intervention is unavoidable.

5.1.3 Precision improvements for other downstream analyses

We demonstrated the generality of our approach by integrating our reflection and intent
analyses with two other downstream analyses. The Nullness Checker (PAPI et al., 2008) verifies
the absence of null pointer dereferences: if the Nullness Checker issues no errors for a given
program, then that program is guaranteed to not throw a NullPointerException at runtime. The
Interning Checker (PAPI et al., 2008) verifies equality tests: if the Interning Checker issues no
errors for a given program, then all reference equality tests (i.e., ==) are over canonicalized data,
and thus are consistent with .equals().

These analyses suffer false positives due to reflection and intents. Consider the Nullness
Checker. Its library annotations must mark the return type of Method.invoke as @Nullable, for
soundness. The reflection analysis can determine that some calls to invoke return a non-null
value, and thus it eliminates false positives in the nullness analysis.

Reflection resolution improved the precision of the Nullness Checker for 3 of the 10 apps.
There were no reference equality tests over values returned by a reflective method invocation,
and therefore reflection resolution did not improve the precision of the Interning Checker for
these 10 apps.

The intent analysis improved the precision of the Interning Checker for 2 of the 10 apps.

5.2. FORMAL ANALYSIS 40

The intent analysis does not improve the precision of the Nullness Checker for any app, because
getExtra can return null if a key does not exist in an intent map. The intent type system does
not guarantee the existence of a key in an intent map — only that if it exists, it has a certain type.

5.2 Formal analysis

Our implementation works on Java code: it does not analyze native calls. For efficiency,
it relies on trusted annotations for system libraries. These are standard limitations of a static anal-
ysis. Section 4.1 notes other limitations regarding the estimation of component communication
patterns.

Modulo these limitations, our analysis is sound. That is, if a program type-checks, then
the type of any expression is a sound estimate of its possible run-time values.

For reflection, this means that the value for a Class or Method expression is contained
within the set of possible values in its type, and likewise for array lengths.

For intents, this means that if an expression has a type with an intent key–type pair, then
at run time the expression’s value is an intent whose extra data maps the key to a value of that
type, or the key does not appear in the map.

Equally importantly, the resolution preserves any soundness property for a downstream
analysis. If the downstream analysis is sound when using the conservative library annotations,
then it remains sound when using more precise summaries supplied by the reflection and intent
resolvers.

It is possible to state formal type-correctness, progress, and preservation theorems for
our type systems. The theorems are standard and their proofs would be straightforward.

5.3 Threats to validity

Our system is modular, except that a whole-program analysis computes inter-component
communication. We assume that text/XML files don’t change from analysis time to execution
time. Aside from that we have the following threats to validity:

� Experiments. We manually determined the ground truth of information flows for
each app. This enormous manual effort is the reason we did not run the experiments
on all 1,052 F-Droid apps. It would be easy to run our analyses on all the apps, but
doing so would not indicate whether our analyses were useful.

� Native calls. Our analyses assume that Android apps use no native calls, a standard
limitation shared by Epicc as well.

� Manual annotations. We tried to reduce the number of manual annotations required
per app to a minimum — one manual annotation required per 2kLOC— but this
overhead still exists and we cannot say that our analysis is fully automatic.

414141

6
Evaluation of type inference

As shown in Section 5.1.2, programmers have to write very few annotations to aid the
reflection and intent analysis. This section explains why, by evaluating our type inference rules.

6.1 Reflection resolution

In addition to the 10 subject apps of Section 5.1, we arbitrarily selected 25 apps from
F-Droid that use reflection. Using the entire set of 35 apps, we evaluated the reflection resolution
by answering the following three research questions.

6.1.1 How is reflection used in practice?

The 35 apps contain 142 invocations of reflective methods or constructors. 81% are
used to provide backward compatibility, 6% access a non-public API, and 13% are for other use
cases.

6.1.2 How often can reflection be resolved at compile time?

Our reflection resolution resolved 93% of instances of reflective method or constructor
invocations. It failed on the other 7% because the reflectively invoked method or constructor
cannot be determined statically by any analysis. As an example, the RemoteKeyboard app uses
reflection for extensibility and duck typing: the user can configure the class name for a shell
implementation, and the app reflectively invokes a factory method on this class. Moreover, these
shell implementations do not have a common interface that defines the factory method, rendering
static reflection resolution impracticable.

6.1.3 How effective is type inference for reflection resolution?

To enable modular reflection resolution, a developer may have to write type annotations
in a program. We evaluated the effectiveness of our type inference (see Section 3.1.2) that
reduces the annotation burden. Specifically, we determined how many instances of reflection

6.2. INTENT TYPE INFERENCE 42

can be resolved without any developer-written annotation and whether the remaining instances
require stronger inference or developer-written annotations.

For 52% of reflective invocations, our intra-procedural type inference (Section 3.1.2)
enabled fully automated reflection resolution. This means that our type inference determined the
exact method that is reflectively invoked without requiring a single annotation.

For 41% of reflective invocations, our inter-procedural, intra-class type inference deter-
mined the exact method that is reflectively invoked. A common example is the initialization of a
private field of type Class or Method. These fields are only assigned once but are initialized within
a method that provides exception handling. Another example is the use of a helper method that
manipulates Strings and returns an object of type Method that is used within the class.

We also implemented an inter-class inference, but it did not improve the results for the
selected apps, beyond the intra-class analysis results.

The other 7% of reflection invocations cannot be resolved by any static analysis (for an
example, see Section 6.1.2). Code inspection and developer intervention are required in those
cases.

Table 5.1 gives the number of developer-written annotations that were required. Re-
call that all annotations in an app are checked, not trusted. Thus, use of developer-supplied
annotations does not compromise the soundness of our approach.

6.1.4 Bug detection

Our reflection resolver revealed a bug in the arXiv app. The reflection resolver reported
an unresolvable method even though it precisely inferred the class name, method name, and the
number of parameters. The bug was a misspelled method name, and it prevented a menu from
being updated. A menu was supposed to be updated every time a certain button was pressed.
This bug prevented such update, since the name of the method that performs the update was
misspelled. The developer confirmed the bug via email.

6.2 Intent type inference

Section 4.3 introduced rules to refine the type of an intent, which reduce the number
of developer-written annotations required in a program. This section evaluates how effective
they are in practice. We only implemented type refinement for sent intents. A limitation of our
implementation is that declarations of onReceive methods must have a precise intent type, so
sendIntent calls can be type-checked against these declarations. Therefore, we evaluated type
refinement of sent intents (68% of all intents). We defer inferring intent types on declarations
of onReceive methods to future work. We considered only intents with extras (51% of all sent
intents), as an empty intent requires no developer-written annotation.

To measure the effectiveness of the intent type inference (Section 4.3), we used a similar
approach as when measuring the reflection resolution type inference: we determined the number

6.2. INTENT TYPE INFERENCE 43

of sent intents with extras that required no annotations and compared it with the overall number
of sent intents with extras.

For 67% of the cases, our intra-procedural inference determined that the sent intent had
no aliases and precisely inferred the type of the sent intent. For those cases, developer-written
annotations are not necessary.

For 21% of the cases, our inter-procedural inference correctly infers the type of the sent
intent.

For 12% of the cases, the sent intent was stored in a field. Our alias analysis (Section 4.3)
treated such intents as possibly-aliased, so the intent type cannot be refined using the putExtra

rule. Manual annotations are required for these cases.
The 10 apps require a total of 7 developer-written annotations for sent intents with extras.

Without intent type inference, the apps would have needed an additional 52 developer-written
annotations in order to type-check.1 This result shows that intent type inference greatly reduces
the annotation burden.

188% 6= 52/(7+52) because some developer-written annotations solve multiple cases where intent type inference
does not succeed.

444444

7
Related work

7.1 Reflection

The most common approach for improving precision of a static analysis in the presence
of reflection is profiling from an observed set of executions, assuming that the observed program
exercises all possible behaviors. Livshits (LIVSHITS; WHALEY; LAM, 2005) requires user
annotations or dynamic information from casts to estimate reflection targets as part of static call
graph construction. Tatsubori (TATSUBORI, 2004) earlier built a system with similar qualities.
TamiFlex (BODDEN et al., 2011) performs unsound dynamic analysis of reflection and dynamic
class loading. It replaces uses of reflection by standard method calls, and supplies the modified
call graphs to existing static-analysis tools. In other words, an unsound analysis can be built
on top of TamiFlex, just as a sound analysis can be built on top our our work. An example is
that Averroes (ALI; LHOTáK, 2013) can use TamiFlex when building call graphs, to unsoundly
improve precision over its conservative defaults. All of these approaches that use dynamic
information are unsound. By contrast, our approach is sound: it makes conservative assumptions
about any occurrence of reflection that it cannot handle.

In some special cases, reflection can be resolved based on assumptions about the run-time
execution context. For example, Zhang’s GUI error detection tool (ZHANG; LÜ; ERNST, 2012)
builds reflection-aware call graphs for Android applications, enabling it to find more GUI errors
than without. However, it only handles a particular scenario — it converts reflective calls into
explicit constructor invocations based on the contents of configuration files at compile time. This
approach is sound if the same configuration files will be installed at run time as at analysis time.
This is the same assumption made by Epicc (OCTEAU et al., 2013) to handle inter-component
communication, which our system uses.

A few static analyses partially handle reflection. Javari (TSCHANTZ; ERNST, 2005)
introduces a new API to invoke reflection that does a single dynamic check of the method
signature rather than of the object. Programs using that API can be soundly type-checked. Our
approach could eliminate that special API and the run-time check. Li et al.(LI et al., 2014)
developed an unsound self-inferencing reflection resolution to improve the precision of a pointer
analysis for Java programs. They additionally analyzed how reflection is used in open-source

7.2. ANDROID 45

Java applications. In contrast, our approach is sound and our evaluation focuses on the use of
reflection in Android apps.

7.2 Android

We evaluated our reflection and intent analyses in the context of detecting and preventing
malicious behavior in mobile apps (FUCHS; CHAUDHURI; FOSTER, 2009; ENCK et al., 2010;
HORNYACK et al., 2011; EGELE et al., 2011; GRACE et al., 2012; CHIN et al., 2011; GIBLER
et al., 2012; MANN; STAROSTIN, 2012; GRACE et al., 2012; ZHOU et al., 2012; YAN; YIN,
2012; XU; SAÏDI; ANDERSON, 2012). We discuss some closely related work.

SCanDroid (FUCHS; CHAUDHURI; FOSTER, 2009) applies data flow analysis to
check security properties in Android apps. It analyzes intra-component and inter-component
information flows for vulnerabilities. The analysis cannot handle interactions between apps
and provides limited support to handle intent extras, making no distinction between the flows
of permissions that result from the entries of an intent. Several other techniques came after
it (EGELE et al., 2011; GRACE et al., 2012; CHIN et al., 2011; GIBLER et al., 2012; MANN;
STAROSTIN, 2012; GRACE et al., 2012; ZHOU et al., 2012; ARZT et al., 2014), improving
precision and recall of reported warnings. However, to the best of our knowledge, no later
technique has focused on handling the important aspect of data encapsulation in intents. Our
technique is complementary to push-button static analysis techniques such as SCanDroid: our
analysis requires a small number of annotations from the developer but requires less examination
of false positives and provides stronger guarantees. It preserves soundness, achieves good
precision, and remains easy to use.

FlowDroid (ARZT et al., 2014) is a technique that performs taint analysis on Android
apps with the goal of finding security vulnerabilities. FlowDroid does not support Android’s
implicit intents nor reflection. In experiments, the tool achieved 83% precision and 93% recall
for apps containing different types of vulnerabilities.

Our implementation currently relies on Epicc (OCTEAU et al., 2013) to approximate the
set of component pairs that actually communicate. See Section 4.1 for a discussion.

Our implementation has been publicly available since December 12, 2013. In forthcom-
ing work, IccTA (LI et al., 2015) adopts a similar approach that performs static taint analysis
in the presence of inter-component communication. IccTA’s reflection resolution is much more
limited than ours: it only processes string constants. Although IccTA is applied to taint analysis,
IccTA is neither sound nor complete; by contrast to our work, it provides no security guarantees
to its user and is not applicable in the context of high-assurance app stores (ERNST et al., 2014).
Even if the analysis flaws were addressed, IccTA would remain vulnerable because its taint
model uses an insufficient set of sensitive sources and sinks. Another difference is the evaluation:
we measured the precision and recall of our information-flow analysis on real Android apps and
achieved 100% precision and recall, but IccTA was evaluated on 22 examples hand-crafted by its

7.3. OTHER 46

authors, where it achieved 96% precision and recall.

7.3 Other

Xiao et al. (XIAO et al., 2012) proposed a semi-automatic approach to analyze TouchDe-
velop mobile app scripts for privacy. Their workflow is similar to ours: users annotate APIs and
code, and the analyzer uses a dataflow analysis to check conformance of inferred flows against a
specification of the app. However, their static analysis does not handle implicit control flows.

Google’s Android NDK (NDK, 2008) allows parts of an app to be implemented using
native-code languages such as C and C++. Our toolset does no analysis of native code: summaries
for native methods are trusted. The Checker Framework, on which our implementation is built,
treats unannotated methods conservatively.

Our work has some similarities to call graph construction in object-oriented programs (TIP;
PALSBERG, 2000; LE; LHOTÁK; HENDREN, 2005). Dynamic dispatching can be viewed as
an implicit control flow mechanism, much as Java reflection and Android intents can. Most call
graph construction algorithms do whole-program pointer analysis. Our approach is modular but
relies on user annotations. A whole-program type inference or pointer analysis could eliminate
the need for programmers to write annotations.

474747

8
Conclusions

We have presented novel analyses for two programming paradigms — Java reflection
and Android intents — that are useful to programmers but challenging for static analysis. Our
analyses statically resolve reflection targets and intent payloads. Though sound and conservative,
they achieve high precision in practice, as confirmed by experiments on real-world Android apps.
Our experiments also confirmed that the overhead to use our analyses is small in relative and
absolute terms. Our implementations are publicly available as open source (FRAMEWORK,
2007), and they can be integrated with an arbitrary downstream analysis to improve its precision.

As future work, we would like to implement inference for intent types on declarations of
onReceive methods. This would greatly reduce the number of manual annotations required by
the Intent analysis. We would also like to integrate our approach with IC3, Epicc’s successor, in
order to achieve an even better precision. We would also like to perform experiments on a larger
set of apps, and with others downstream analyses.

484848
References

ALI, K.; LHOTáK, O. Averroes: whole-program analysis without the whole program. In:
ECOOP 2013 — OBJECT-ORIENTED PROGRAMMING, 27TH EUROPEAN
CONFERENCE, Montpellier, France. Proceedings. . . [S.l.: s.n.], 2013. p.378–400.

APKParser. Available in: <https://code.google.com/p/xml-apk-parser/>. Accessed on:
20 Mar. 2014.

ARZT, S. et al. FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In: PLDI 2014, PROCEEDINGS OF THE ACM SIGPLAN 2014
CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION,
Edinburgh, UK. Proceedings. . . [S.l.: s.n.], 2014. p.259–269.

BLOCH, J. Effective Java Programming Language Guide. Boston, MA: Addison Wesley,
2001.

BODDEN, E. et al. Taming Reflection: aiding static analysis in the presence of reflection and
custom class loaders. In: ICSE’11, PROCEEDINGS OF THE 33RD INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, Waikiki, Hawaii, USA. Proceedings. . .
[S.l.: s.n.], 2011. p.241–250.

CHIN, E. et al. Analyzing inter-application communication in Android. In: INTERNATIONAL
CONFERENCE ON MOBILE SYSTEMS, APPLICATIONS, AND SERVICES, 9., Bethesda,
MD, USA. Proceedings. . . [S.l.: s.n.], 2011. p.239–252.

DIETL, W. et al. Building and using pluggable type-checkers. In: ICSE’11, PROCEEDINGS
OF THE 33RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING,
Waikiki, Hawaii, USA. Proceedings. . . [S.l.: s.n.], 2011. p.681–690.

EGELE, M. et al. PiOS: detecting privacy leaks in iOS applications. In: ANNUAL
SYMPOSIUM ON NETWORK AND DISTRIBUTED SYSTEM SECURITY, 18., San Diego,
CA, USA. Proceedings. . . [S.l.: s.n.], 2011.

ENCK, W. et al. TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. In: USENIX 9TH SYMPOSIUM ON OS DESIGN AND
IMPLEMENTATION, Vancouver, BC, Canada. Proceedings. . . [S.l.: s.n.], 2010.

ERNST, M. D. et al. Collaborative verification of information flow for a high-assurance app
store. In: ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY
(CCS), 21., Scottsdale, AZ, USA. Proceedings. . . [S.l.: s.n.], 2014. p.1092–1104.

F-DROID. F-Droid: free and open source android app repository. Available in:
<http://f-droid.org>. Accessed on: 20 Mar. 2015.

FRAMEWORK, C. Checker Framework website. Available in:
<http://types.cs.washington.edu/checker-framework/>. Accessed on: 20 Mar. 2015.

FUCHS, A. P.; CHAUDHURI, A.; FOSTER, J. S. SCanDroid: automated security certification
of Android applications. [S.l.]: University of Maryland, 2009. (CS-TR-4991).

https://code.google.com/p/xml-apk-parser/
http://f-droid.org
http://types.cs.washington.edu/checker-framework/

REFERENCES 49

GIBLER, C. et al. AndroidLeaks: automatically detecting potential privacy leaks in Android
applications on a large scale. In: INTERNATIONAL CONFERENCE ON TRUST AND
TRUSTWORTHY COMPUTING, 5., Vienna, Austria. Proceedings. . . [S.l.: s.n.], 2012.
p.291–307.

GOOGLE. Android Fundamentals. Available in:
<http://developer.android.com/guide/components/fundamentals.html>. Accessed
on: 20 Mar. 2015.

GRACE, M. et al. Systematic detection of capability leaks in stock Android smartphones. In:
ANNUAL SYMPOSIUM ON NETWORK AND DISTRIBUTED SYSTEM SECURITY, 18.,
San Diego, CA, USA. Proceedings. . . [S.l.: s.n.], 2012.

GRACE, M. et al. RiskRanker: scalable and accurate zero-day Android malware detection. In:
INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS, APPLICATIONS, AND
SERVICES, 10., Low Wood Bay, UK. Proceedings. . . [S.l.: s.n.], 2012. p.281–294.

HORNYACK, P. et al. These aren’t the droids you’re looking for: retrofitting Android to protect
data from imperious applications. In: ACM CONFERENCE ON COMPUTER AND
COMMUNICATIONS SECURITY (CCS), 18., Chicago, IL, USA. Proceedings. . . [S.l.: s.n.],
2011. p.639–652.

KIM, C. H. P. et al. SPLat: lightweight dynamic analysis for reducing combinatorics in testing
configurable systems. In: JOINT MEETING OF THE EUROPEAN SOFTWARE
ENGINEERING CONFERENCE AND THE ACM SIGSOFT SYMPOSIUM ON THE
FOUNDATIONS OF SOFTWARE ENGINEERING, ESEC/FSE’13, SAINT PETERSBURG,
RUSSIAN FEDERATION, AUGUST 18-26, 2013. Proceedings. . . [S.l.: s.n.], 2013.
p.257–267.

LE, A.; LHOTÁK, O.; HENDREN, L. Using inter-procedural side-effect information in JIT
optimizations. In: COMPILER CONSTRUCTION: 14TH INTERNATIONAL CONFERENCE,
CC 2005, Edinburgh, Scotland. Proceedings. . . [S.l.: s.n.], 2005. p.287–304.

LI, L. et al. IccTA: detecting inter-component privacy leaks in android apps. In: IEEE/ACM
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ICSE 2015,
FLORENCE, ITALY, MAY 16-24, 2015, VOLUME 1, 37. Proceedings. . . IEEE, 2015.
p.280–291.

LI, Y. et al. Self-inferencing Reflection Resolution for Java. In: ECOOP 2014 —
OBJECT-ORIENTED PROGRAMMING, 28TH EUROPEAN CONFERENCE, Uppsala,
Sweden. Proceedings. . . [S.l.: s.n.], 2014. p.27–53.

LIVSHITS, B.; WHALEY, J.; LAM, M. S. Reflection analysis for Java. In: THIRD ASIAN
SYMPOSIUM ON PROGRAMMING LANGUAGES AND SYSTEMS, Tsukuba, Japan.
Proceedings. . . [S.l.: s.n.], 2005. p.139–160.

MANN, C.; STAROSTIN, A. A framework for static detection of privacy leaks in Android
applications. In: ACM SYMPOSIUM ON APPLIED COMPUTING, 2012., Trento, Italy.
Proceedings. . . [S.l.: s.n.], 2012. p.1457–1462.

NDK, A. Android NDK. Available in:
<http://developer.android.com/tools/sdk/ndk/index.html/>. Accessed on: 20 Mar.
2015.

http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/tools/sdk/ndk/index.html/

REFERENCES 50

OCTEAU, D. et al. Effective inter-component communication mapping in Android with Epicc:
an essential step towards holistic security analysis. In: USENIX SECURITY SYMPOSIUM, 22.,
Washington, DC, USA. Proceedings. . . [S.l.: s.n.], 2013. p.543–558.

OCTEAU, D. et al. Composite constant propagation: application to Android inter-component
communication analysis. In: ICSE’15, PROCEEDINGS OF THE 37TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, Florance, Italy. Proceedings. . . [S.l.: s.n.],
2015.

OCTEAU, D.; JHA, S.; MCDANIEL, P. Retargeting Android applications to Java bytecode. In:
FSE 2012, PROCEEDINGS OF THE ACM SIGSOFT 20TH SYMPOSIUM ON THE
FOUNDATIONS OF SOFTWARE ENGINEERING, Cary, NC, USA. Proceedings. . .
[S.l.: s.n.], 2012. p.6:1–6:11.

PAPI, M. M. et al. Practical pluggable types for Java. In: ISSTA 2008, PROCEEDINGS OF
THE 2008 INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS,
Seattle, WA, USA. Proceedings. . . [S.l.: s.n.], 2008. p.201–212.

SMITH, B. C. Procedural Reflection in Programming Languages. Cambridge, MA: MIT
Laboratory for Computer Science, 1982. (MIT-LCS-TR-272).

TATSUBORI, M. Living with Reflection: towards coexistence of program transformation by
middleware and reflection in Java applications. In: JSSST WORKSHOP ON PROGRAMMING
AND PROGRAMMING LANGUAGES (PPL2004), 6., Gamagohri, Aichi, Japan.
Proceedings. . . [S.l.: s.n.], 2004.

TIP, F.; PALSBERG, J. Scalable propagation-based call graph construction algorithms. In:
OBJECT-ORIENTED PROGRAMMING SYSTEMS, LANGUAGES, AND APPLICATIONS
(OOPSLA 2000), Minneapolis, MN, USA. Proceedings. . . [S.l.: s.n.], 2000. p.281–293.

TSCHANTZ, M. S.; ERNST, M. D. Javari: adding reference immutability to Java. In:
OBJECT-ORIENTED PROGRAMMING SYSTEMS, LANGUAGES, AND APPLICATIONS
(OOPSLA 2005), San Diego, CA, USA. Proceedings. . . [S.l.: s.n.], 2005. p.211–230.

VOLPANO, D. M.; SMITH, G. A type-based approach to program security. In: TAPSOFT ’97:
THEORY AND PRACTICE OF SOFTWARE DEVELOPMENT, 7TH INTERNATIONAL
JOINT CONFERENCE CAAP/FASE, Lille, France. Proceedings. . . [S.l.: s.n.], 1997.
p.607–621.

XIAO, X. et al. User-aware privacy control via extended static-information-flow analysis. In:
ASE 2012: PROCEEDINGS OF THE 27TH ANNUAL INTERNATIONAL CONFERENCE
ON AUTOMATED SOFTWARE ENGINEERING, Essen, Germany. Proceedings. . . [S.l.: s.n.],
2012. p.80–89.

XU, R.; SAÏDI, H.; ANDERSON, R. Aurasium: practical policy enforcement for Android
applications. In: USENIX SECURITY SYMPOSIUM, 21., Bellevue, WA, USA. Proceedings. . .
[S.l.: s.n.], 2012.

YAN, L. K.; YIN, H. DroidScope: seamlessly reconstructing the OS and Dalvik semantic views
for dynamic Android malware analysis. In: USENIX SECURITY SYMPOSIUM, 21., Bellevue,
WA, USA. Proceedings. . . [S.l.: s.n.], 2012.

REFERENCES 51

ZHANG, S.; LÜ, H.; ERNST, M. D. Finding errors in multithreaded GUI applications. In:
ISSTA 2012, PROCEEDINGS OF THE 2012 INTERNATIONAL SYMPOSIUM ON
SOFTWARE TESTING AND ANALYSIS, Minneapolis, MN, USA. Proceedings. . . [S.l.: s.n.],
2012. p.243–253.

ZHOU, Y. et al. Hey, you, get off of my market: detecting malicious apps in official and
alternative Android markets. In: ANNUAL SYMPOSIUM ON NETWORK AND
DISTRIBUTED SYSTEM SECURITY, 18., San Diego, CA, USA. Proceedings. . . [S.l.: s.n.],
2012.

	Introduction
	Problem Overview
	Solution Overview
	Contribution
	History of Publications
	Outline

	Background and Motivation
	Android
	Component communication

	Reflection
	Checker Framework
	Motivating examples
	Reflection
	Android intents

	Reflection resolution
	Reflection type system
	Type checking
	Type inference
	Estimates for values of expressions
	Inference of @ClassVal and @ClassBound
	Inference of @MethodVal
	Inference of field types
	Method signature inference

	Reflection resolver
	Example

	Android intent analysis
	Component communication patterns
	Intent type system
	Intent types
	Type system rules
	Subtyping (ST)
	Copyable (CP)
	Declarations of onReceive (OR)
	Calls to sendIntent (SI)
	Calls to putExtra (PE)
	Calls to getExtra (GE)

	Type inference
	Example

	Improving a downstream analysis
	Subject programs and downstream analysis
	How much do our reflection and intent analyses improve the precision of IFC?
	What is the annotation overhead for programmers?
	Precision improvements for other downstream analyses

	Formal analysis
	Threats to validity

	Evaluation of type inference
	Reflection resolution
	How is reflection used in practice?
	How often can reflection be resolved at compile time?
	How effective is type inference for reflection resolution?
	Bug detection

	Intent type inference

	Related work
	Reflection
	Android
	Other

	Conclusions
	References

