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The aim of this thesis is to present a finite
difference method, for analysing coupled shear walls with
constant or variable cross-section, resting on rigid or elas-
tic foundations and with elastic or inelastic connecting
beams. It is also intended to ccmpare the finite difference
method with the continuous connection method, which can be
deve]oped‘using Rosman's approach or Newmark's concept for
analysing composite beams or the energy approach, and with
the finite element method. An analysis of couplied shear

walls with multiple piers is presented,
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CHAPTER 1
INTRODUCTION

1.1 Generalb

~In multistorey buildings, particﬁ]ar]y of reinforced
concrete, shear walls are one of the more economical means of
providing lateral stability against wind or earthquake loading.
Such walls are often pierced by vertical bands of openings
for doors, windows and corridors, yielding highly redundant
structures from the point of view of stress analysis.

Shear walls with uniform cross-section 6veh the full
height of the building have been treated by assuming that the
uniformly spaced discrete set of’connecting beams may be re-
placed by an equivalent continuous medium. By assuming
that the cross-beams deflect with a point of contraflexure at
mid-span, but do not deform axially, the behaviour of the
system may be expressed as a single second order differential
equation, ehab]ing a general closed solution of the problem
- to be obtained.

Very often shear walls, pierced by one or more rows
of openings, haye an abrupt change of cross-section at one

or several levels. The horizontal lsading, to which such walls

1



are subjected, may also vary along the height of the
building. This problem has been treated using the continuous
conﬁection method (7, 8, 9)*. Also, coupled shear walls with
elastic foundations have been treated by Coull (13).

The aim of this thesis is to present a finite difference
method, for analysing coupled shear walls with constant or
variable cross-section, resting on rigid or elastic foundations
and with elastic or inelastic connecting beams. It is also
~intended to compare the finite difference method with the
continuous connection method, which can be developed using
Rosman's (6) approach or Newmark's (1) concept for analysing
composite beams or the energy approach, and wfth the finite
element method.

1.2 Object and Scope

The object of this study is to treat tﬁe problem of
coupled shear walls, with constant cross-section and with
variable cross-section resting on rigid or elastic foundations,
by:

1. A continuous solution based on the concept of
- Newmark's (1) solution for composite beams. This yields the
weli-known governing differential equation for coupled shear
walls,

2. A finite difference solution based on the concept of
Stussi's (2, 3) solution for composite beams. The advantage

of this method, over the continuous connection method, is that

*  Number in parantheses refers to entries in the list of
references.



unusual configurations of the coupled shear walls can be
anéiysed. This method treats the coupled shear walls as two
piefs connected together by discrete connecting beams.

3. Using the energy method. A solution of the problem was
. achieved.- The principles of the minimum of the total potentia]
iurnisﬁes all the necessary and sufficient conditions of
equilibrium in the form of differential equations as well as
boundary conditions.

4. The finite element method. ihe coupled shear wall was
approximated as a plane stress boundary value problem and
solved using the finite element method. Different configurations
of moderately high couplied shear walls were treated by the
finite element and the finite difference methods. The ratios
between the héight of the shear walls, the width of the piers
and the span and stiffness of the connecting beams were varied
to study the agreement between the two methods.

An appreximate analysis of coupled shear walls with
multiple piers, assuming that the cross-beams deflect with

a point of contraflexure at mid-span, is presented here,



Notation
A, A, A.], A.2 cross-sectional area of piers
2”1 J 1 and 2 in Zone (j)
d:’ dz, dj]’ dJ.2 depth of piers 1 and 2 in Zone (q)
dy, b, b~ depth, span and width of the
connecting beam
h, h(i)’ hj storey height
Hj height of Zone (j)
H height of the coupled shear wall
1,1, I.], I.2 moments of inertia of piers 1 and
1 2 J J 2 in Zone {(j)
Ys Y vertical displacement between the
two ends of the connecting beams
(slip)
€E , € bottom fiber strain and top fiber
12 strain at the point of contraflexure
€ strain
Ci1s Cio distance between the centroidal
J J axis of piers 1 and 2 and the
point of contraflexure
2, lj distance petween the centroids of
the two p1ers:=cj] + cj2
I, Ab, Ag moment cf inertia, area and re-
P duced cross-sectional area of the
connecting beam
n number of storeys
El, Ez, Ej]’ EJ.2 gﬁgu;us of elasticity of piers 1
g, 9 s 9 shear fTorce intensity in sub-
12 stitute connecting medium
Q, 0 shear force in a connecting beam i



/__ M, M bending moments in the piers

T, T(j)’ T(i) axial force in the piers

; M external bending moment at an

i' arbitrary cross-section

j ¢ '  curvature of the piers
ki modulus of the connecting beams
aH‘ | interaction coefficient

U s U Uiy, Uso extensional deformation for piers
1 2" J 1 and 2 in Zone (j)

vV, V horizontal deformation for Zone (1)
12 ~and Zone (2)
Mo, Qo, No external forces acting at the free

end of a prismatic coupled shear wall

M,Q,N,Q, N external forces acting on Zone (1)
2 2 2 ! 1 and Zone (2) at both ends



CHAPTER 2
PRISMATIC COUPLED SHEAR WALL

2.1 General
A‘similarity was found between the equations governing
the behavidur of coupled shear walls and composite.beams. Two
solutions are presented: |
1) A continuous solution based on Newmark's (1) solution
for composite beams; which yields the same differential equation
as that for the coupled shear walls. |
2) A finite differerce solution based on Stussi's (2, 3)
solution for composite beams. This method yields the same forces
and deformations as the continuous solution for the typica1
shear wall treated by the continuous method. The advantage
" of this method is that it can take into account different
configurations of the shear wall, as will be clear later,
Fig. (2.1) shows the shear wall schemes with single
or double bands of openings. |

2.2 Continuous Solution

2.2.1 Basic Assumptions

1) The upper end beam has one half the cross-section
and one half the moment of inertia of an interior
connecting beam.

2) The connecting beams are repliaced by continuous

elastic lamelila,



|
il g4

4K

S = 1=t +

4.4!.- QN 2 (QV
=

s DDEEEEE d

F L

>

PV

oo rrryryyrrrrr iy r oy o r 1 1 ¥ oy 11 1)

Y

[ AR
o T

YIS WIITF VIV PR

PP IIFT
b) Subg

)

> ¥

D¢
A\

DDDDBDDDDDDDWDM

)

++4b4_ !

-4 DOoOoDooooDooooon
$-+ — N
~ y

’

et am
Aln ol
[yRele]

Lo
g

.*:i ‘:L’U“‘G€ S_-}".‘: Lol

Continucus

7

s}
'

2) Feal Structur:

TIG.

-y



3) The points of contraflexure are assumed to be at
the mid-span of the connecting beams, since the cross-
sections of the pers are much greater than the cross-
sections of the conhecting beams.

4) The values H, b, 2, A, I , A, 1 and I_ are

' 1 1 2 2 P
~constant throughout the whole height H.

5) The two piers have equal curvatures at any section.

2.2.2 Formulation of the Problem for
One Band of Openings

The equilibrium and compatibility conditions can be

written as, Fig. (2.2),

‘ M(x) = Ml + Mz +-T.. (2.1)
h(i) + J €, dx + Y549 =y; ¢ h(i) + J € dx (2.2.1)
h(4) h(4)
i.e. Yig1 = Vi © J (Ex- ez) dx : (2.2.2)
he4)
i.e. dy _ .
a-%- = ex - 82 v (2.2.3)

If the amount of siip {(y) permitted by the connecting
beams is directly proportional to the load transmitted,
i.e. Q = k.y (2.3.1)
also Q = q.h (2.3.2)
where k is the modulus of the connecting besams, the
force required to produce unit displacement between ihe two
ends of the connecting beam.

The displacement (y) can be found as,
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b3 b )
—

Q : (2.3.3)
IZEIp GA

<
"

b
Substitution of Eqs. (2.3.1), (2.3.2) in Eq. (2.3.3) yields

3
y = (Ib + BBy g (2.4.1)
IZEIp GAb : -
Differentiating once gives
3 2
i (2.4.2)
'IZEIp GAb @x
The strains el and ez can be found as
7 ' Mc
G = + - E_l-I_l" (2.5.])
! 1 1 1 1
T Mc _
€ = - A + -E-—z—r—z- ‘2.5.2)‘
2 2 2 2 2 o

The assumpticn of equal curvatures of the two piers

yields
M M M+ M .
1 - ¥ - 12 (2.6.1)
ET " ET1 ET +ET *T
i1 2 2 1 1 e 2 :

Substitution of Eq. (2.1) in Eq. (2.6.1) yields

M M
1 2 M-T2
0 St 55 SR 3% S (2.6.2)
1 2 2 1 1 2 2

Substitution of Eqs. (2.4.2), (2.5.1), (2.5.2), (2.6.2) in

Eq. {2.2.3) yields

— - a T =-R.K{x) (2.

~1

.1)

-
o= [Fp*px ¢ z'r"r‘r'] / [mr‘ gﬁ’] (2.7.2)

11 2 2 i b



1A

hb 5 (2.7.3)

3
B R = 2 171 hb
/ EI +E I 12E1
! 1 1 2 2 p
or .
c k El
, a = _
g B—T EA. ZIEI
_k L
R = LEI
3
k = /[ b + b* ]
]2EIp GAb
TEIl = E 1 + E 1
1 1 2 2
1 = 1 + 1
E_K ElAl E2A2
ET = GIEI + EI.22
1 _ k _EI H2
¢ b OER el

GA

(2.7.4)
(2.7.5)

(2.7.6)

(2.7.7)

(2.7.8)

(2.7.9)

(2.7.10)

Eq. (2.7.1) is the governing differential equation for

a coupled shear wall,

If the external app]ied bending moment,

as

M(x) = + R%i + Qx + M

wx?

o T T s

M(x), is expressed

The solution of the'differential equation. for the

axial forces in the piers and shearing forces in the

connecting medium can be found as

T(x)

c cosh X

q(x)

+ c, sinh x/ + 7— (BX

o

3
.g;; (2.8)
-—--+Qx+M +&§._-g_r;<.

+—5;-(p Fw =Xy (2.9.1)

o H
c /F&s1nh x/é;v c, & cosh x/f—+~§— (px + Q + WX - g%_)

R ]
-

T (2.9.2)



at x

at x

12
The boundary conditions are
0 T=0 : (2.9.3)

H | q=0 (2.9.4)

The internal bending moments of the piers can be

determined from

- M(x) - T(x).q _—
Mi(x) = Ei Ii [ TEl ] i=1,2 (2.10)
where the curvature of the piers is
o(x) = Mx) - T(x).¢ (2.11)

LEI
The deflection can be determined by numerical

integration of the curvature,

2.2.3

Formulation of the Problem for
Two Bands of Opendings

The equilibrium and compatibility conditions are,

Fig. (2.2),

as

M(x) = 2M1 + M2 + T1.2£ (2.12.1)
dy _ ‘
ix °© e €, | (2.12.2)
M =Mz = M - 2T8 (2.12.3)
5111 5212 2E1lx+ E212
The strains can be found as
T MC | | (2.13.1

N +13.1)

1 1 1 1

Mc
e = + 2 2 (2.13.2)

2 E 1
2 2

Hence, the governing differential equation may be found

d?T -

1 - o T = - R M(X) (2.]4.1)

dx?
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where
/ © K 1 242 '
a = 1 ( R t s (2.14.2)
: _k 28 '
R =~ sE— | (2.14.3)
: IEl = 2E I + E I (2.14.4)
11 2 2 , 7

’s

The differential equation has similar form to that
obtained for the coupled shear walls with single band of

openings.

2.3 Finite Difference Solution

2.3.1 Basic Assumptions

1) The two piers deflect equally at all points along
their lengths; they thus have equal curvature at all points.

2) The points of contraflexure in the connecting beams
are assumed to be at midspan.

3) The shear connection between the two piers is
provided by connecting beams placed at discrete points along
the span of the beam,

4) The strain distribution in the two piers is linear
but in general is not continuous across the whole width of the

structure,

2.3.2 Formulation of the problem for
One Band of Openings

Consider a section of the shear wall in the vicinity
.of two connecting beams identified as the i th end i + 1 th
connecting beams. The space between the connecting beams is
identified as the (i) th space of magnitude hijye Fig. (2.3).

The equilibrium and compatibility conditions are:
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i-1 i-1
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i i
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Mo T Mt M) T (2.15.1)
Yi+1 = Y © (81 B sz) dx | (2.15.2)
| "(3)
. . . _ ) .2‘ . .
M G) - M) . M)t To (2.15.3)
Ellz Ezl2 ' IE]
also
Qi =k vy (2.15.4)
The strains e and €, are
T, . M ,.y.C
e =+ (i) _ ai) " (2.16.1)
E1A1 Exlx
T,. M /:y.C
= - (i) 2(1)° "2
€, TR + E ‘ (2.]6.2)
2 2 2 2
The equilibrium of horizontal forces gives
Substitution of Eqs. (2.15.4), (2.17) in Eq. (2.15.2)
yields
Q.. Q. |
LA I S j (e1 - ez) dx (2.18)
ki Ky
(i)
T,. Tis -
(1-]) ( ] + 1 ) T + (1‘}']) = J (
. e e =-¢ ) dx (2.18.1)
(1)
Substitution of Egs. (2.16.1), (2.16.2) in Eq. (2.18.1)
yields
T,. 4 T,:
_.(_.1_:1_), - { R & .,._]___ + "{;(i‘l'h(i)) T(i) ._..(ljl_), =—[ r M dx
k' k. k. ‘ k. v
i i i+l 141 n(i)
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where
e 3
/ ky =1/ 1 : + —3 15 (2.18.3)
12E1 GAb
v o= [ ! — + __&:_](1)
() E.A E A TEI
11 2 2 :
_ EL |
= EiT—EET](i) (2.18.4)
- .._._.Z:I (2.18.5)

Equation (2.18.2) represents a typical equation for
panel length (i). For a coupled shear wall having n panels,
n storéys, there are n such equations resulting in a set of n
simultaneous equations. The n th equation is different.
Assuming a connecting beam at the fixed end denoted as n+l,

equation n for panel (n) will be

Ii_"_-_l)_ - (EL) Tin) * J (e,- e,) dx (2.19.1)
n : n h(n)
or T .
_Lﬁlll - _%_ + w(n)h(n)) T(n) = - \[ z M dx (2.19.2)
| n n h(n)
as Qn+1 =0

Now, the n simultaneous equations are:

(o 4 4 h, ) T + Tlﬁl. J z M dx
T TR, T M) TGY ) T K e

1

T _ T
"E“‘(z) U ) "G *’zi—a‘l‘ T Jf e

LI I ® e @ 0 LI I W ) s 8 v e % % 88 2 L e EIE DD



T T ”
(i-1 1 1 (i+1) _

ha)
Bt - O s v h) Tyt f “ M
n n , h
| ‘ (n)
The boundary conditions Sre '
Flg = O & Quep = O (2.20.1)

This can be written in matrix notation as
[B] {T} = ({A} | (2.20.2)
[B] is a symetric band matrix with half band width

two, these terms are:

N S m R
B T e G M) E B TR
. ] ) 1 ,
B T E B T - ot ) Py
for 1 < i <n '

B =
i(i-1) _F;
= o (e
1
B.,. =
G " R,
all other Bij =0

{T} is a vector whose i th term is T(d)

{A} is a vector whose i th term, A(i),is

A(i) = - J z M dx
"(1)
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Having obtained the axial forces in the piers by
so&ving the n simultaneous equations, the internal bending}
moments in the piers, the shearing force in the connecting
'bpams and the strain distribution can be obtained from Egs.
- (2.15.3), 2.17), (2.16.1),(2.16.2) respectively. The
deflection can be obtained by numerical integration of the

curvature,

2.3.3 Formulation of the Problem for
Two Bands of Openings

Proceeding the same way, as in the formulation of
coupled shear wall with one band of openings, it can be
shown that for panel (i) the finite difference equation

is

T | T,.
R O Yii) Men)? T 1§9ill'= - ([4 M dx

i i i+l i+l
hi)
(2.21)
_ 1 242
Where w(i) = [ ElAl + ):EI ](i) (2.2].])
_ 2% '
z = FF (2.21.2)

This gives n simultaneous equaticens which can be
solved for the axial forces in the piers. The internal forces
and deflections can be determined as before.

2.3.4 Coupled Shear Wall with an "Infinitely"
Rigid Diaphragm at the Tep

This situation arises when two shear walls are
interconnected by an "infinitely" rigid diaphragm at the top
of the structure. In that case the boundary conditions may

be defined as follows:
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a) Because of the presence of an infinitely rigid
d1aphragm at the top of the structure, the topmost beam
cannot deform, i.e. |
at x =0, y =0 | (2.22)
b) At the base, the boundary condition is ‘

at x = H, =0 (2.23)

Yo+l
The n simultaneous finite difference egquations

become,
L EE he )T + 1) = - J z M dx
v T R
(1)
T(h) 1,1 T() . f
o et UL (PO I POLLI ) e S F e
e e e, AU £ Y SN P Y 7S
1) (— + hesy) T zi%ill.= (M dx
K A P COC LR i J ¢
U e, ")
T
1 1.
_L%;_l - (F;_ + w(n) “(n)) T( ) = - J T M dx
P (n)

2.4 Numerical Example

A 20 storey coupled shear wall was solved by the
continuous solution and the finite difference solution., The
properties of the model are the same as those of Rosman (6),
namely, H = 196,9 ft., h = 9,845 ft., Al= A2 = 23.2 sq. ft.,

I =1 =1040 ft.*, I, = 0.625 ft.*, b = 5.254, & = 28,45 ft.,

E = 443000 kips/ft.? and Q2 = 132 kips. Three examples were

solved:



20

f  i) The stiffness of the topmost beam is the same as
thé interior connecting beams.
if) The stiffness of the topmost beam is half that
bf the interior connecting beams.
| iii) The topmost beam cannot deform, i.e. idfinite]y'
stiff.

Figs. (2.4), (2.5) and (2.6) show the distribution of
the axial forces, the shearing forces and the bending moments
in the piers over all the height of the shear wall. We can
come to the following conclusions:

1) The continuous and the finite difference solutions
give the same forces in the piers. The twe solutions are
consistent, however, the finite difference method can treat
examples which cannot be treated by the continuous method.

2) The stiffness of the topmost beam has a local
effect on the forces in the piers at the free end. It has no
effect on the forces in the piers at the fixed end. This
effect can be demonstrated only by the.finite difference
methbd since the continuous solution cannot take into
account variations in the stiffness of the upper most
connecting beam.

4) When the two shear walls are inter-connected by
an infinitely rigid diaghragm at the top of the structure,
this has a local effect over about 30 per cent of the height
of the structure. The difference of the deflection at the
free end for this case and the usual case was within 2 per-

cent. There was no significant difference in the stresses at
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the base which is the crifical Tocation for design.
f 5) From the above conclusions we may see that the

lower parts of the wall, which usually become critical in

dgsign, are not affected by the type of connection which

. may exist at the top of the structure.

2.5 Coupled Shear Walls with Inelastic Connecting Beams

2.5.1 Finite Difference Equations

In deriving Eq. (2.18.1) it was assumed that the
connecting beam load-slip re]ationship is linear, Fig. (2.7a);

thus

y = - (2.25)

However, if the load-slip curve is non-linear, then the load-
slip relationship is expressed in the following modified form,
(Fig. 2.7b),
y= L+ f (2.26)
where k is the slope of the tangent at a point corresponding
to Q and y, and f is the intarcept of the tangent on the axis
representing slip. The compatibility condition is the same
as before:
Yig1 - Y5 C { (e1 - ez) dx (2.27)
"(4) |
Substitution of Eq. (2.26) in Eq. (2.27) yields
Q49 Qy
[ o * fi+1] - {FT + fil = J (s1 - 52 dx (2.28)
"(4)

or

K- = | (€1 - 52) dx + (f_i - fi+]) (2.29)
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Thus, the finite difference equat1ons can be

|
J

written in matrix notation as

[B] {T} = {A}+ {(F} ~(2.30)
where Feay = 1 - fin

.-2.5.2 Load-Slip Characteristic of the Connecting Beam

If the connecting beam is reinforced as a doubly
reinforced beam and its span to depth ratio such that its
behaviour is not 1ike a deep beam, the moment-curvature
relation as well as the load-slip relatior of the connecting
beam can be determined as follows:

Consider a doubly reinforced beam of dimensions b”
and db, Fig. (2.8). The stress-strain curve for steel is
elastic perfectly plastic. The stress-strain curve for
concrete in compression can be simplified into a single

formula to relate stress and strain frome = 0 to ¢ =

€
(2.9). Adopting a parabolic form (16)
o . o2& . (&) ' (2.31.1)
: u u €u
the initial slope of the curve is given by
- dg - %y \
E. = (g9 2 o (2.31.2)

There will be two stages in the beam's behaviour:
stage I when the steel obeys Hocke's law, and stage II when
the steel yields and oy = oy.

The distribution cf stress over the depth of the
cross-section is shown in Fig. {2.10.1). The total compressive

force ¢n the concrete is
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c = I o b dy : (2.32.1)

but | E = y ¢ _ (2.32.2)

‘substitution of Egs. (2.32.2) and (2.31.1) in Eq. (2.32.1)

- yields .
C = o, b’ \f (2 i— y - £ y?) dy
e2
u.
a ¢ b d2 ¢ d
= U b 2
eu n (] -§———— n)
let
¢ dy .3
Eu
C = o,bd, F n2(1- —%— n) (2.32.3)

Equilibrium of moments about point X, Fig. (2.10.2), gives
ﬂd L ”
M= [ bty + (1 -n)d) dy + A, o (dy - n dp)

»

= o, b d2 T (G- )+ n? (1-n)(1-—41)
t AS Os-(db - n db)
et e M
oub db
EC n db ® .
X = — = = né (e. is the maximum compressive strain)
€, €, c
K =xn {1 - 3~ - 3 (1 - K")} + AS Gs(db n db)/cubdb
(2.33)
Stage I:

The stresses in the steel, as long as Hooke's law holds,

are



28

gy = Es(l -n) d, ¢
) . (2.34)
Q's = Es(n’ - n) db ¢
let :
- Es - Es €u
mﬂ - E - 20
o u
- L '- 4 ] 4
p = AS/b dy p = As (1 - ﬁ:—)/b dy
Equilibrium of horizontal forces gives
= -7 1
AS OS = C + AS Us (] - I'_l'l—;—) (2.35)

-

AEG(1-n)eyo = o, bdy Fn?(1- $1) + g (n- m)dyo(1- o)

....2'.x g N -
$n* (1 -3)+2pmi(n-n)7

2Pm°(1-n) $ =
i.e, .
2(p + p)m 2m e
n? . - J%;~(p +np)=20 (2.36)
1 -3 15—

H=xn{l-3 -3 -3)+pdE(n-n)(1-n)e/g, (2.37)
€ € :

¢ =4 .2 = AL 3 (2.38)
BT g

For a given beam and some chosen value of x, the values n,

¢, M and & can be determined from Eqs. (2.356), (2.38) aﬁd (2.37).
By taking a series of values of x it is possible to construct a
cuve of M against 9.

Stage 1II.

The steel now yields and g_. = ¢

s y

Equilibrium of longitudinal ferces, Eq. (2.35), yields



29

AN Xy 4209 - n) X
P - mx(1-3)+2pmn-n)— )
u » O'l 244- )
2pmXx - p ; pm n X
n? + 0 Ju_ g . 0 = 0 (2.39)
x(1 - 3) x(1 -—3)

For a given beam and some chosen value of x, the values
'ﬁ, ¢, M and § can be determined from Eqs. (2.39), (2.38) and |
(2.37). By taking a series of values of x it is possible to
construct a curve of M agaihst e,

The complete moment-curvature curve will consist of
both stage I and stage II. For a given beam the complete
curve starts at stage I and changes to stage II at the point
where the two curves intersect.

The load-slip curve of the connecting beam can be
determined by numerical integration of the curvature over
the span of the connecting beam, Fig. (2.11).

As an example, consider a beam with the properties,
p=p =0.01, 0 =30001b/in%, ¢ = .002, o = 40,000 1b/in?,

u y
22 in and b = 72 in.

L4

ES = 30 x 10% 1b/in%, b

Two cases are considered;

12 in, db
i) the beam as doubly reinforced concrete beam.
ii) the beaw as homogeneous beam of concrete only,
i.e. the gross area and moment of inertia are
considered as the properties of the cross-section
of the uncracked beam,
Fig. (2.12) shows the moment-curvature curve for the
connecting beam. The moment carvying capacity of the

cracked beam is zbout 45 % of that for the uncracked beam,.
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Fig. (2.13) shows the load-slip curve for the conﬁecting beam.
The load-slip curve for the cracked beam is approximated by
three linear parts, to be used later‘in analysing an example
of a coupled shear wall, ard in which the slope of the third
part was given a value 0.1% of the Slope of the first part.

- The shear modulus, k, of the cracked beam is about 90% of

that for the uncracked beam.

2.5.3 Numerical Example

To illustrate the behaviour of coupled shear walls with
inelastic connecting beams, an example of a twenty storey
building with the following properties is used; H = 200 ft.,
h =10 ft., d =24 ft, t =1 ft., b =6 ft. and d, = 2 ft.
The coupling beams are assumed to have cracked, while the
cracking of the piers is not taken into account.

The history of the structure's behaviour may be
followed through stages of incremental loading till first
yielding of the piers occurs. A uniformly distributed load
is applied to the structure in increments, different stages
of loading of the structure are considered:

Stage 1

Onset of yielding in the connecting beams. The
critical connecting beam is situated at x = 0,75 H., This
stage terminates the Tinear elastic behaviour of the
structure.

Stage 2
754 of the connecting beams have yielded. At the

end of this load increment yielding has occurred over 75%
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of the height of the structure. The maximum ductility ratio
at this stage is 3.5, occurring at the level, x = 0.7H, »
Fig. (2.14c). The over-all ductility factor of the structure,
“i.e. the deflection at the free end of the shear wall at
the end of stage 2 to that at the end of stage 1, is 1.8,
"Fig. (2.14a).
Stage 3

Yielding of all the connecfing beams. The ductility
ratio in the critically situated connecting beam, at x = 0.65H,
is 7.0. The overall ductility factor in terms‘of the
deflection of the structure ié 2.5. Fifty-five per cent of
the connecting beams over the range x = 0.35H to x = 0.90H
have a ductility ratio greater than 4.0. A ductility ratio
of 4.0 is suggested as a maximum ductility capacity for the
connecting beams.
Stage 4

A1l connecting beams are in part three of load-slip
curve, Fig. (2.13), i.e. the shear modulus of all the
cohnecting beams is the same and equal to that of part
three of the load-slip curve.
Stage 5

Onset of yielding in piers. At the end of this load
stage, the strains in the piers reach the specified elastic
yield strain for the concrete (.0071). The maximum ductility
ratio for the connecting beams is 42.0, at a level x = 0.35H,

and the overall ductiiity factor is 11.0, It should be
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mentioned.that for actual shear walls of reinforced 6oncrete,
the effect of cracking of the piers wii] affect to a great
extent the behaviour of the structure from stage 4 to stage
5. The first yielding of the piers will start earlier than
stage 5; the load-deflection curve is expected to be '
'asymptotic to the ultimate load capacity of the structure
and the demands for ductility of the connecting beams
will be less.

Thus we can say:
1. the finite difference method can be extended to study
the behaviour of reinforced concrete coupled shear walls taking
into account the cracking of the piers as well as the connecting
beams.
2. the ductility of the coup]iﬁg system as well as the
overall structure need further study. 1In reality the coupling
beams will withstand a ductiiity ratio of about 4.0 beyond
which a reduction in capacity will occuf.
3. the ductility is affected by the relative stiffness
of the coupled shear walls. For a coupled shear wall, the
lower the shear modulus of the connecting beams, the lower are
the demands for ductility. To demonstrate this point, the
coupled shear wall example was solved for the uncracked
connecting beams, i.e. for larger shear moduius of the
connecting beams, and the ductility ratio distributicn was
plotted, Fig. (2.14c), when all the connecting beams had
reached first yield. The maximum ductility ratio was
7.5, compared tc 6.7 for the connecting beams with lower

- shear modulus.



CHAPTER 3

| ANALYSIS OF COUPLED SHEAR WALLS OF
VARIABLE CROSS-SECTION

3.1 Generé]’

In modern multi-storey buildings, shear walls are
normally used as an economic means of providing lateral
stability against wind or earthquake loading. If the
building is very tall, it may become economical to reduce
the width of the shear walls at the upper Tevels.

The problem of coupled shear walls with abrupt
changes of cross-section was first treated by Traum in 1966
(7) and by Coull and Puri in 1968 (8) and then by Traum and
Pisanty in 1970 (9). The continuous connection method, to
analyse a symetrical coupled shear wall structure containing
one band of openings with one discontinuity in the depth of
the walls, was used.

Coull and Puri (8) present a solution for this
problem by obtaining soclutions for the two sagments of the
shear wall and considering the equilibrium and compatibility
relationships at the junction between the upper and lower
segments, a complete soiution for the entire structure was

achieved,

36
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The results obtained by Coull and Puri are consistant

with one of the solutions presented here for this problem.
Coull and Puri stated that, "Traum in 1966, in his analysis,
ignored the fact that the‘centroids of the wall segments
undergo a relative vertical deformation at the junction whefe
the change in width occurs, due to the rotation of the cross-
section under bending. In addition an error was made in the
derivation of the governing diffe;ential equation for the
upper wall segment".

Traum and Pisanty in their recent paper in 1970 (9)
made the same error mentioned by Coull and Puri above.
Another error was made in the compatibility condition at
the change of cross-section. They assume the same slope at
the change of cross section which }s correct but then they
differentiate once before substitution. This means that
they assume the same value of curvature at the change of
cross-section for the uoper and lewevr segment which is not
correct.

Herein, simpler methods are developed for the
analysis of coupled shear walls of variable cross-section.
Two methods of analysis are presented:

1) a continuous solution based on Newmark's solution}for
composite beams.

2) a finite difference solution based oan Stussi's
solution for composite beams.

Fig. (3.1) shows the shear wall model considered in

the analysis.
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3.2 Continuous Solution

3:2.1 Basic Assumptions
| We may make the same assumptions mentioned in the
~analysis of prismatic coupled shear walls except that there

is an abrupt change in cross-section of the piers.

3.2.2 Formulation of the Problem

For zone (5), 5 = 1,2, the differential equation can
be derived as follows:
The compatibility and equilibrium conditions can be

written as

Yi¢1 "~ Yi © J (e; - ez) dx o (3.1.1)
h(1)

%)y(_ = e -, (3.1.2)

M(x) = My + My + Tigy. 2y (3.1.3)

The strain can be found as

T, . M. C.
e = - (}1\)_ T LA (3.2.1)
1 J] 1 J] . '
T,. M:n® C.s
e, - Eifx) - _Lg_wlgé (3.2.2)
hY 2 J2

2
we may prove that

gy . (bt . b T4
X

|2hIp GAX dx?
2
S STy (3.3)
k de

The piers, having equal curvatures, yield

. . M- ve 4.

E T, E T, E T., + ¢t I, .
1 J1 2 J2 1 J1 2 j2
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Substitution of Eqs. (3.4), (3.3), (3.2.2), (3.2.1) in
1 :
Eq. (3.1.2) yields

d2T, . . '
) . = . . |
| dxz GJ.T(J-) Rj M(X) | (3.5.])
where |
a: = E _E_T (3.5.2)
J EA.ZEI
| o
- _k J
Rs = = o ] (3.5.3)
ZEL = E I+ E I, (3.5.4)
[ I s (3.5.5)
EA EA; EAj
ET = IEI + EA. 22 | (3.5.6)
J

Thus, the governing differential equation for the two

wall segments can be written as:

Zone (1) H2 < X < H Lower segment of walls
iz 5 Ty = <R M (3.6)
Zone (2)
0 < x < H Upper segment of walls.
d2T -
(2) . -
ix? azT(z) R2 M(X) (3.7)

If the shear wall is subjected to a uniformly
distributed lcad of intensity p, & concentrated load Q2 at
the free end, a moment Mz at the free end, and a triangular
load of maximum intensity w, the external applied bending

moment can be expressed as
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2 - 2 3
M(x) =+ By—+Qx+M + 55— - & (3.8)

The solution of the governing differential equations

(3.5) and (3.7) can be found as
2 wx? wx 3

R :
= J a 3 -2 X -
T(2) Cl cosh x v Gz + CZSinh X/_az + Qz ( 'Ez—' + QZX+M2+ 5 B-H—_)

R

2 (p+w-5) (3.9.1)
2
0.2
- - R 2 :
= i : 1 X
T(]) C3 cosh x /c;l + Chswnh X v a, + at( Rf- + Qzx + M2
+—2—°”‘2-9’-"—°—+R‘(+ - 5D (3.9.2)
6H ;:'—2 P w H -
1
Differentiating once yields |
» P /- » R
Az) = Cl Y ¢, sinh x v 2, + Cz Y a; cosh x vV a, + &
. az
wx? Rz w
(pX + QZ + wx - -Z-'H—-) - ——:2 _ﬁ (3.]0.1)
a
qy = C3 Y @3 sinh x vV o, + Ch Yy ay cosh x v a; + -1
. R o 1
’ 2
(px +Q +uwx - Sp) - = o (3.10.2)
Q

The following boundary conditions will serve to

determine the four constants C1 to C“

0 (3.11.1)
0 (3.11.2)

1) at x = 0 T(Z)

2) at x = H (1)

]
p 4

at x one of the two following sets of boundary conditions

may be considered

I at x = HZ T(]) = T(Z) (3.]2.])
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Ty LT

at x = H (3.12.2)
.2 dx dx
- - d27 d?7
cor 11 at x = H — . (2) (3.13.1)
: 2 dx?2 dx? Co
‘ dT dT
at x =H - —) — (2) (3.13.2)
2 dx dx

We may have two possible solutions, denoted'as solution

(1) and solution (I1I) correSpondiqg to the two sets of
boundary conditions, I and II respectively. We may mention here
that it will be proved in Chapters 4 and 5 tﬁat solution (I) is
the correct one by using the principles of minimal potential
energy and the finite element method. However, solution (II)
was based on a supposition that there may be only one value
of the rate of change of slip at the change of cross-section,
Eq. (3.3). | .

 Applying compatibility conditions (I) we get:
1.0 0 0 ' 0
cosh H_/a3 sinh H_/a -;osh'nz/gf -sink Hzng
Yo% sinh Hov/03 a3 cosh H27§7 -/a{sinh Hz/gi -/2% cosh Hzla}

0 0 /ﬁisinh H/E} /Eicosh Hﬁg?
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L}

1 1

Obtaining the constants C; to C“ the axial forces and
the shearing forces in the piers can be determined from Eqs. (3.4)
(3.9.1), (3.9.2), (3.10.1) and (3.10.2).
| The curvature of the wall segments and the internal

M.

moments M j

i1 , can be determined from Egq. (3.4).

R
2 + + -2
e (p + w) = M
2 2
sz wH: wH: R2 . R2 R1 sz
—2 4 + M+ - + - - —2
( wH:)(' R2 Rlz ) A R2 2Rl )‘ "
pH + Q + wH - - - = - — - — L
-2 2 2 2H a o a 2 a 2 H
2 1 2 1
H R R
(pH +Q + ) —L- - L -
2 a a ? H
L 1 1 . J
Applying compatibility conditions (II) we get:
1.0 0 0 | 0 ] Fc1°
o cosh H Y az o sinh H Vao  -a cosh HYa - e sinh H /o |]C
2 2 2 2 2 1 2 1 1 2 1 2
Vo  sinh H Yo Jo© cosh H Ja~ -/ sinh H o -/a~ cosh H Ja | lc
2 2 2 2 2 2 1 2 1 1 2 1 3
0 0 /o~ sinh /o~ /o cosh H/a® | lc
- 1 1 1 b3 J ] IDJ
-RZ RZ ]
+ + -2
= (p ) ",
2 2
R R wH
(- 1) (p+ow- 2 )
a a -
2 1 ,
( P L T LS (3.15)
pH +Q +uH - 2 - ) (- 3.15
2 2 2 24 a o a 2 a 2 H.
R R 2 . 1 2 1
(pH + q + -2y 1 I
L 2 a o ? H |
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f The strain distribution can be determined from Eqs.
(3 2. 1), (3 2.2).
The deflection of the shear wall can be determined
by numerical integration of the curvature.
‘The shearing force Qi(x) in the connecting beam
at floor level x can be determined from
x+ b |
Qi(x) = J *q(x) dx (3.16)
h

X-7z

3.3 Finite Difference Solution

3.3.1 Basic Assumptions

We may make the same assumptions as those mentioned

in the aha]ysis of prismatic coupled shear walls.

3.3.2 Formulaticn of the Problem

Proceeding as in the analysis of prismatic coupled shear
walls, and imposing the condition that the axial force and

shearing force at the change of cross-section are continuots, we get:

l:

i-1) _ 1 ,1 T, .. 4 A1) (e - d 3.17.1
K ( Ly E;;]) (1) Iy , [ e Ez) x )
(1)

or
T(1 1) (]+ 1 + h ) T + (i+1) [ M dx

e A P UL R eai

h(1) (3.17.2)
where 22
T s i il
di 2 J2

- B (3.17.3)
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2. ' .
- T , (3.17.4)

IEI

| | Eq. (3.17.2) representsra typical equation for
panel (i). For a coupled shear wall with variable cross-
section having n stories (panels) thérevare n such equations
resulfing in a set of n simultaneous equations.

The boundary conditions are .

T(0) =0 and Q=0 - ‘ ~ (3.17.5)
and at the change of cross-section the axial force and the
shearing force are continuous, similar to solution (I) in
the continuous solution.

The n simultaneous equations can be written in matrix
notation as

[B] {T} = {A} - . (3.17.6)
- whose terms are defined before in Eqs. (2.20) and (2.20.3).

To get a finite difference solution, similar to the
continuous solution with compatibility conditions (I1), we
proceed as below:

Assume two values of axial forces at x = Hz, at panel

(m), say T(m)L’ T(m)R' The boundary condition we may impose is

d2T d2T7
(m)L _ __"(m)R at x = H (3.18.1)
dx? dx? 2

Substitution of Egqs. (3.6), (3.7) in Eq. (3.18.1) yields

-

al Rz—Rx
T @ Tmr = 7z m) (3.18.2)
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ooooooooooooooooooooooooooooooooooooooooo

. v 4 -z
e, Ty - S el )y g (30009
- Ym) -~ ¥(m)
So; for a coupled shear wall having (n) panels, where
the change of cross . section occurs at panel (m), there are
) (n+1) simultaneous equations given below
1 1 ' T(z) -
L e ‘4’(1)"(1)) Ty *e> = - ¢ Mdx
1 2 2
: h(1)
T ' T
T - (e )Tt T R - | one
2 2 3 h
...................................... (2) ...
Tos T,
(i-1) _ (2 1 (i+1) . _
& R ) Tay Ry J ¢ Modx
............ F U UUROUURUUPS £ SUPR
T(m-2) ( 1 + + )T + T m)L _ J‘ T M dx
- ko 0 kT e -1y (me1) ‘é‘—m -
- h(m-1)
(3.19.1)
T T T
_(m-2) _ . _Lm)R m+1 } I
km (E__ i W(m) (m)) T(m)L m+1 ' km+1 h(m)c "
_ (m+] _ 1 - M(H )
(m)L W(m) (m)R Yim 2
T .
(m)k 1 1 (m+2) J
ko1 Tyt Kapz T Y me) M) Ty * 0TS h |
............................. (mt1) ...
T T,
M) L1, 1 Gy L
] (k_i + k_;+1 + Ip ) (1)) T( ) - 4 M dx
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T

Tt ) T 7 f ¢ M dx
"(n)
This can be written in matrix notation as
(8] {T} = {A} (3.19.2)

[B] is a symmetric band matrfx, with half band width

three, and {A} is a vector, whose terms are,

1 1 1
811= B (—E: ¥ _F: * W(]) h(l)) sz N E:_
\Al = ¢z M dx
h(1)
for 1 < i <m ;
B =
i(i+1) 7k
_ 1 1
OO vl s (EPLITIT
1
Bigi+n) = Ko7 Ay = ¢ M odx
] | (1) ]
Bo(m) = - (‘F; t V) hm)) Ba(me1) = - (k7) = -Ba(me2)
Ym+1)
Bme1) (me1) 7T C Bmen(me2)” " gy
S D
Ayt J\ z M dx A * . MK ) (3.19.3)
for (m+1) < i < (n+1)
B, =
i(i-1) E?:T_ . . .
L 1 1
ST el A S ILIC I PY
1
Si(i+1) T Tk Ay = J‘ ¢ Mdx

o)
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o . 1
Bln+)n ™ k- Blast) (ne1) = 7 (5= * ¥ ()
An;l : J ¢ M dx
h(n)

i
[

Having obtained the axial forces, we may get the

shearing force per connecting beam Qi from

for 1 < i < (m+1)

% = Ty - Tai-n ' - (3.20.1)
for m< i.<n+1

Qi = Tiien) - T(4) (3.20.2)

The curvature, strain, internal moment and deflection

of the shear wall can be determined as mentioned before.

3.4 Numerical Example

A 20 storey coupled shear wall with abrupt change of cross-
section after the tenth fioor, was soived using both the
continuous and finite difference methods, solutions (I) and (II)
aré considered. The propertie§ of the model were H = 190 ft.,
h=9.5 fl., Hy = Ho = 95 ft., Ay = Aya = 24 Sq. Ft., Azy = Agz =
16 Sq. Ft., I,

Iy, = 1152 ft.%, Iz =1 . 341 ft.*, 2,

2
L, = 26 ft., b = 10 ft., Ip = 0,625 ft.*, £, = £, = 443000

kips/Sq. ft., Q, = 132 kips.

34 ft.,

The results obtained by the continucus and Tinite
difference methods are consistant, Figs. (3.2), (3.3), (3.4),
(3.5) show the distribution of forces and deformations of the
model for solutions (I) and (I1}). Ule may notice the fo]]owing‘

at the change of cross-section:
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1) The axial force‘is‘continuous for solution (I)
Buf there is»a sudden change for so]utidn (11), Fig. (3.2).
2)> The rate of change of the shearing force is unique
for solution (II), Fig. (3.3).
| 3) fhe strain has aunique value at the point of
‘tontraflexure for solution (II), Fig. (3.6).
4) The difference of deflection at the free end is
‘not significant, however solution (11) gives more deflection
than solution (I). So, we may say that the internal and
external energy with solution (I) is less than that with
solution (II). Due to the principle of total potential
energy we may say that solution (1) is more realistic. Fig. (3.5).
5) The axial force at the base of the shear wall with
solution (I) is less than that with solution (II), Fig. (3.2),
while the internal moment with solution (I) is more than that

with solution (II), Fig. (3.4).
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CHAPTER 4

ANALYSIS OF COUPLED SHEAR WALLS
BY ENERGY METHOD

4.1‘ General

The usual assumptions used in analysing coupled shear
walls replaces the connecting beams by continuous rigid
lamella which can carry only shearing forces. This suggests
that a coupled shear wall can be analysed as a sandwich type
(15) beam consisting of two faces between which a core is
sandwiched.

The principle of the minimum of the total potential
is used to analyse a coupled shear wall. The minimal
| principle furnishes all the necessary and sufficient
conditions of equilibrium in the form of differential
equations as well as boundary conditions. According to
Hoff (15), "the minimal principle yields the’easiest, and
sometimes the only, solution”.

We can analyse coupled shear walls with constant
cross-section and then with variable cross-section to decide
which of solution (I) or solution (II)\presénted before is

the correct one. Figs. (2.1), (3.]).
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4;2'~ Basic Assumptions

B !

! 1) The connecting beams are replaced by continuous

elastic lamella.

|

t

2) The essential components of the strain energy will
. be taken into account. ‘These are the extensional and the
bending strain energy stored in the piers and the shear strain
energy stored in the core. The shear strain energy stored in
the piers is ﬁég]ected.

4.3 Prismatic Coupled Shear Walls

4,.3.1 The Total Potential

The shear strain in the core is, Fig. (4.1),
) ul - Uz dv

e=e-e = ; - o (4.1.1)
The strain energy in the core is

= G . oY dvqe ‘
Uc = 53— J [ — g - H?] d Vol (4.1.2)

Vol
Where G is the shear stress required to produce unit

shear strain in fhe core.
It can be shown that |
q.h = K.y (4.1.3)
Multiplying by f%« ve get

kg

n Y -
Ly T W | (4.1.4)
_ ke
1.e G = *{h—— (4.1.5)
where 2 b
k = ]/{ T'é“Err—— + '—'“""——'] (4.].6)
p GA*y

also d Vol. = t dy d»x (4.1.7)



-+ X +ul}_ - dx —
Y - <+ -+
1 : 7 v €, v+dv
/] ;7 + ____ -
A ’ ' T ——
y / el Femm—— *
4 s ! 3
— v + -—
4 ¥ A v+dv
-+ ———

" a) Strains caused by displacements

p(x)
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With substituion of Eqs. (4.1.7), (4.1.5) in Eq.‘(4.1.2) we get
o H ' .

2 r
)
The total strain

c 2

of the piers is
EA
1

2

I

The total strain

U, =

piers is

.U

1
L

2 _dv 2
- ax J? dx

energy due to extensional deformation

Ea M

2
dx + T—

du
(352) dx  (4.2)
o

energy of bending stored in the two

H

- 1 dZV 2

Ub = - (EI1 + EIz) J (——d—;z) dx (4.3)
0
So, the total strain energy is
H H
EA du

= 1 d?v 2 1 {‘ 1y2

U i (EII + EIZ) J (——dxl) dx + — ou ( TX) F!x
0
EA [” du ez [oueu
tet ) mdt dxr gp ) [t - I dax (4.4)
0 0

Next, consider th

external load, the total

e change of potential of the applied

external work done is, Fig. (4.1),

(4.6.1)
(4.6.2)

H ‘ dv H H H H
= - - +
v f pvdx + M = I + Qv l + Nlu1 I Nzu2 l
0 [} 0 0 [
4.3.2 Minimization of Total Potential
Let Q=U+YV
So s = 0
we may consider the various terms in order
H 2 H 2. 2
slg [ (St ol s (S s &) e
J dx? dx?
° Ho H
2 3
=g_._!. 6_.9.! _f.dv .c_i_v..dx
dx? dx | dx? dx
6 0

(4.1.8)
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: a2 3 L
g’ Ay v oAV sy e sy oax
f dx?  dx dx? - dx*
0 | °
' H
a[-}j ( 942 gy7 = du s du 4y
j [ o dx dx
* H - H .
du d“u
= S u - — § u dx
dx l J dx
0 0
. H u -u u -u (u -u)
1 12 _ dvq2 - H ] 1 2y2 2! dv
5[-2 of L — - dx] dx] = { 7 [( T ) ax ( ) ] dx
1 H 8(ul-u2)z ; H
= .2 { 5 dx - I f 8 [(u -u ) ] dx
H 1 2
+°f 7 ( ) dx (4'6f1)
1 H
= ;; { [(ul-uz) 6u1 + (uz-ul) Guz] dx
~du du
__]_ H dV ]_ H 1 2
- [} ( ) (aul- Guz) dx + 1 { (a‘x— - dx ) § v dx
1 H dv H H d?v
- T (l-l1 - Uz) s v l + a';( dv l - { E';-; § v dx
0
- H UI-U‘Z ] dv '
= { [ 2;— T axd (du Suz) dx
du du 2 u -u H
He 1 2y _ d°v dy "
+ { [ 2( dx dx ) dx ] 6v dx + [dx L ] év
du  du g du du_ w du du:
) [ J ax Ix dX] = { dx é dx dx + { a—i—- 6 o dx
dul H duz H H dzul dzu2
- 'dT § uz * a_'z-“ 6 ul 1 B ﬁf [dx2 602+ dxz 8 ul] dx
6V=-f povdx+ne v H § H

dx ‘

+Q8v T +N Su + N Su
1 b ll 2 2

O 7T
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Substitution of Egs. (4.3.3) in Eq. (4.6.2) we get

3 h

H
2 : ‘43
(EI; + EI:){ -q—-!- () ‘d—'“ l - _d__V_ GV. "' JH d ey § v dx }
© o dx? dx dx? * dx*
~ du H Hdzuo 0 du H H.d’u
+ EA{ —L 6u, | - s 1 s5u dx} + EA { —2 §u - f 2 su dx}
dx ®  dx? 1 2 dx 2 ° dx 2
: A
2, H o Y,7Y, du = 42y
= { [ 12 9Y1(su,-6u,) dx + f [ —( %o 2)- lsv dx
/ h 0 22 £ dx 2 dx dx dx?
u -u H H H H
+ L .2 2 sy |} -spevdx+ MY | eQs v
dx 2 ° dx
0 [] V
H H
+ N 6 u I +N S u ' = 0 (4.6.4)
1 1 2
B ° - ° .
2 ' 3 2 U -u
[(EI+EI)9—!+MJ”511+[-(EI+51)d"-“(‘2-91)
dx? dx 1 2 dx3 h ] dx
H du1 -H du2
+Q]6v+[EA el gau+[EAz-——-Nz;|
2 du du 2
Mrer ver) SY L KL 2)-""1-p(x)16vdx
gx h % dx dx dx?
) d 2 u -u
+ M- EA U T S N i S L AR WP
0 1 dx? h L 2 dx 2
H d*u  pp2 g, U SU gy
[- EA 2 4+ —_( L2 . =2)] Su dx =0 (4.6.5)
2 dx? h L L dx 2
Due to the fundamental lemma of the calculas of variations
we get )
d2u. 2 -
EA, 1,k (dv _ 1 2y =g i=1,2 (4.6.6)
dx? h dx £ & )
_ ¥ 2 2, u -u . v
(E1 + € ) -9v k&™ ( d°v 1T 21 2" )y _p(x) = o0 (4.6.7)
1 2 dx* h dx? 2 dx
’ 2
[(E1 +E1) 4 4+ mf = (4.6.8)
1 2 dxz 0
3 2 u - O
[(ET + EI ) v _ keT odv 1 2y a1t -0 (4.6.9)
]

dx dx L
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du_i " H _
[EA; ' + N.J = 0 i=1, 2 (4.6.10)
LI i

Thus, the problem is reduced to solving the two
simultaneous differential equations (4.6.6), (4.6.7) with the

boundary conditions (4.6.8), (4.6.9), (4.6.10).

4.3.3 Derivation of the Differential Equation

The equilibrium can be written as

Ml(x) + Mz(x) = M(x) - T(x).% - (4.7.1)
d?y _ ‘
i.e. (EI + EI ) =M-T23 (4.7.2)
1 2 dxz
Differentiating twice yieids
d*v _ \ d27
(EIl + EIz) dx“— = p(x) - 2 a2 (4.7.3)

The axial forces in the piers are

du du
T=EA —1 = - EA —2_ (4.7.4)
1 dx , 2 dx
du ~ du
ie. 1. T and 2 - =T (4.7.5)
dx EA . dx EA,
So et = T (gt 1) (4.7.6)
dx ' 1 ‘2

Substitution of Eqa. (4.7.2), {4.7.3), (4.7.6) in Eq.
(4.6.7) yields

d2T .k , 1 1 22 X 2
— ‘vl tm ey T e M
dx 1 2 1 2 1 2
(4.8.1)

d?T k ET k 2

or + ——r T F - SETT M (4.8.2)
dx2 M EE.EI h™ IEI

je. LI r=oru (4.8.3)

dx?



Eq. (4.8.3) is the well-known governfn
equation for coupled shear walls.

To get the boundary conditions, we pro
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g differential

ceed as below:

By making a cut at the line of contraflexure, and

-contraflexure, and considerihg the relative de

the cut system, the compatibility equation may

formations of

be shown to be,

3
g9V o hb” L hb oy (x) - (u-u) =0 (4.9.1)
dx 12E1 GA* : ! 2
, p b
ie
u -u
q (x) = K& (4 L2 ) (4.9.2)
dx %
at x = H u =u =0 and dv_ . 0
1 2 dx |
ie dr =0 (4.10.1)
dx
x=H ,
at x =0 T =N from Eq. (4.6.10) (4.10.2)
x=0
To get the deflection of the coupled shear wall,
substitution of Eq. (4.7.2) in Eq. (4.7.6) yields
d(u -u ) o
12 . 1 1 [M - ZEI d’v ] (4.11.1)
dx EA 2 dx?
Substitution of Eq. (4.11.1) in Eq. (4.5.7) yields
[} 2 2 2
ge1 4V keZ p4v 1 1 (wezer £ 3-p(x) = 0
L 2 2
je per S o KAy 1O ZEL g dTv oo ko by (401.3)
dx* h 22 dx? h
wy T 2
je -4v _k __EL 4% plx) _ k_ _1 Ho(4.11.4)
dx*® h ER.LEI dx? LET h  EA.IEI
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4 » 2 . »
or d*v_ o d’v _ p(x) R M (4.11.5)
dx* dx? TEI
where .
R = K ! : (4.11.6)
h EA. LEI
The external moment M is
v 2 2 3
M(x) =+ PX_ 4+ qx+m + M BX (4.12)
2 0 0 2 6H
The deflection of the coupled shear wall is
vV = C1 cosh/ a'x + C2 sinh v a’ X + C3+ c“x
P LR e LW,y 1, ROy
2 6H a ZEI a2 _
- R‘ [ ptw x* + Q_ x3 - M x2 - ¥ x5]1 (4.13.1)
a - 24 6 2 120H .
The boundary conditions are
at x = H v =0
A (4.13.2)
dx
- , d?v _
at x = 0 from Eq. (4.6.8) TEl —= = -M
. dxz 0
from Eqs. (4.6.9), (4.9.2)
3
gE1 92¥ . ¢ q(x=0) = -q
dx3 0

The deflection v can be determined by numerical

integration of the curvature,

4.4 Coupled Shear Walls with variable cross-section

4,.4.1 The Total Potential

We may assume the following geometrical properties at

the sudden change of cross-section,



i.e. at x = H V = v =y
f . 2 1 2
f d d
v AT
j dx dx dx
f U =u =UuU,U =u =uy
11 - 21 1l 12 22 2

This means that no dissipation of energy occurs at
the sudden change of cross-section due to bending moment,

shearing force and axial force at this section.

Zone (1): szs x € H.

The total strain energy is

1 ( ) H( dzvl )2 EA11 H(du”)2
U = - EI + EI S (—— dx + —~*—— f (——= dx
(l) 11 12 Hz dxz 2 Hz dX
EA- H du ‘ k22 H u -u dv
+ 12 f ( 12 )2 dx + 1 1 f [ 11 12 - l]2 dx
2 H dx 2h_H B 2 dx
2 o Looe ! (4.14.1)

Zone (2) 0 < x < H

The total strain energy is

1 ' Hz dzvz 2 EAzz Hz duzl 2
= + —_— 4+ —2L1 —
U(Z) -?_(EIZI EIZZ)QI ( dxz ) d% 2 f ( dx ) dx
EA H du k 22 H U ~u dv
+ 22 2 22)2 gy 4 _2.2 S? [—21 22 2
2 ° dx 2h2 0 [ dx
RN dv 2 .
2 .
2
So the total strain energy is
U = U(!) + U(z) (4.14.3)

Next, the total external work done, for a general

internal applied load, Fig. (4.1)
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| H H H
v =_-H£ PV, dx - [ pva dx + M, 73— l + Q1 v ! + N11 Uil !
. Hz Hz } Hz
: H dv Hz ) Hz Hz HZ
+ Nj2 Uy, + M, p 2 + Q2 V2 + Npy Uz, l + N22 ua2 l
. X -
H, o | . . o'(4.14.4)
4,.4,2 Minimization ofTotal Potential
Let @ = U + v (4.15.1)
§ Q=0 : © (4.15.2)
consider the term,
dv L - 2
1 rHa Uy uzz 2 1 2 (dv 2 4 o
§ {f [ T odx T [) (dx)H T dx}
' ’ 2d L -2 ’ : dv L -4
IH2[ Uay Yps Y, S N ( dV) 16 [uzl Yoo _ “ 2 _ 1 2(Qi) ] dx
0 ’ 2'2 dx 2’2 dx Hz 22 dx 2,2 dx Hz
= sz[ Ui Uap dvz _ 21-12 ( Qi) ] s [UZI-UZZ] dx
0 R‘z d»X 2’2 dx Hz 2'2 .
Ha u -u dv L =2 dv
| 212 22 _ 2 _ 1£ 2 ( dV) 16 (—2) dx
¢ 2 dx ", dx H» dx
Hza u -y - dv 9 -2 -
- f [ 212 22 _ 2 _ 12 2 ( dV) ] s [ ( ] dx
o 2 dx 2 dx H, Y, dx H,
Hp, Y ~-u dv T S u -u
= f [ 21222 _ 2 _ ; 2 v ) 18 [ 2; 227 gy
0 2 dx 2 dx H, 2
u -u dv L -2 dv Hz
- 1 212 22 _ 2 12 2 Yy 16 v }
2 dx 2 dx H2 2 0
Ho 1 d(u -U dZV H, U ~u dv
+ f [ E_ 21 22 - 2 ] & v dX - f [ 23' 22 2
o 2 dx dx? 2 dx
) % -4 )
- (B 3 e (§5) ] (4.15.3)
2 dx H:2 2 H
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Substitution of Eqs. (4.6.3), (4.15.3) in Eq. (4.15.2)
yiéIds _
d?v H dv ' d3v k 22 u -y

dv H
[ZEI L+ M ] o6 —b o+ [-2E] —L - (A L) v q ] sy
1 dx? 174, dx 1 dx? h 1 dx 1 Hy !

du H _ du H H d*v

+ [EA 11 N ] &8 u + [EA 12 0N ] Su  + S [ZEI 1

. 11 dx 11 H2 11 12 dx 12 HZ 12 Hz dxk
k 22 d{u -u ) dv? H d2%y

1 11
- - p(x)Jév dx + s [-EA
h x - dx dx? 1 H, 11 dx?

o+
)
o~
-
-
—
»

kxzi 1 (ulx-uxz dvl)] H[ dzulz kxli
- Su dx + f [- EA +
h 11 21 ax 11 ™ 12 dx? hy .

( ull-ulz dvl )] d
- S u X
22 dx 12 .
d2v dv div k 22 4 -u dv
+ M ] 6 2 + [_ ZEI 2 2 2 ( 21 22 _ 2
dXz 20 dx dX3 hz L2 dx

(dx )Hz) + Q2 3 6v2 + [EA21 - N ] S u

+
L
™
m
4
~

du Ha Hy d*v k 22 1 { u
+ [EA —22 - N ] 6u + [ [SEl —2 4 22 (- —
22 gy 22 22 0 1 ogxt 2 » dx
dzvz ’ Hy dzu21 kzli
2} - + - +
o) Pl s s - BR L — N
U -u dv L= 4y | 2 u
( 2; 22 _ 2 _ xz £ (2X) 1] su dx + 5 [-EA 22
2 dx 2 HZ 12 ’ 22 dxz
k 22 1 U -u_ dv L2 -2
(—21_22 . 2_ . 1 .2 (d ) ] su dx -
hooog ) dx 2 Hz 22

H u -u dv L -2 -
£ o[2lz2 2 . z 2 ( ) )]5[ ( ) ] dx=0 (4.15.4)
° " dx H2

Due toc the principles of the calculus of variations

ve get, for a geneval external applied locads,



65

Zone (1):
i d%u ; k ¢ dv u -u’
EA;i 12 + L L L . 1t 12) = g i=1,2 (4.16.1)
dx hl dx zl
d*v_ k22 d?y ,  dlu -u )
zEI » 1 1 1 ( 1 _ 11 12 )'p(X) = 0 (4.]6.
1 odx* hl- dx? % dx .
d?v H dv
[).‘.EII_ - ; + M‘]H s - L =90 (4.16.3)
X 2 X
div k 22 dv u -u H
[ZEI Lo L1y L _ 11 12y 4 9] v =0 (4.16.4)
1 dx? h1 dx % 1y, 2
[EA . Wi,y 1.]H su =0 i=1,2 (4.16.5)
! dx ! Ha 1 . .
Zone (2):
‘ d2u k % dv uoo- L - dv
EAz,‘ 1;1 + 2_2 ( 2. 21 22 4 1 2 (a_x.) ) =0 1=]’2
dx , ., . He (4.17.1)
dv k 22 d?y dlu -~
ZEI 2 2 2 1 21 22°) _p(x) =0  (4.17.2)
2 dx* h2 dx? %, dx
d?v H, dv
[ZEl —2— + M ] & —2 (4.17.3)
2 dx 20 dx
div k22 dv U -u_ L - dv H,
[ZEI 2 - 2 2 ( 2. _ 21 22 + 1 2 ( ) )+Q ] §v =0
2 dx® h dx % 2 dx Ho 2
2 2 2
(4.17.4)
du i H.
[EA 2 + N ] su. =20 i=1, 2 (4.17.5)
21 dx 21 ) 21
at x = H dv dv
2 8 l_= ¢ 2 (4.18.1)
dx dx
§v =8 v, (4.18.2)
Gu;i = § uzi i=1,2 (4.18.3)
The compatibility condition can be shown to be,
Zone (1):
dv1 h b3 h b
S 1 s 2 _ ‘ - -
L [ —1aq (u -u )=0 (4.19.1)

bodx 'iZEIb1 GAI

2)
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Zone (2):
dv2 h2b3 hzb ' dv )
L, ol [IZEI + oan ] qz(x) - (uZI-uzz) +(21-22)(3;)X=H = 0
. ba 2 _ 2
(4.19.2)

"4.4.3 Derivation of the Differential Equations

Proceeding the same way as in the analysis of prismatic
coupled shear walls, we may get the following differential

equations,

Zone (1):
d?7 - k ET ' k 2
1. 1 T = --1_1_ _ M (4.20.1)
dx? h EA .IEI ! h ZEI
1 1 1 1 1
Zone (2):
dZT k ET k L
2 _ _2 2 T = - -2 _2 (4.20.2)
dx? h EA .IEI 2 h tEI
2 2 2 2 ‘ 2
where
zEIi = EIi] + EIi2 i=1,2
1 - 1 + 1 ( )
i=1,2 4.20.3
EA;  ERyp EAy,
= EA 2 =
ffj ZEIi + E 1.2 i 1,2

To get the boundary conditions for couples shear walls
with variable cross-section subjected, only, to lateral loads
over all its height and loads at the free end, i.e. there are
no concentrated loads at the change of cross-section or at the

fixed end,
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. dv
1) at x = H u =u =0 and —1 =0
: , 11 12 dx
. d T ’
from Eq. (4.19.1) 1 =0 (4.21.1)
dx -
x=H
2) at x = 0
from Eq. (4.17.5) T2 = N2 (4.21.2)
x=0
dv dv
3) at x = H U =u and L. = 2
2 ! 2 dx dx
from Eqs. (4.19.1), (4.19.2)
q,(H,) = = q (H) (4.21.3)
2 1

4) at x = H
2

from Eqs. (4.16.5), (4.17.5), (4.18.3) we get

du, . du,.
1i _ 21 s
E A]i dx = E AZi T dx i=1,2
ji.e. ' T(H) =T (H) (4.21.4)
1 2 2 2

If the external moment M is expressed as

2

2 3
M= + —E%—-+ Qzx + M, + w; - gé (4.22)

We may get the solution of the differential equations

(4.20.1), (4.20.2) as,

» e R 2
T, = C; cosh x Yo, + C, sinh x //“g + —%w-(—g%— + Q2x + M,
R

o,
3 ' ’
- gﬁ ) + a,i {(pt+w - —gﬁ (4.23.1)
. 2 — P\ )
T, = Cy cosh x Yo7 + Cy sinh x Ya, - — (E%~A+ Qix + M,
U1




1.0

wx?

wx?

| -+

2

6H

1
Substitution of the boundary

0

R
) + 22— (p +w -
a’?

H

WX)

0
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(4.23.2)

conditions yields

0

cosh

k h
1 2
kh

2 1

R
-2
r 4
o2
2

pH?2

(—2

(sz

(pH

Ho /03 sinh Hp/a; -cosh H,/ar

-Sinh'Hz/(’T

o — ,kh - A‘ P » s -
/o3 sinh Hp/0 A2 Volcosh Ha/o;  -/a(sinh Hp/ay -/alcoshhy/o]
2 1 ,
o o Jogsinh w/a;  /ajcosh H/aj
RZ
+ 2
P O-‘ M2+N2
2
, wH? wH® R R R R wH
+ QzHz+ M, + —2- . ) (2 - )+ (2 - ) (ptw- —2)
: 2 6H o a 02 a? H
2 2 1
wH2 R R R
$Q bW - ) (- ) - (2.l %
2 2 2H o, a’ a“? o,
R 1 2
1
* Q) — (4.23.3)
1

We may notice that the solution obtained by the
energy approach is consistent with solution (I) presented
earlier if the storey height and the stiffness of the
conhecting beams are constant over the entire height of the
coupled shear walls, i.e. that the term klhz/kzh1 becomés
unity and Eqs. (4.23.3) will be consistent with Eq. (3.14),

The shearing forces can be determined from,
R

_— — — 2
q =C Y sinh x/a’ + C /o’ cosh x/o + —2— (px + Q + wx - g§”
2 1 2 2 2 2 2 af 2
R :
v (4.24.1)
o 2

LN




69
R

q, = €, /o sinh x /oy + ¢ /o] cosh x Vof + —— (px + Q + wx
j | o3 :
R
wx2 1 w
o R e S CR I

J 1 _
j The internal bending moments of the piers can be '

determined from

o= ElLL [ —ad i=1,2 (4.25.1)
J J ZEI; ji=1,2
where the curvature of the piers is,
M- T..2.
b. = J j=1,2 (4.25.2)
J I EI;

The deflection v can be determined by numerical

integration of the curvature.

4.5 Conclusions:

1) The same energy approach may be used to analyse

coupled shear walls with more than one sudden change of cross-
section. Consider, for example, a coupled shear wall model with
n cross-sections, i.e. with (n-1) sudden change of cross-secticn,
Fig. (4.2)

The governing differential equations are

d?T. k- ET. k . L.
J_ . hJ — T. = - hJ J M §=1,2,...,n
dx?2 j EAR..zeI1, Y j IEI,
J J J (4.26)
The boundary conditions are,
1) at x = 0
: Tn(O) = Nn (4.27.1)
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2) at x = H
. dT '
— 1. (4.27.2)
dx
3) at x = Hy 4 i=1,2,...,(n-1)
S RO B3 ML L1 (4.27.4)
X Jj+1¢ Kk h dx .

j+17
This leads to (2n) simultaneous equations with (2n)

unknowns. Having obtained C1 to C the axial forces and

20’

shearing forces can be determined.

The curvature of the piers is

M- T.8.
¢j 2 1 i=1,2, ....n (4.28)

The internal bending moments of the piers can be

determined from,
M - T.li

= [ ————"‘1—' ] j = ],2,...," (4;29)
My = Bl SEI.
J
2) For a coupled shear wall with variable cross-section,

Solution (I) presented before, after corvection by the factor

k h /k h , is correct.
2 1 1 2

3) The finite difference solution (I) can be extended to
take into account the analysis of coupled shear walls with

more than cone sudden change of cross-section.



CHAPTER 5

FINITE DIFFERENCE VERSUS FINITE ELEMENT METHODS

5.1 General

‘ The problem of coup1ed shear walls may be
approximated as a plane stress boundary value problem in a
multiple connected region. The method has been explained
in many pub1ications, and in particular by Zienkiewicz (14).
This part of the study, finite difference versus finite
element, consists of three parts:

1) A coupled shear wall, with the bottom storey height
three times the upper storey heights, was solved by the
finite difference method and the results compared with the
finite e]ément solution done by Girijavallabhan (11). This
 shear wall may be solved by the usual continuous method.

2) Coupled shear walls with variable cross-section
“were solved by the finite element and finite difference
methods (I) and (Il) discussed earlier. The results are
compared to confirm that solution (I) is the correct one.
The interaction coefficient, aH, of the stepped shear wall
was varjed in order_to examine the agreement of the finite

difference and the continuous methods with the finite

element method.

72
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3) Prismatic coupled shear walls with different con-
fiéufatfbns and interactiqn coefficient, aH, were analysed to
examine the agreement of the finite difference and the
continuous methods with the finite element method and the

. effect of the interactfon coefficient, for coupled shear
walls of moderate height. For the finite element method

the shear wall model was divided into discrete triangular
eiements. A sufficient number of nodal points»and elements
were chosen to obtain an accurate result. Figs. (5.6), (5.8),
(5.9), (5.10), (5.11) show the different patterns chosen in
the analysis.

5.2 Part One, Shear Wall With
High Bottom Storey

Fig. (5.1) shows the dimensions of the model shear
wall, the connecting beams, and the assumed values of the
arbitrary lateral loads. The overall dimensions and l1oads
are the same as those empleyed in an example problem by
Gurfinkel (12) who solved it by the cantilever moment
distribution method, and by Girijavallabhan (11), who solved
it by the finite element method as a plane stress problenm.

Girijavallabhan divided the model shear wall into
discrete elements, Triangular elements and rectangular
elements were used. The bottom nodal displacements were kept

equal to zero.
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The shear wall was solved by the author using the finite
di%ference method. The values obtained'by the finite element
method are taken from the paper by Girijavallabham (11). |

_ Fig. (5.3a) shows an agreement between the
_ déflection obtained by the two methods, Fig. (5.4) show§ the
stresses in y direction at different horizontal levels by the
two methods. The difference in stresses at the base is about
8%. Table (5.1) compares the end bending moments in the
lintel beams; The finite difference method gives values between
those obtained by the finite element and the cantilever moment
distribution methods. Generally, the results obtained by the
finite difference method is more than that obtained by the
- finite element method.

Figs. (5.3b), (5.3c), (5.3d) show the distribution
of the axial forces, shearing forces and internal moments
obtained by the finite difference method together with smooth
curves showing a continuous plot, which may be used for design
purposes for such structures. No values for T, Q and M were

given in Girijavaliabham's paper.



TABLE (5.1)

COMPARISON OF RESULTS OBTAINED BY F!NITE ELEMENfﬁ
METHOD BY GIRIJAVALLABHAN, CANTILEVER MOMENT DISTRIBUTION
METHOD BY GURFINKEL., AND FINITE DIFFERENCE METHOD

Beam METHOD DISTRIBUTION METHOD _
or . . - . -
Mab’ in Mba’ in Mab'Mba’ T, in M, in Q, in Mab-Mba T, in M, in

Panel kip-feet kip-feet in kip kip in kip

No. P P kip-feet kip-feet kip-feet’ kip-feet
1 31.37 31.60 75.97 4,91 97 7.422 74 .22 7.6 60
2 38.75 38.27 76 .57 9.85 203 7.488 74 .88 15.0 © 125
3 40.29 39.79 76.92 16.41 572 7.532 75.32 23.0 450
4 41.33 41l06 75.77 22.80 1144 7.434 74 .34 30.0 1000
5 41.10 40.89 72.02 30.21 1896 7.072 70.72 38.5 1800
6 38.48 38.48 64.10 36.78 5664 6.322 63.22 42.8 5380

9L
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5.3 Part Two, Coupled Shear Walls W1th
Variable Cross-Section

5.3.1 Finite Difference Versus Finite Element Methods
' For a Shear Wall With Discrete Connecting Beams

A 10 storey bujlding with an abrupt change of cross-
" section was soived by the finite element and the finite
difference methods (I) and (Il). Fig. (5.5) shows the shear
wall model considered.

The énd bending ﬁoments Mab’ Mba in the lintel beams
are computed using the slope deflection method, when using the
finite element solution, Fig. (5.2). When the span-depth
ratio of the connecting beam is small, i.e. for a deep beam,
the slope deflection mathod is not valid, thus the moments
Mab’ Mba are superscripté by * in Tables, are computed from
the shear stresses in the elements, We/may mention that the
shear stress in the finite elements of the connecting beams

in this case was approximately constant.

5.3.2. Finite Elemant With Continuous Core

The usual assumption used in solving a coupled
shear wall is that the connecting beams may be replaced by
continuous rigid lamella which can carry shearing forces

and has a shear modulus G as obtained before, from Eq. (4.1.5)

_ ks |
6 = —p- (5.3)

The finite element method was used to solve a coupled
shear wall with a continuous core. The properties of the core
are such that it has only shear resistance., Doing so, i.e.

using G as the main material property for the core, the
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assembled stiffness matrix of the structure became il1l-
conditioned. Due to these.difficﬁlties'arising in calcula-
tions some properties were given to the core to enable it to
resist normal stresses in the x direction. Hence the results
_obtained are essentially for an approximate core. The

thickness of the core is,
Ag
t = —ﬁ_ . (5.4)

5.3.3 Discussion of Results

If the governing differential equation of a coupled

shear wall is rewritten as,

) \
T 2T =-RMN (5.5.1)
dx?
where
2 = il: “_fT (5.5.2)
EA.ZEI

We may use the parameter aH to represent the inter-
action coefficient of the coupled shear walls, similar to the
interaction coefficient in coemposite beams (1) 1/c¢ determined

as,

L
h

T _n? ]
1 (5.5.3)

EA.ZEI n?

Table (5.2) gives the properties of the coupled shear
wall models examined. Figs. (5.6.1}), (5.6.4), (5.6.5) show
the deformation and stress distribution at the base of the
model obtained by finite difference solutions (I) and (II)
and by finite element for a model with discrete connecting
beams and with approximate core. Table (5,2.1) compares

the results for the end moment in the lintel beams obtained
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TABLE (5,2)

PROPERT!ES OF STEPPED SHEAR WALLS

o H.
d19 dz, 219 22: ’ d d H H
No. in in in in in FL El — | —a- k Zone (1) Zone (2)
feet | feet| feet| feet| feet 1 2
1A 12 8 24 20 12 1.0y .67 8.5 12.51 1900 4.60 3.05
24 12 8 20 16 8 1.511.0 8.5 12.5] 7420 7.40 5.10
3A 12 8 16 12 4 3.0{2.0 8.5 12.5{33200 ,4 12.00 8.90
4A 12 8 15 11 3 4,0(2.67 8.5] 12.5{59930 15.00 11.30

28
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TABLE (5,2,1)

COMPARISON OF RESULTS OBTAINED BY FINITE ELEMENT
METHOD AND FINITE DIFFERENCE METHOD FOR (1A), (4A)

FINITE DIFFER-

FINITE DIFFER-

—_ FINITE ELEMENT METHOD

© ENCE METHOD (1) EN D

iy ea, in eb, in A, in Mab’ in Q, in Mab=Mba Q, in Mab=Mba

o radians, | radians kip- kip- kKip in kip in

s x107" x107" feet feet Kip-feet Kip-feet
1 1.978 2.017 -1.216 14.4 .6 13.412 80.5 13.787 82.7
2 2.202 2,233 -0.962 20.8 .0 16.087 96.5 16.548 99.2
3 2.378 2,398 -0.556 28.5 .6 20,052 120.0 20,705 124.2
4 2.520 2.540 -0.051 36.7 .9 24,044 144 .0 25.037 150.2
5 2.541 2.605 0.500 44,0 .2 26.804 160.7 28.365 170.0

< 6 2.818 2.789 1.009 53.8 .7 26.794 160.7 29,280 176.0

~— 7 2.257 2.298 1.308 49.7 .8 27 .454 164.7 29.196 175.0
8 2.051 2.090 1.568 49.7 .8 26.161 156.7 27.334 164.0
9 1.675 1.722 1.597 44.7 .8 22,013 132.0 22.736 136.3
10 1.103 1.109 1.185 30.9 .9 13.824 82.9 14,168 85.0
1 - - - 10.5 5.23 7.85 5.26 7.88
2 - - - 27.2 17.91 26.90 18.01 27.00
3 - - - 47.0 30.91 46 .40 31.29 47.00
4 - - - 66.7 43.39 65.80 45 .40 68.20
5 - - - 80.5 51.28 77.00 57.31 86.00

< | 6 - - - 52.5 34.87 [52.30] | 59.04 188.50]

= 7 - - - 83.3 57.82 86.70 66.03 99.0
8 - - - 104 .6 70.35 105.50 73.14 109.70
9 - - - 111.7 74 .46 111.70 75.40 113.30
10 - - - 93.0 61.32 92.00 61.61 92.40

8
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by finite difference methods I andlII and finite element
wit% discrete connecting beams. Figs. (5.6.2), (5.6.3)
give the distribution of cy stresses at different horizontél
1gVels by the finite element method with discrete connecting
' béams and by the finite difference methods I and II. Table
(5.2.2) gives a final comparison of the end moments in the |
connecting beams and the free end deflection obtained by the
two methods.

We may come to the fol1o&ing conclusions,
1) ~The distribution of stresses at the base of the
shear wall model follows the theory of simple bending.
2) The agreement between the results obtained by the
finite element and the finite difference methods starts with
the values of gH > 9.0, Tables (5.2.2), (5.2).
3) Examining example 4A, the deflection obtained by the
finite difference solutions I and II are consistent, however
there is a big difference in the shearing force in the

-

connecting beam at the sudden change of cross-section. rig.
(5.6.7) shows the distribution of Mab obtained by the
different methods. The best agreement is between finite
difference (I) and the finite element method. Solution (I)
is the correct solution for coupled sheer walls with variable
cross-section.

4) For values of oH < 9.0, the finite difference method
as well as the continuous connection method gives higher and

conservative values for the forces and the deflection of the

coupled shear walls compared to the finite element methcd.
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COMPARISON OF RESULTS OBTAINED BY

FINITE ELEMENT AND FINITE DIFFERENCE METHODS FOR SERIES A

END MOMEMTN M

IN KIP-FEET,

DEFLECTION AT FREE END

ab? -2
IN LINTEL BEAM NO. 6 IN FEET X 10
z ~= |~ FINITE T 1l DA =
FINITE ELEMENT [FINITE DIFFERENCE™ (2|5 o= = |FINITE ELEMENT DIFFERENCE ; ptfim |
- = —~ o |~ ] 4 Sl S|
' ) . . T (%] =
With | Approx. |Solu- | Sclution |= jui= |wl| - ]| |With |Approx.| Solu-|[Solu- |=2| " ot o
Open- | . tion (11) WL H R S [ |open- tion [tion |moic|m | ifuwu
NO. ings ore. (1) w=zlofwz olg = iings Core. vt =y g B a
2 '; . 0'—:_’: . 2 (I) (II) [~ = .
Dimen. Zwzt=zuw = Dimen e W =l =| =
Prob. b Ol v ol b7 4 [Prob, oL o o B L
1A 153.8 114.0 {160.7 176.0 .335( .305 [.913] 3.42 5.01 5.69 {5.87 }|.610| .583| .971
2A 168.2 - 145 .4 169.0 L4691 .404 |.811] 3.54 - 4.00 14.08 |.885 | .868| .980
3A 179.3 - 77.0 112.0 1.0301 .708 |.688] 4.11 - 4,046 [4.063 L014_1.010 .995
4A [52.5% - 52.3 88.5 1.005}) .593 [.591 | 4.396 - 4.232 14.235 (1.040 [1.040} ,999

06
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5.4 Part Three, Prismatic Coupled Shear Walls

5.4.1 General |

The ana]ysis of coupled shear walls by the continuous
or finite difference methods is compared to that by the finite
.'glement method as a plane stress boundary value problem.
The interaction coefficient was varied to study its effect.
The depth of the connecting_beams to the storey height, db/h,
was varied between 0.2 and 1.0, The width of the piers to the
span of the connecting beam_was varied between 0.5 to 4.0,
The height of the coupled shzar wall to the width of the piers
varied frbm 8.5 to 12.0. The height of the opening of the
coupled shear walls to its width varied from zero to 2.67.
The storey height was 10,0 ft. and the thickness of the pier§
and the connecting beams was 1.0 ft. Fig. (5.7) gives the
dimensions and properties of the prismatic coupled shear walls
considered. |

The modé] of a coupled shear wall with»discrete beams
was treated by the finite element method in all the examples
considered. The model of a'cbupled shear wall with continuous
core was treated by the finite é]ement method in some examples

only.

5.4.2 Discussion of Results

Figs. (5.8.1) te (5.8.4), (5.9.1) to {5.9.3), (5.10.1)
to (5.10.3), (5.11.1) to (5.11.2) and (5.12.1) to (5.12.3)
show the deflections and the stress distributions at the base

of the prismatic coupled shear walls obtained by the finite
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element and the finite differencelmethods. Tables (5.3.1)
to (5.3.7) show the comparison of the end moments in the
1inte1 beams obtained by the two methods. Tables (5.3.8),
(5.4), (5.5), (5.6), (5.7) show the properties_and results
- for the coupled shear walls, serieé B,C, D,E and F respect-
ively. Each series B to F represents 4 or 5 examples of
coupled shear walls with H/d and db constant, while d/b takes
the values .5, 1., 2., 3. and 4. respectively.

Table (5.8) gives the suhmary of the properties
and results for coupled prismatic shear walls, namely the
deflection at the free end, obtained by the finite element
and the finite difference methods. |

Examining the results we may come to the following
conclusions:
1) Fig. (5.14) shows the deflection at the free end of
the coupied she&r walls obtained by the finite difference
method for groups 1 to 5. Each group 1 to 5 represents four
or five examples of a coupled shear wall with H/d and d/b
constant, while db/h varies from 0.2 to 1.0 in increments of
0.2. The coupled shear wall behaves as a homogeneous canti-
lever, as if there are no openings at all, when .the inter-
action coefficient ol > 14,
2) Fig. (5.15) shows the deflection at the free end of
" the cbup]ed shear walls obtained by the finite element method
for groups 1 to 5 mentionad before. The coupled shear

walls behave as a single homogeneous cantilever when ol > 14,
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3) Fig. (5.13) shows the deflectfon at the free end

of the coupled shear wall obtained by fhe finite element and
the finite difference methods versus the interaction
coefficient aH. For a ratio H/d = 8.5, the agreement

between the results obtained by the two methods starts when
aH > 8.0. For a ratio H/d = 12.0, the agreement between

the results obtained by the two methods starts when oH > 10.0,
Table (5.8). It is of interest to mention that for the
éoup]ed shear walls with variable cross-section, discussed in
section 2, for which the value of H/d changes from 8.5 for
the lower section to 12 for the upper section, the agreement
between the resu]ts occurs when o > 9.0, Tables (5.2) and-‘
(5.2.5).

4) Figs. (5.16.1), (5.16.2) and (5.16.3) show the
deflection at the free end of 20 storey coupled shear walls
versus the interaction coefficient aH, for values H/d equal
to 8, 10, 12.5 respectively. The ratio db/h was varied from
0.1 to 1.0 in increments of 0.1. The ratio d/b takes the
values 1, 2 and 4. We may notice thét the coupled shear walls
behave és a single homogeneous'cantilever when oH > 14,

Also the coupled shear walls may'be treated as two separate
cantilevers when oH < 0.5.

5) For moderate height coupled shear walls, for
practical purposes, the finite difference and the continuocus
methods can be used to analyse coupled shear walls when the
ratio H/d is ardundllo.o, d/b > 2 and any value of db/h
between C.2 to 1.0.
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TABLE (5,3,1) -

'COMPARISON OF RESULTS BY FINITE ELEMENT AND
FINITE DIFFERENCE METHODS FoR (1B1), (2B1)

FINITE ELEMENT METHOD

FINITE DIFFERENCE METHOD

Lintel
Beam X . . . .
ea, in eb, in A, in M@b’ in Mba’ in q, in Mab = Mba, in
radlins radlins feeE; kip-feet kip-feet kip Kip - feet
x10 x10 x10
1 11.455 11.507 -4.473 12.20 12.40 6.202 12.4
2 11.525 11.522 -4.315 32.00 32.00 18.546 37.1
3 11.450 11.433 -4.089 53.00 52.80 30.327 60.6
4 11.217 11.205 -3.786 76.00 75.60 43.920 87.8
5 10,787 10.770 -3.392 100.00 98.80 58.031 116.0
: 6 10.077 10.060 -2.888 124.00 123.60 72 .097 144.2
= 7 9.044 9,005 -2.248 148.00 147.60 85.486 171.0
- 8 7.606 7.548 -1.456 175.00 174.60 96.622 193.4
9 5.549 5.848 - .536 187.00 191.00 100.771 201.5
10 3.050 2.917 .095 - 141.00 139.00 83.427 166 .8
1 6.893 6.983 -5.040 13.10 13.30 8.699 34.8
2 7.110 7.112 -4,767 25.60 25,70 20.460 81.8
3 7.172 7.163 -4.,347 38.40 38.30 27 .285 109.2
4 7.154 7.146 -3.800 53.20 53.00 35.884 - 143.5
5 7.016 7.010 -3.133 68.70 68.50 45,020 180.0
— 6 6.717 6.705 -2.345 83.80 83.00 53.677 214.7
~ 7 6.213 6.182 -1.439 97.60 -97.40 60.640 242.5
3 5.430 5.408 -0.451 118.00 117.50 63.980 256 .0
9 4,172 4,449 0.481 108.20 110.40 60.234 241.0
10 2.537 2.434 .797 77.50 76.80 42,960 172 .0

L6



TABLE (5.3.2)

COMPARISON OF RESULTS BY FINITE ELEMENT AND
FINITE DIFFERENCE METHODS FOR (2B), (4B)

FINITE ELEMENT METHOD » FINITE DIFFERENCE METHOD
Lintel . . R .
Beam e-a’ in 9b’ mn 4, n Mab’ n Mba’ m Q, in Mab= Mba in
radians radians feet . . .
" 4 kip-feet kip-feet ki
x10° x10~ x10”° P kip-feet
] 2.093 2.187 -1.413 12.00 12.10 8.87 53.2
2 2.341 2.398 -1.144 20.60 20.80 18.48 111.0
3 2.409 2.415 -0.769 26.10 26 .30 20.23 121.3
4 2.458 2.457 -0.295 32.70 32.70 22 .42 134.5
5 2.468 2.234 0.234 39.30 39.40 24 .56 147 .2
@ 6 2.421 2.430 0.775 45.40 45.60 26.11 156.6
o 7 2.300 2.311 1.274 49.70 49,80 26 .52 159.0
8 2.094 2.073 1.652 51.20 51.00 25.09 150.7
9 1.822 1.558 1.735 47 .40 46 .60 20.99 126 .0
10 1.074 -1.040 1.231 30.90 30.70 13.11 78.6
1 4,150 4.213 -1.558 12.95 13.10 5.93 11.85
2 4,223 4,224 -1.454 25,6 25.6 15.49 31.0
3 4,178 4,172 -1.306 40.2 40,2 23.06 46 .1
4 4,074 4,066 -1.120 56.5 56 .4 32.22 64.4
o 5 3.893 3.863 - .89% 72.9 72.8 41.89 82.9
< ) 3.616 3.600 - .630 90.2 90.1 51.38 102.8
7 3.221 3.192 - .323 106.6 106.3 59,88 120.0
8 2.671 2,663 .020 121.2 121.0 65.78 131.6
9 1.216 2.085 .331 124.3 126.7 65.45 130.9
10 1.068 1.053 .370 88.1 88.0 50.30 100.6
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TABLE (5,3.3)
COMPARISON OF RESULTS OBTAINED BY FINITE
ELEMENT AND FINITE DIFFERENCE METHODS FOR SERIES Bl AND B

10 storey build. h=100 ft.

DEFLECTION AT FREE END

H = 100 ft. t=1.0ft. E=4.32x705 | END MOMENT M, IN KIP-FEET E
k.s.f. IN FET X 10°
G= 1.985x10%.s.f. v=0.15, 1N LINTEL BEAN NO. O o
d,=2 ft. FINITE ELEMENT Dﬁ"éégfgg’ o | FINITE ELEMENT [FINITE |2 S| §
gith Agprsx. ENCE %5«% With  Approx. g,ﬂEEERW %gg‘:’
No. d. b, %, d |H vpen- ore, — 0 - ’ — o—
in in in |b 7D oH [ings “’3’25_’ 1232 core L ola
f£t. | ft. | ft 2 Dimen c'f,[_‘: 2 Dimen. il BN
Prob. e Prob. exrE
L. =° L
11 | 8 | 4 |12 (2 |12.5012 | 174.8|190.0 | 193.4 905 |10.03 |10.56 | 9.89 [1.010
28] s | 8 l16]1 |12.508.5 | 117.71180.0 | 256.0 | .461 | 7.63 | 8.65 | 9.32 | .819
31 | 8 |16 |24 |0.5/12.5(3.6 | 55.6|195.5 | 241.0 | .231 | 6.17 |11.60 [14.03 | .440
28 |12 112 241 8.5/3.05| 51.1]106.7 | 150.7 | .339| 3.43 | 4.50 | 5.69 | .602
38 |12 | 6 |18|21 8.5(5.7 | 90.4] - 150.8 | .600 | 3.645 | - 4.00 | .9M
a8 |12 | 4 |16 (3| 8.5(8.9 | 121.-| - 131.6 | .920 | 3.920 | - 3.75 [1.040
s6 |12 | 3 |1s5]4] 8.5015 | 150.2] - 112.8 | 1.330 | 4.148 | - 3.68 |1.126

66
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TABLE (5.4)

COMFARISON OF RESULTS OBTAINED BY FINITE ELEMENT
AND FINITE DIFFERENCE METHODS FOR SERIES C.,

10 Storey coupled Shear Walls,

END MOMENT Mab’ in

DEFLECTION AT FREE END

h = 10 feet.
H =100 feet, - )2
g =4 raet KIP-FEET IN LINTEL IN FEET x 10
BEAM NO. 8
z L]
Wl S = &
i i i w
e R A L FINITE | FINITE Fl=w | FINITE| FINITE | |Fw
ft. |feet d ELEMENT |[DIFFERENCE |=|=ic [ELEMENT [DIFFERENCE|=|= i
o o Loa
¢ | 12 | 24 |36 |.5 8.5 | 4.50 205.0 | 286.0 0.717| 1.84 | 3.13 0.588
2¢ | 12 | 12 |24 |1 8.5 | 7.85 190.0 | 277.0 0.686| 2.25 | 2.41 0.933
3¢ | 12 6 (18 |2 |8.5 [13.20 | 192.0% 196.2 0.980| 2.91 | 2.86 1.017
ac | 12 4 [16 |3 |8.5 [17.00 142.3%|  145.3 0.980| 3.35 | 3.29 1.018
5¢ | 12 3 {15 |4 |8.5 [19.75 112.0%| 114.5 0.980| 3.63 | 3.58 1.013

20l
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TABLE

(5,5)

COMPARISON OF RESULTS OBTAINED BY FINITE ELEMENT

AND FINITE DIFFERENCE METHODS FOR SERIES D

0 Storey Coupled Shear Walls

] END MOMENT M_, IN KIP-FEET | DEFLECTION AT FREE END
h = 10 feet ab ' .
H = 100 feet IN LINTEL BEAM NO. 8 IN FEET x 102
d, = 6 feet
. | e =
NOL| d b 2 .
in [in lin |d |H o | FINITE | FINITE | li=e | FINITE | FINITE |WE|HE
feet |feet|feet| [d~ ELEMENT |DIFFERENCE| Z&| S | ELEMENT |DIFFERENCE | ZE| i
oo e el o
1w |12 | 24 {36 |.5]8.5]7.90| 212.0 | 387.0 .548 1.35 1.62 | .832
2d | 12 | 12 |24 [1 {8.5012.70 | 350.0 |311.0 1.125 1.92 1.88  |1.020
30 |12 6 |18 |2 |8.5[18.70 | 191.0*| 181.3 1.054 2.76 2.68 |1.030
40 | 12 4 | 16 |3 |8.5]22.50 | 147.3%| 146.7 1.004 3.25 .21 [1.012
50 | 12 3 |15 |4 |8.5(25.40 | 115.0%| 115.0 980 3.56 3.53  {1.010

S0l
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TABLE (5,6)

COMPARISON OF RESULTS OBTAINED BY FINITE ELEMENT

AND FINITE DIFFERENCE METHODS FOR SERIES E,

10 Storey coupled Shear Walls,
h = 10 feet END MOMENT Mab’ IN KIP- DEFLECTION AT FEEE
H = 100 feet, END IN FEET X 10
db = § feet FEET IN LINTEL BEAM NO. 8
q b . FINITE FINITE &S | FINITE | FINITE =
NO. in in in d ! H ELEMENT { DIFFER~- — Z | ELEMENT) DIFFER- —_ =
feet |feet | feet bl d aH ENCE o] =ty ENCE HEES
0] e L — ] e
2 Ll 2= = L] 2 .
bt ] et ot ]
g o o k.o
1E 12 24 36 {-5 8.5 {11.50 340.0 426 .0 .800 1.09 1.16 .940
2E 12 12 24 1 (8.5 {17.10 331.0% 318.6 |1.037 1.76 1.72 1.023
3E 12 6 18 2 18.5 123.00 208.0%* 202.2 11.027 2.68 2.64 1.015
4E 12 4 16 | 3 18.5 |{26.80 150.6* 147.1 {1.022 3.21 3.18 ~1.010
5E 12 3 15 4 18.5 129.90 115.5%* 1156.2 ]1.005 3.53 3.51 1.005

L0l




108

I* o —
, /
f /
-/
/
B i r
)
/
JI
|- / ///
/.
/
/
N . % ¢
/

/

)
/ / —e-n---Tin, elemn.
_ : diff.

—— fin .

» 005 .01

o1

L

deflection, f1 - deflection, Tt

stress distribution stress distribution
at base at base

FIG., 5.11.2 SHEAR WLLL 2E
'OVER ALIL DEFLECTICN AND STRESS DISTRIBUTICH AT BASE

OF SHEAR VALL.

23]

IG, 5.12,1 SHEAR WALL 1%



109 -

=

elem,
daiff,

fin.
fin.

.01
deflection, ft

stress distribution
a2t base

i3 1
01 .02
deflection, ft

+ stress distribution
N at bese

FIG, 5.12.2 SHEAR FJALL 2F ¥
OVER ALL D&¥ STtE

IG. 5.172.7% SHEAR
S DISTRIBUTICH AT BA

WALL 3F




"TABLE (5.7)

COMPARISON OF RESULTS OBTAINED BY FINITE ELEMENT
AND FINITE DIFFERENCE METHODS FOR SERIES F,

10 Storey Coupled Shear Walls END MOMENT M, , IN DEFLECTION AT FREE
h = 10 feet END IN FEET X 102
H = 100 feet KIP-FEET IN LINTEL
db = 10 feet BEAM NO, 8
d b 2 L E' )
NO. in in in d H H FINITE FINITE fm ; FINITE |FINITE ol g
| —— o ELEMENT ([DIFFER-| i =jusw ELEMENT |DIFFER- w W >
= W= u —l— = 0w
s b Zlzw |—~==x
wlu o @
1F 12 24 36 .5 8.5 {15.16 219.0 440.0 | 0.500 0.73 : 0.99 738 611
2F 12 12 24 1 8.5 20.90 345.0 348.0 0.992 1.60 1.64] .975 |1.446
3F 12 6 18 2 8.5 126.60 214.0 217.0 0.986 2.63 2.6211.010 12.510
4F 12 4 16 3 8.5 ;30.50 154.0 158.0 0.975 3.17 3.16 1;003 3.090
5F 12 3 15 4 8.5 ({33.70 95.6 96 .0 0.995 ; 3.51 3.511}1.000 |3.440

oLl




TABLE (5,8)
PROPERTIES & RESULTS OF PRISMATIC SHEAR WALL FOR SERIES Bl,B,C,D.E & F

d 4 In-g 15roecs Jsed 5T

o | d b L b b |7 % Ton v, — V= O

~ 1 NO, | . . . d h ratio, 2a Qw —|

S I U B SO B L B A -l il L LTS LI TR STV =i o ol e B

% . : : . Fin. DiffiSL & 8 & '
B B I Z 7 2.5 | .2 2.00 T2 T.070 9,89 T0.03[ 10.03 | 32000
2 8 8 116 2 1 12.5 | .2| 1.00| 8.5 .819 9.32 7.63 7.33 5750
3 8 |16 |24 2 | .5 [12.5 | .20 .50/ 3.6 .440 14.03 6.17]  1.32 310
2 |12 [12 [<4 2 T |38.5] .2| .67 3.05] .602 5.69 3.43 .97 1905
3 |12 6 |18 2 2 | 8.5 .2| 1.33] 5.7 911 4.00 3.64{ 3.25| 11223
4 |12 4 |16 | 2 3 (8.5} .2{ 2.00| 8.9 | 1.040 3.75 3.91 8.03| 33167
5 |12 3 |15 2 4 (8.5 | .2| 2.67{15.0 | 1.126 3.68 4.14] 22.80]| 105730
1 |12 |24 |36 4 | .5 {8.5| .4/ .25| 4.50{ .588 3.13 1.84/ 2.06 1910
2 (12 112 |24 4 1 | 8.5 ] .4] .50| 7.85] .933 2.41 2.25/ 6.26| 12640
3 {12 6 |18 4 2 | 8.5 .4| 1.00[13.20] 1.017 2.86 2.910 17.70| 59930
4 |12 4 |16 4 3 | 8.5 .4] 1.50{17.00} 1.018 3.29 | 3.35 29.30| 120400
5 112 3 115 4 4 | 8.5 | .4| 2.00{19.75{ 1.013 3.58 3.63] 39.50| 182300
1 |12 {24 {36 6 | .5 (8.5 .6/ .16| 7.90| .832 ~1.62 1.35] 6.33 5930
2 112 |12 |24 6 1 | 8.5 .6 .33[12.70{ 1.020 1.88 1.92| 16.40( 33170
3 |12 6 |18 6 2 1 8.5 .6 .67[18.70{ 1.030 2.68 2.76| 35,50 120400
4 {12 4 |16 6 3 18.5| .6] 1.00{22.50] 1.012 3.21 3.25| 51.40/.212800
5 112 3 115 6 4 8.5 | .6] 1.33({25.40] 1.010 3.53 3.56| 65.50| 302600
1 {12 |24 [36 8 | .5 | 8.5 .8 .08[11.50] .940 1.16 1.09] 13.40( 12640
2 |12 |12 (24 8 1 | 8.5 | .8 .16{17.10| 1.023 1.72 1.76] 29.70| 59939
3 12 6 18 8 2 8.5 .8 .33123.001 1.015 - 2.64 2.68 53.70] 1823006
4 |12 4 |16 8 3 {8.5] .8/ .50126.80| 1.010° 3.18 3.21] 73.00] 302600
5 |12 3. |15 8 4 | 8,51 .8{ .67/29.90] 1.005 3.51 3.53| 90.80[ 419100
—TTZ (26 [36 |10 [ .5 | 8.5 |V.0[ 0. [15.16] .738 .99 732330 21880
2 {12 {12 |24 {10 1 | 8.5 1.0l 0. {20.90{ .975 | 1.64 1.60] 44.40| 89650
3 112 6 |18 |10 2 | 8.5 (1.0] 0. {26.60] 1.010 2.62 2.63 71.80| 243000
4 {12 4 |16 |10 3 [8.5(1.0] 0. 1{30.50] 1.003 3.16 3.17| 94.50| 390200
5 112 3 115 110 4 | 8.5 [1.0] 0. {33.70] 1.000 3.51 3.51 115.00| 533500
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6) For H/d = 8.5 and ol < 8, H/d = 12 and oH < 10,
the finite difference method as well as the continuous connect-
ion method gives higher values for the fofces and the deflection
of the coupled shear walls cgmpaked to the finite element
method. That is to say the finite différence and continuous
methods give conservative forces and deflections for such
structures.

For H/d = 8.5 and aH > 8, H/d = 12 and aH > 10
the agreement between the finite difference and continuous

methods compared to the finite element method is gocod.



CHAPTER 6
ANALYSIS OF MULTI-LAYERED BEAMS

6.1 General

Fig. (6.1) shows a multi-]ayered beam of "m" layers
connected together by shear conﬁectors and having "2n" panels
in the case of a simply supported beam symmetrical case, and
"n" panels in the case of a cantilever. The finite differencé
method for composite beams was used to analyse this problem.
This problem is analogous to that of a multi-piered coupled

shear wall.

6.2 Basic Assumptions

1) The layers of the sandwich beam deflect equally

at all points along their lengths; and have equal curvatures
at any section.

2) The strein distribution in each layer is linear;
however, the strain distribution, in general, is not
continuous, Fig. (6.2).

3) The shear connection between the slab and the beam
is provided by shear connectors placed at discrete points

along the span of the beam.
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a) Real Structure

Jinply supported multi-layered beam

number of panels = 2n

number of layers = m
4 re 1 3 A
* = \ ; \ b) Equivalent system.
' . , ' 2

/

¢) Real Structure
Cantliver multi-layered beam
nunber of panels = n
number of layers =m

Y
. 0 I SR ) ) ) 1. . 4
. ; . \ X N LD i 7
: ) X , ) 3 2
X . . \ . . . | 2
+ ; : L + —+ ' T + +
, X X X X J=1, N
! ' ' bt | A —
' N N N + + Ll-l»-1 } / ')
1 1 A 3 - y E— } + i A / o
(1=1)_(a) (1) m (n)

FIG. 6.1 1ICDLL OF NULTI*LAYERED BEAIS



121

6.3 Formulation of the Problem,
Finite Difference Solution

_ The equilibrium and compatibility conditions are
Fig. (6.2).

1G-1 G-

Yiser TV - (e5(5-1) = S(5-1)5) &
h(i)
J = 2:3,4 ...... s M
i=1,2,3,...... , n (6.1)
Mi = M]i + M2'i + M3’i + e + M(J"])T + Mj_i + M(J+1)1 + .....
+ Mn_l + [T(])(i)llz + Tz(_i) 2,23 + ... + T(j_-l)(i)z(j_])j
TGO Gey P * Tin-1) (1) (m-1)n]
j o= 2,34, ..... s M
i=1,2,3, ..... » N (6.2)
The strains can be found as, Fig. (6.2)
T,. \ T, v M, .v: Cs s .
€5(3-1) = (i-1) (3)) o Z§)i ~({3-1)i
EA . EA. EI,
j N j
S TG-2)() - _Ta-ne, MG-nisG-n;
S (3-1)3
 EAj EA;_ ET; 4
J = 2,3,4,..... m
i=1,2,3, ..... , n (6.3)
The layers have equal curvature yields,
Mo M MGl Meoe L MG
2@ EI, R, L 3 P



Eill(i)) M
€12// 1 - 11
Z=rs 4{: _Eill(i)) M,
o - adT(2)(i) A
52 N Ee) @) )mﬁ
<5 3 e 1T(3)(1)
s VO EG)4) \).141
< Ttayey 1
1
€ /// : + 311:2)(i911(3 1) !
(J-l)/j/ - 2 T(3-1)0
| 3(3-1) ; ~N° 3‘_3__3;1)(1>)r.a
RERFS ' 3 P 1
€ STy (4) )m
(3+1)3J R (F+1)L
€(ﬁ+l)(?+?) I+l T(341) (1)
/€
pd i " . T(m-l)(i)>Mmi
(i)

strain distribution

FIG. 6.2 STRAIN DISTRIBUTION AKD

ecuilibrium condition

EQUILIBRIUM CONDITION
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_ Mni M - Tmym*e * Tei®es * oo T (1) 4 m-1)nd
EIm T EI -
| (6.4.1)
where
IEI = EI] + EI2 + "f+ EIj_1 + EIj + EIj+T + .. +Elm
Jj=2,3, ..... s M
i=1,2, ..... .0 (6.4.2)

If the amount of slip permittéd by the connéctor
(vy) is directly proportional to the load transmitted, we get,

i(i-1) i(i-1) i(3-1)
i = Ky Y

2,3,4,...., m
1,2,3,...., N (6.5)

The equilibrium of forces in the horizontal direction

yields, Fig. (6.2),

J

i(3-1)
e = TG-1G) - Tg-nG-
J=2,3,...... , m
i=1,2, ..... s, N (6.6)

Substitution of Eqs. (6.6), (6.5), (6.3) in Eq. (6.1)
.yie]ds,

TG-nGi+n - TG0 G | TE-n T TGanE-n) J‘[T<j-1)(i)

Ki+1 K J
T Mo fu-ns L Ta-20), TGena)
EA; ET EAS 4 EAS

CMG-ni G- } dx C(6.7.1)
29 ‘

1
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Substitution of Eq. (6.4.1) in Eq. (6.7.1) yields,

/

U R ' - K SN
(j-1)0-1) 1 1 (3-1)(i+1) _
3(351) [ FICEL I J(j-l)} TGg-na) t iGN

-k K ki ki1
J,{[ o, ] T - TGy - Ta-2)0)
J- 1
EA, EA EA EAS
. [ Mio- T Mzt Teyintes *oeeeet T(m-1)(i)‘(m-1)m1] ;
- P X
3G-1) L El
i.e. ' ' (6.7.2)
T,. . T, . .
(j-1)(i-1) 1 1 (j-1)(i+1)
IE R [ e DR 16 DN RN B DI C I SE)
Ky | i ki ki
- . 2
] 1 i(d-1) Y3051
J{[EAj_] PERT T TR ] UTRITS I R [T(])(i)212 *
T(2)(i) %23 * «---- *TGen (M- (G-2) T TG (g et
1 o I T I [ 15 DA T6 £ D ) B
(m-1)(1) *(m-1)m | EAj Tt J (3) (1)
1 3G-1) 5-2) (-1) ‘ Yi5-1)
) [EAj-l ) ZE J T(j‘z)(i)} o -J‘ er 1
_ ' (6.7.3)
1.9.‘
T, . R 2.,. L, . Y. .
(j=-1)(i-1) [ 1T 7i65-1) (J-U(J-Z)T
i |
1 I 1 2j(g-l) ]
" [ 57 6 D A 16 B B ¥ VO 7 Y 3 J“(i)J TG-nh)
k. k... J J
i+
[ 5(3-1%(5+1) 855-1) |
T T e ] ") WG T e T T



125

T2)(iytes * =---- f G- M- G2 T T e Y
""" * T m-1)(4) L(m-l)mJ hi)
e (3=1)(i+1) *i5-1) q
53T -~ My dx ... ’(6.7.4)
i+1
i.e.
T,. . hy ey Roy s
-1 -1 -1
Sl - (1)ZE§J ! [T(l)(i)”12 YTy (i) e e +
'ki _
T(j-s)(i)‘(j-s)(j-z)]
1 2iGi-0 -1 i-2)
) [ EA5 1 i SEI J heiy T(i-2)(4) )
1 1 ] 1 Yii-1)
y 30Ty 5(5-1)'*( to ¥ )“<1J
Ky K EAj 7 EA; 13 G
1 Y- G
T(j-l)(i} ' [ T el } ") T3 ()

J

hpevR.y s
(i) -3(3-1)
ZET [T(j+1>(i)“(j+1)(j+z> vt T(m-l)(i)ﬂ(m-l)hnﬂ

L NgenGeny L J‘ FiGe1) gy
JG-1) LEI i
i+l J = 2,3,4, ,m
| = 1,2,3, s N
(6.8)

The bdundary conditions are, for the cantilever,

fig. (6.1C),

‘T(j_])(o) =0 J=2,3, ...., m ..(6.9.1)
i(i-1)

n+l
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i(3-1) . ,
] = @ J=2,3, ..... ,m
'V (6.9.2)
Equation (6.3) represents a typical equation for
panel (i), (i = 1,2,3,...,n), between two layers (5) and (j-l);,(j=
2,3,4, ...,m). For a multi-layered beam with "n" panels
and "m" layers there are gn.(m-1)] such equations resulting
fn a set of [n.(m-1)] simultaneous equations.
This can be written in matrix notation as
[B] {T} = {A}  ...... (6.10.1)
[B] is a band matrix with half band width equal to
(m). {T} is a vector. {A} is a vector.
Having obtained the axial forces T(J—l)(i)’ [5 =2,3,
ees.smand i = 1,2, ..., n), the other forces and deformations

of each layer can be determined.

6.4 Numerical Example

A cantilever multi-layered beam with n = 20, m = 15,
span = 200 in., E = 3.0 x 10°% 1b/sq. in., Aj_] = 2 sq. in.,

25(3-1) = 2 in., h(j) = 10 in., thickness = 1 in., k; varies from
1000 to 1,000,000 1b/in., subjected to a uniformly distributed
load p = 2 1b/in. A computer program was developed to gét

the forces and deformations of the layefs. Fig. (6.3) shows

the strain distribution across the layers in the panel nearest
the fjxed end. It may be noticed that when k = 1000, the

multi-layered beam behaves as separate iayers and when k .=

1,000,000 it behaves as a homogeneous beam following the
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the simple bending theory.

6.5 Formulation of the Problem,
Continuous Solution

Assuming the shear connection between the different
layers as a continuous one, a continuous solution for the
multi-layered beam can be developed.

Eq. (6.1) can be rewritten as,

] i(j-1)
Y‘i )
e [C R DRI E B PF (6.11)
Eq. (6.5) can be rewritten as,
i(3-1) _ i(i-1) i(j-1)
Qs heiy = Ky Y (6.12)
Differentiating Eq. (6.12) once yields
427 i(5-1)  d 36-1)
3 : JUJ- Y;
(J-1) (i) heiy = Ky . — (6.13)
dx 1 _ dx

Substitution of Eqs, (6.13), (6.3) in Eq. (6.11)
yields, '

h,. - d2T, . . L.,

(i) -1) -1)

kin'J) | (ilz ol Jigx' Ty *ztTagintes + oo, |

i

.. L, . .
1 J(j-1)"(i-2)(j-1)
*TG-a A G-ad f Teny o1 1 T-2)(0)
S PN R R %(3-1) 1T, e[l MDY,
EAJ EAj_] TEl .(J-])('l) EA1 TEI

R 1€ £ D g a4 £ T 2 ]

(NG - T @+ GGt (m-1) (1) *(m-1)m
. ‘j(j;;) M, (6.14)

z
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j Eq. (6.14) represents the governing differential
eqdation of the problem. For a mu]ti-]ayered beam of m 1ayérs,
there are (m-1) second order simultaneous differential
eéuations, Eq. (6.14). The finite difference solution in
section (6.3) can be considered a way of solving the (m-1)
second order simultaneous differential equations (6.14).

6.6 Approximate Analysis of Multi-Piered Coupled
Shear Walls ' - -

Considering a multi-piered coupied shear wall with m
'piers and assuming the point of contraflexure to be at mid-span
of the connecting beams, the above analysis of multi-layered
beams can be applied.

Equation (6.8) represents a finite difference
equation for panel (i), (i=1,2,3,...,n), between two piers
(&) and (5-1),'(5 = 2,3,4,...,m). For a coupled shear wall
with n storeys and m piers connected together by m-1 connecting
beams there are [n.{(m-1)] such equations resu?ting in a set
of [n.(m-1)] simultaneous finite difference equa?igns.

hThe modulus of the connecting beams, kiJ(J']) where

(j = 2,3,...,m), can be foung as:

J(J-1) bi, s bt
K, = 1./ [ J(J-1) + 9(J-1)
12E Iy. - G Ap. .
J(J-1) J(d-1)
j = 243,000, M
i=1,2,..0, 1
where by, 7 1y AL, . s I, . represent the span, the
JE-17 oy Py

reduced area and the moment of inertia of the connecting beam
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between piers J and (j-l), (j = 2,3,...,m).

6f6.1 Numerical Exémb]é

To illustrate the use of the theory, a coupled shear
wall with 6 piers was analysed. The properties of the shear
‘wall are, higy = 10 ft., H = 100 ft., bjc i3y = 5 ft.,
23(3-1) = @5 ft., dj = 20 ft., dp3(J-1) = 2 ft. and thickness
1 ft. under a uniformly distributed load of 2 kip/ft.

Figs. (6.4), (6.5) and (6.6) show the distribution
of axial forées in the piers, the shearing forces in the
connecting beams, the internal bending moments in the piers,
the deflection of the piers and the strain distrfbution at

the base of the coupled shear wall.
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CHAPTER 7

COUPLED SHEAR WALLS WITH ELASTIC FOUNDATIONS

7.1 General

The majority of methods of aﬁa1ysis commonly used
by engineers for the design of shear wall structures make
the assumption that(the structure is built into a rigid
foundation. Such an assumption simplifies the mathematical
analysis of the problem.

However, depending on the form of the structure
and the‘parficular soil conditions encountered, it may be
considered desirable to estimate the effects of differential
settlements produced by foundation movement. It is desirable
to be able to estimate accuractely the influence of the
foundation movement on the stress distribution and the overall
deformation of the coupled shear wall. For this purpose, it
is convenient to assume that the structure rests on elastic
supports, which yield both vertically and rotationally under
the action of axial forces and moments, respectively.

Coull, (13) in his recent paper in 1971, presents
an analysis of a plane coupied shear wall restfng on elastic
supports. His analysis was based on the continuscus connection
method. Here, we develop the analysis of the plane coupled

shear wall resting on elastic supports using the finite

134
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difference method. This yields the solution of the problem
in a simple way.

Coull made some mistakes in his paper. The solution
of a coupled shear wall, baseduon the continuous method,
are redeveloped ahd presented here, and the error by Coull

pointed out.

7.2 Formulation of the Problem, Finite Difference Method

Consider the coupled shear wall shown in Fig. (7.1).

For pdne] (i), the finite difference equation can be found as:

Ty | T,.
(1"]) ( ] + ] + (1+])_ J\
- Yy, h,. ) T,. + = - z M dx
Ky kKo ki CG)T) () T TR
h(i)
where (7.1)
Ky = 1/[ oo + =2 ]
i T2ET. . CAF i
_ 1 1 22
vy s lert v * ser 3 (7.2)
1 1 2 2
- 22
¢ T El
IEl = ElI + £ 1

\M is the external applied bending moment at panel (i).
At the upper free end, the boundary condition is,
At x = 0, T(0) =0 (7.3)
To get the boundary condition at the fixed end,

two different forms of structure - foundation interaction will

be considered.

7.2.17 Elastic Vertical Mcvement

" Assume that the walls remain vertical, but, owing to
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the elasticity of the foundations, a vertical displacement
occurs which is directly proportional to the axial force at
- the base of the wall. The relative displacement Yp+1 2% the

base may be expressed as:

Y+l = KY T(n) ceen (7.4)
where KY is a constant depending on the foundation system used.
For example, if the cross-sectional area of the two foundation
systems are a1 and a2 with K1 and K2 the moduli of the subgrade
reaction, the relative vertical displacement at the base

becomes, Fig. (7.2),

- 1 ]
Yn+-| = T(n). ( k a + k a ) LI ) (7.5)
1 1 2 2 .
where T(n) is the axial force in panel (n) at the base.
Proceeding as in Chapter 2, the n simultaneous finite

difference equations can be fcund as:

.
S S E BN I +-(~g-)=-JCde
et vho)) Tt e R (D)
T T
1 3) .
B *W(Z)“(Z)’T(Z)*k‘u T - J ¢ M odx
2 2 3 3 h(2) (7.6)
T(i-l) - k] +r + ¢(.)h(.)) T(.) + 1(‘+])= - J z M dx
i i i+l ! ! ! i+l h(i)
. |
-1 1
E:()'L_)"('E;_+w(n)h(n)+KY) Tm) = - [ M dx
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The boundary conditions are
0 (7.7)
At x = H Yn+~' = - T(n). KY. (7.8)

At x = 0 T(0)

7.2.2 Elastic Rotational Movement

Assume the foundations rotate under the influence
of the imposed moments at the base of the walls. Thg base
rotations for the two piers will be ;he same, 6, and
proportional to the applied moment Moy (i=1,2). The moment

rotation relationship may be expressed as

g—":-=e=i<e My - (7.9)

where Ke is a constant which depends on the stiffness of the
foundation system.

For example, if the applied moment is resisted by a
linear pressure distribution on the base of the foundation slab,

the edge displacement & is given by, Fig. (7.4),
M,.d/2
- _p .1 H
6 K K I * & & & & (7.]0)

where K is the modulus of the subgrade reaction, p is the edge

pressure, and I is the second moment of area of the siab.

The rotation 6 of the foundation is then given by
M

d
R o e (7.11)
The bending moment at the base of wall 1 is given by

I
M]H = 'I—;-;ljr‘z— (M - T(n).Z) (7.]2)
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The relative displacement at the base, Yn+1® 1S
equal to &6, i.e, ‘
= 1 - ‘
Yn+~l 2 T?:I‘z_ Ke] (M T(n)oz) s e s s 0 (7.]3)
Now the n simultaneous finite difference equations

can be found as:

T
1,1 (2) .
SO vy Tyt e [ e
1 2 2 h('l)
T T
i e TR TPILICIN P = | ewa
2 a 2 3 3
h(2)
Ill:ll.-( PR B Vraah,on) Toay + T(’+1) = J z M dx
j ks K41 ()7 ()" (1) i+ n(3)
T("']) ( + h + % K.7) T
Tk T VT ¥ T, Pel’ T(n)
I
- j c M dX A 1 .K91.M
h(n) L*,
The shear force in any connecting beam Qi is obtained
from,
Qi = T(i) - T(i-]) ceeacae ' (7.]5)
The curvature in panel (i) is
M- T(i).z
q)'i = -——S:——‘E—T——*— ....... ’ (7.]6)

The deformations of the coupled shear walls can be
determined by numerical integration of the curvature and
adding to them the linear effect of the rotaticnal settliement
at the base which has the values [8.(H-x)].

The strain distribution at any section can be deter-

mined from the expressions mentioned in Chapter 2,
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7.2.3 Elastic Vertical and Rotational Movement

If elastic vertical movement and rotational movement
occurs simultaneously, the n simultaneous finite difference

equations can be found as:

T .
1 1 (2) .
, - ('E‘_ + - + w(])h(])) T(])*' K = - J‘ z M dx
1 2 2 h(])
T,, T
1 1 3
R e Y2)"(2) T2y * R - f ¢ M odx
2 2 3 h(2)
...................................... (7.17)
T T
(i-1) 1 o h ) T (i+1) . | M d
k1 (k—;‘i' E—————i+] + V(.') (1)) (i) + e h(;[) 4 X
T I
(n-1) 1
n - ( k_n“'" + q)( )h(n) + K + 2, Ix':'I Ke]) T(n) - CMdX
. h(n)
- LT - Ky oM
1 2
The boundary conditions are,
At x = 0 T(0) =0
I
At x = H Yne] © "T(n)KY+ 2 " iI Ke](M—T(n).z) (7.18)
) ' 1 2

The above finite difference method is valid for analysing
coupled shear walls with variable cross-sections resting on

elastic fcundations.

7.2.4 Example

To illustrate the use of the theoretical expressions,
and to examine the influence of fecundation settiement on the

stresses and deflections in a system cof coupled shear walls,
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th€ example shown in section 2.2.4 is used.

' Tables (7.1), (7.2) show the influence of a
representative range of vertical and rotational foundation
sﬁiffness on the axial forces and moments at the base, and
tﬁe maximum deflection at the top of the structure.

Figs. (7.5) and (7.6) show the influence of
rotational and vertical stiffness on the axial forces and
moments in the piers and the deflection of the piers.

» As the vertical stiffness, KY’ increases, the
deflection of the sheér wall and the internal moments in the
piers increase while the axial forces in the piers décrease.

As the rotational stiffness, Ke’ increases, the
deflection of the shear wall and the axial forces in the piers
increase while the internal moments in the piers decrease.

Vertical compliance of the foundation is more
significant than the rotational compliance of the foundation,
both for stress and def]ection}considerations of the
structure. .

7.3 Formulation of the Problem,
' Continuous Connection Method

Consider the coupled shear wall shown in Fig. (7.1a),
subjected to a concentrated load at the top Q, a distributed
load of intensity p and a triaﬁgu]ar load of intensity w at the
top.

The governing differential equatioh can be found as,

€49 . 42q = - B2{p(H-x) + m— (H? - x%) + Q} (7.19)



INFLUENéE OF VERTICAL STIFFNESS AND ROTATIONAL STIFFNESS
ON AXIAL FORCES AND BENDING MOMENTS AT BASE, AND DEFLECTION AT TOP

TABLE (7.1)

%y Ko, T My M2 Vmax Yn+1| 0 Strain S:Va*"
ft/1bx10° f§3?6416‘2 1bx10° Ft-1bx10*| Ft-1bx10* |ftx10  |ftx10 |radionsx10 | x10° x16"
0 0 657 |333 333 7.72 0 0 -1.476 .199
4 0 582 | 440 440 8.88 | 23.2 0 -1.672 -540
8 0 522  |524 524 9.80 | 41.8 0 -1.828 .540
16 0 433 651 651 11.17 69.2 0 -2.059 1.216
0 B 657 333 333 7.73 0 .33 -1.476 197
0 1.0 660 | 329 329 7.74 0 3.3 -1.469 .185
0 4.0 668 316 316 7.79 0 12.7 -1.446 .146
0 12.0 688 {288 288 7.97 0 37.5 -1.394 .055
0 100 789 144 144 8.43 0 144 -1.131 -.404

0 1000 874 24 24 9.10 0 240 -.910 -.791
4 . 582|439 439 8.88 | 23.3 .44 -1.671 .539
8 1.0 526 519 519 9.85 42,1 5.19 -1.818 .795
16 4.0 448 629 629 11.43 71.7 25.17 -2.020 1.147

evl



Deflection
diagrams

"i" diagrams

"T" diagrams

n n
Kv
5000 500 .01
i, ft-kips T, kips Deflection, ft

OS K < 16x10°7 £4/Tb

FIG. 7.5 IFFLUENCE OF VERTICAL STITFNE SS.

3!



Kb=0
"H" diagrams " dilagrams Deflection
diagrams
n n
) 500 .01
T, kips peflection, ft

0$1K,S 1x10™° radians ft-Tb

FIG. 7.6 INFLUENCE OF ROTATICNAL STIFFNESS.

240



145

where , ,
et - {AASL + A

A=A +A
1 ‘2
| 1 =1 +1
a2 - 12 I, ¢
b® h I

The general solution of equation (7.19) is

- : B2 (H- O (y2_y2_ 2
q Bz cosh ax + B2 sinh ax + 2{p(H x) + FW(H X 2) + Q}

a a
(7.21)
The axial force T at height x is:
H _
T=17 q dx : (7.22.])
X .
i.e.
T = —%— {B (sinh ol - sinh ax) + B;(cosh aH - cosh ax)}
+ B2 (Hox){ o p(H-x) + - [2W- HX - x2 - 21+ Q)
o 6 @ (7.22.2)
The axial force in the wall at foundation level is:
To = —~—[B ‘sinh aH + Bz(cosh ab -~ 1)]
2
s B2 By w2 gal 2y 4 ) (7.22.3)
a? 2 2H 3 o?
At the upper free end, the upper boundary conditions
are:

At x = H, -3 = 0 | (7.23)
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Two different forms of structure-foundation

interaction will be considgred.

7.3.1 Elastic Vertical Movemént

The relative displacement y at the base, Fig. (7;2.9)
may be expressed as:

veT, | (7.24)

At any height x, the compatibility equation may be

showﬁ to be:

% %%.- ?%%?E. - g ‘A: + A: )oft{Hq(A) didn-8 = 0
| | (7.25)

where the four tefms represants, respectively, the relative
displacements due to the slopes of the walls, the deflections
of the connecting beams, the vertical displacements due to
axial deformations of the walls, and the relative vertical
movement at the foundation.

From Eq. (7.25) since the slope is zero at the base,
and the third term vanishes at x = 0, the lower boundary

condition becomes

At x =0, q=-K T (7.26.1)
where 12E1 -

K = —D g = EL goy (7.26.2)

v b3h v 2 Y

Substitution of Eq. (7.22.3), (7.26.1) and (7.23) into
Eq. (7.21) yields the integration constants, a correction of

Coull's expression,
p
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! . . 2 -
B = - g —E-(lpH + - (W3- 2 4 Q] 4 k[ EEE (coshati-1)
1 1 a 2H a? a?coshaH
Hz W 2 3 2H 7
+ + 50— ( 3— H? - =) + QH]} 7.27.1)
L R o2 ( )
i - p2 : '
| B = -8B _ptu - B tanh o
2 a coshaoH L
where
K
A =1 + tanh oH
1 a

7.3.2 Elastic Rotational Movement

The moment-rotation relationship may be expressed as:

=0 =K moo | (7.28)
The bending moment at the base of wall 1 is given by:
I
= 1_ (M -
Mlo " (M T° 2) (7.29.1)

where M is the static moment at foundation level, given by:

ﬁ=—}—pH2 +—%-sz + Q (7.29.2)

The relative displacement at the base is equal to
26, and thus the lower boundary conditions become, using Eq.

(7. 25), a correction of Coull's expression,

At x =0, q = r (M - To“ (7.30)
where
12E1b I
K = —M—— % ——‘-—-Ke
r b3h I 1

Substituion of Eq. {7.30), (7.29.2), (7.23) and
(7.22.3) into Eq. (7.21) yields the integration constants,

a correction of Coull's expression,
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. N2 .
B, = 3 (K, M- & [phv g (w2 - &) 4 q

2 a a
B2 D+ w | PHE . W
- K2 [ (cosh aH - 1) + + 5
a? a? cosh aH : 2
3
( 2h . 2y 4 oqu)y
3 a? -
.
B = -8B P* @ _ B tanh aH. -~ (7.31)
2 a® cosh al 1
wherg Krz
' A =1+ —— tanh aH
2 a

7.3.3 Elastic Vertical and Rotational Movement

If elastic vertical movement and elastic rotational
movement occurs simu]taneous]y, the lower boundary conditions
become: - _

At x = 0, q = - KvTo + Kr (ﬁ - Toz) (7.32)

Substitution of Eq. (7.22.3), (7.32) and (7.23) into

Eq. (7.21) yields the integration constants:

_ 1 v3 B2 w 2 2 .
B, o (K- 7 Dol g (HE - —5) + Q]
' 2 2
- (K, + K 2) 82 L zp t W (cosh «hH - 1) + _PH®
v r o a® coshoH 2
"W 2H 3 2H _ :
a
g2 p + w
B = — - B tanh gH
2 o cosh o 1
vhere ' '
K ‘ K 2

tanh oH + —~§~m tanh oH
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i " Once ﬁhe integration constants have been determined,

the distribution of forces and displacements throughout the
structure may be determined.
j The axial forces T at height x can be determined

from Eq. (7.22.2)

The bending moments in the walls become:

Mo —i— {_;_. p(H-x)? + _;_ —-(H-x)?(2H + x) + p(H-x) - Te}
M, =ﬂ_?- {_%_ p(H-x)2 + —— _ﬁ—(H-x)2(2H+x) + p(H-x) - T2}

| (7.34)
On integrating Eq. (Z,ZS) and putting in the

boundary conditions at the base, the deflection becomes:

2 V .
L - BBy plennx? - aHx® + x*) + g B (20 H3K?

v = w
EI o H
- 10 HZx?® + x3) + L Q(3Hx? - x*)} + 1.y B2 w_ (3H*2-x3)
6 6 ot
[} x2 . ] . 1 [
- -—E— Bl ( 5 sinh gH - ? sinh aH + '—a—‘ X) i B2
x2 1 i
( == cosh oH - ——;-cosh ax + ——?)] + 8x (7.35)

2 o o
The last term 6x represents the deflections at any

level due to the rotation 6 of the foundation, where 6 is

" defined as:

1 v
e = Ke —L (M -T 2) ' (7.36)
1 1 0

The maximum deflection at the top of the structure

becbmes, at x = H:
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1 . g2 ] " 11 5 1 3
v = — [(1 - 2 &=~ ){ — pH"* + —— wH® + — QH3}
MAX 3 a? 8 120 3 W
o B2 ., %, H? 1 .
i I B wH? - ( - (B sinh aH + B cosh aH)
at a 2 a? ! 2
. B : .
- —— (BH+ -2-)] + oH (7.37)
a? 1 a

Figs. (7.7), (7.8) and (7.9) and Tables (7.2) and
(7.3) show the insluence of vertical and rotational stiffness
on deflection at the top, bending moments and axial forces in
the piers at the base of the coupled shear wall, using the

properties of the example employed by Coull (13).



TABLE (7.2)

INFLUENCE OF VERTICAL STIFFNESS ON AXIAL FORCES ANb-

EENDING MOMENTS AT BASE., AND DEFLECTION AT TOP

_ Ky» KYa ) Tos Mio, M20, Vinax Y
ft! ft/1bx107° 1bx10°3 ft-1bx10* ft-1bx10* ftx1072 in.x10"2
0 0 349 176 595 1.984 0
0.01 4.39 272 232 785 2.473 14.4
0.02 8.78 223 268 906 2.786 23,5
0.04 17.57 . 164 312 1052 3.163 34.6
TABLE (7.3)
INFLUENCE OF ROTATIONAL STIFFNESS ON AXIAL FORCES
AND BENDING MCMENTS AT BASE., AND DEFLECTION AT TOP
K
Kv radigés/ T°’ Mlo' Mzo ’ Vmax® 0,
ft-1bx10712 1bx1908 ft-1bx10" ftxibx10" ftx10~2 deg.x10"?
0 0 349.2 176.1 594.8 1.984 0
2 x 10°¢ 0.121 349.6 175.8 593.8 1.986 012
2 x 10-8 1.210 353.4 173.0 584.3 1.997 .120
7 x 10°8 4,22 363.5 165.6 559.,5 2.029 .401
2 x 10-" 12.10 386.0 149.2 503.8 2.098 1.034

Lst
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CHAPTER 8
SUMMARY

8.1 Conclusions

A static analysis of Coupled Shear Walls with constant
cross-section or with variable cross-section with abrupt change
in cross-section at one or several levels was presented. The
Coupled shear walls may be built into a rigid foundation or
supported on elastic foundations, with elastic or inelastic
connecting beams.

The following conclusions are made on this work:

1. A simple method for analysing coupled shear walls,
the finite difference method, treats the coupled shear walls
as two piers connected together by a system of discrete
connecting beams. This method, over the continuous connection
method, can treat coupled shear walls where the storey height,
the properties of the piers and the stiffness of the

" connecting béams may be varied over the entire height of the
building. It can treat a coupled shear wall with an abrupt
change in cross-section at one or several levels and with it
resting on rigid or elastic foundations, in a more convenient
form and with fewer matnematical expressions than the continuous

cennection method., The finite difference method can treat

155
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actual coupled shear walls of reinforced concrete as far as
it can take into account different properties of the piers
and the connecting beams at different horizontal levels.

| Small capacity computers can be used to get the
solution of the coupled shear walls using the finite
difference method.
?. Whatever the type of connection at the top of the
wﬁoupIed shear wall, the internal forces in the lower parts
of the wall, which usually beéome critical in design, are
not affected. |
3. A continuous solution of coupled shear walls with
variable cross-section was achieved using the principles of
the minimum of the total potential. The continuous connection
solution was verified using the finite element method assuming
the problem as a plane stress boundary value'problem.
4, To illustrate the advantage of the finite difference
method, a coupled shear wall with high bottom storey, which
was solved before using the finite element methcd as a piane
stress boundary value problem, is analysed. The agreement
between the forces and deformations obtained by the two
methods was good.
5. For moderate height coupled shear walls, the
agreement between the forces and deformations obtained by the
finite difference method as well as the continuous connection
method and the finite element method starts for interaction
coefficients o > 8.0 for H/d = 8.5 and o«H > 12.0 for H/d = 12.0.

For smaller interaction coefficients, the two methods give
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larger forces and defection in comparison with the finite
e]ément method. | |

6. The coupled shear wall behaves as a homogeneous
cgnti]ever when the interaction coefficient ol > 14.0,
cbrresponding to a value 1/¢c > 20.0 for composite beams.
7. The coupled shear walls behave as fwo separate
cantilevers under the applied load when the interaction
coefficient aH < 0.5.

8. | An approximate analysis of multi-pierced coupled
shear wall, assuming that the cross-beams deflect with a
point of contraflexure at mid-span, was achieved. The
finite difference solution for the problem was presented.
It can take into account any configuration of the multi-
pierced coupled shear wall.

9. For coupled shear walls with.elastic foundations,
as the vertical stiffness, Ky, increases, the deflection of
the model and the internal moments in the piers increase,
while the axial forces in the piers decrease. As the

rotational stiffness, K increases, the deflection of the

6°
model and the axial forces in the piers increase, while the
internal moments in the piers decrease.

The vertical movement of the foundation is more
significant than the rotational movement of the foundation,

both for stress and deflecticn considerations of the

structure.



8.2 Suggestiohs for Further Work

The concept of analysing the inelastic behaviour
of composite beams may be used to analyse the jnelastic
behaviour of coupled shear walls. For a reinforced concrete
shear wall the actual prbperties of the piers and the
'connecting beams at different horizontal levels, the
tension allowed in concrete and the gravity load at different

horizontal levels may be taken into account.



