

Static Analysis Techniques

for Robotics Software Verification

Agostino Cortesi

Università Cà Foscari
Venice, Italy

cortesi@unive.it

Pietro Ferrara

ETH Zurich
Switzerland

pietro.ferrara@inf.ethz.ch

Nabendu Chaki

University of Calcutta
Kolkata, India

nchaki@gmail.com

Abstract-- We overview the main semantics-based static

analysis techniques for software verification: Data-flow

analysis, Control-flow Analysis, Model Checking, and

Abstract Interpretation. The complexity of control software,

lying at the core of robotic systems, and the intensive use of

numeric values pose several challenges for the formal

verification of either functional or non-functional properties.

Index Terms—Static Analysis, Formal Verification,

Robotics Software, Abstract Interpretation.

I. INTRODUCTION

Programming robotics software involves reasoning

through complex system interactions among sensors,

actuators, intelligence and control processors. This

challenging and error-prone process requires strong

collaboration between engineers and software

programmers, and the resulting code sometimes lacks

reliability due to the presence of bugs or improper

response to hardware failures.

The two main current practices to face this issue are:

(1) adopt a (possibly object oriented) model-based

programming approach, and use (possibly interactive)

robotics simulation environments since the design phase,

and (2) systematically apply testing techniques

incorporating automated tests, online and offline analysis

and software-in-the-loop tests in combination with real

robot hardware.

However, this is not often sufficient to guarantee the

required behavior, and this is a crucial issue in particular

when dealing with robots systems where safety of

operations is crucial. Here, formal automatic verification

techniques become necessary. The adoption of semantics-

based static analysis techniques may in fact certify the

reliability of the resulting software, and it may also

dramatically reduce the testing effort.

In this paper, we discuss the main features of the main

static analysis techniques, namely data-flow analysis,

control-flow analysis, model-checking and abstract

interpretation. This might provide robotics software

developers useful hints about which is the most

appropriate approach to follow depending on the kind of

analyzed property and software system.

These techniques has to be automatic, provably sound

(i.e., semantically correct), though not necessarily

complete. This makes them different from other static

verification approaches like code surfing or manual

source code review can be summarized as follows.

Incompleteness means that given a program P and a

property p, the result of the analysis must be either “every

execution of P satisfies p” or “I don’t know”. In the

second case, there could be actually an execution of P

that does not satisfy p, or we could have a false positive

because of a loss of accuracy in the analysis.

II. VERIFICATION ISSUES IN ROBOTICS SOFTWARE

Writing software for robots is a difficult task, as it is

often structured as a deep stack starting from driver-level

layers (managing sensor/actuator hardware components)

and continuing up through abstract reasoning, and beyond

[29]. Moreover, most manufacturers of robot hardware

also provide their own software, leading to the lack of

standardization of programming methods for robot

software. This is why robotics software architectures

often support large-scale software integration efforts,

where the layers may deeply differ with respect to

programming paradigm, programming language, and

program development platform.

 As a first consequence, any classical program

verification approach based on a programming

environment supporting pre/post condition constraints

may be not an effective solution in this scenario (and we

will not consider it in the rest of the paper). In fact, it

assumes full control over the whole programming

development, whereas the software to be integrated

comes too often from different and non-standardized

programming development environments.

 The presence of different layers of software leads to

the need of a suite of different verification tools, where

the most difficult task remains the verification of the so

called emerging properties of the system, the ones that do

not immediately rely on components’ features but emerge

only after their integration.

III. SEMANTICS-BASED STATIC ANALYSIS TECHNIQUES

 In this Section, for each of the analysis techniques

mentioned in the Introduction, we will briefly describe

han-p
Text Box
Invited II

how the program is represented, how the property to be

analyzed is represented, how the analysis process is

expressed, how the analysis result is computed, and a

simple applicative example.

A. Data-Flow Analysis

In Data-Flow Analysis [23,28,30,31], the program is seen

as a graph, whose nodes are elementary basic-blocks of

statements and edges depict how control may pass from

one node to another. Each node is associated to an in-set

and an out-set of elements, describing respectively the

state of the program variables when entering or exiting

the node with respect to the analyzed property. So, the

property is expressed by elements of a suitable set

ranging over syntactic program elements (variables,

expressions, etc.) and node labels. The analysis is

computed as the least solution of a pair of mutually

recursive equations stating, for each node, (1) the effect

of the statement on the in/out-sets, and (2) how the

in/out-set information associated to a node propagates to

the adjacent nodes (predecessor/successor nodes in the

control graph). For the termination of the analysis, it is

sufficient that the transfer functions are monotone and

closed under composition, and that the values in the in-

/out-sets range into a partial ordered structure satisfying

the ascending chain condition [28].

Consider, for instance, the following slice of code:

 timer = 0; arm_status=0; step=D;

while (timer < N){
 timer = timer +1;
 arm_status= arm_status + step;
}

The data-flow analysis needs to work on its associated

control-flow graph:

Fig.1 : Graph representation of a program for Data-Flow Analysis

We are interested to establish, for each program point,

which assignments may have been made and not

overwritten when program execution reaches this point

along some execution path (reaching definition analysis).

This property is represented by means of sets of pairs

(x,l) where x is a variable and l is a label, associated to

each nodes’ entrance/exit. The mutually recursive

equations are:

out-set(n) = (in-set(n) – {(x,m) | x is defined in n})

 U {(x,n) | x is defined in n}

in-set(n) = U {out-set(m) : n is a successor of m}

The iterative computation of the least solution of these

equations, starting from the empty-set, leads to a fix-point

which says, for instance, that the only definition that

affects variable step at node 3 is the one at note 1, and

so we can optimize the code getting rid of the variable

step, using D in node 3 in place of step.

Typical examples of properties properly computed by

data-flow analysis include constant propagation, variable

liveness, reaching definition, available expressions, just

to name a few.

B. Control-Flow Analysis

We have just seen that Data-Flow Analysis takes as a

starting point a graph representation of the program,

capturing the control flow in its executions. Depicting the

control flow graph is straightforward for programs

written in imperative or object oriented programs. Instead,

this might not be the case when dealing with higher-order

or concurrent languages, and in particular when there is

no static control-flow graph at compile-time, as in the

case of communication protocols [3,5,6,8,17, 28,32].

For example, in a programming language with higher-

order functions like Scheme, the target of a function call

may not be explicit: in the isolated expression

lambda(f)(f x) it is unclear which procedure f may

refer to. In order to collect the possible targets, we must

consider where this expression can be invoked, and what

argument it may get as an input. Hence, the aim of a

control-flow analysis is to compute information about the

behavior of a process and to store it in some data

structures, called analysis components. The result of a

control-flow analysis can be expressed by a pair (C,r).

The first component C serves as a cache associating

abstract values with each labeled program point, whereas

the second component r serves as an environment

associating abstract values with each variable. The

technique consists in four steps: (i) acceptability

conditions for pairs (C,r) are stated w.r.t. expressions, (ii)

a syntax-directed specification of the analysis is

expressed by a set of constraints that capture the impact

of each statement on the pairs (C,r), (iii) a fixpoint

iterative algorithm is applied to find a minimal solution

of this set of constraints, and (iv) the solution is proven to

satisfy the acceptability condition above, and it may be

depicted graphically.

 Figure 2 depicts a higher order functional language

expression, and the control graph generated by the

analysis [32].

Fig.2 : Control-Flow Analysis of a functional program

C. Model-Checking

A model checker checks whether a system, interpreted

as an automaton, is a Kripke model of a property

expressed as a temporal logic formula [1,7,15,18,22,33].

The core idea of the model checking technique is to

model the behavior of real-time systems over time by

following this procedure: (1) the system is represented by

a finite state labeled automaton, (2) the property to be

verified is expressed by a temporal logic formula in a

linear-time or branching time temporal logics, (3) each

state of the automaton is associated with elementary

properties that are true when the system is in that state,

and (4) by structural induction on the logic formula, a

fixpoint algorithm associates to each state of the

automaton all the the subformulas of the formula to be

verified that are true or false in that state. At the end of

the procedure, if the initial formula is true in the initial

state of the automaton, then the property is verified.

The main advantage of model checking is that it

provides information even in the case when the property

to be analyzed cannot be formally proven by the analysis.

In fact, in this case, a counterexample is generated by the

analysis itself, giving evidence to at least an execution

path that deserves to be deeply analyzed in order to fix

the program. However, the price to pay for this additional

feature is the very strong finiteness constraint on the

initial software system to be analyzed, and a serious

scalability issue due to state explosion in the construction

of the automaton starting from the source code.

 As an example of application of the model checking

technique, consider for instance the hybrid automaton

depicted in Fig.3. It models a robot that works on a

conveyor belt with two boxes [36]. Variable d represents

the clock. At the beginning, the robot is looking to the

belt (d_stay). Then, when there are two boxes in the belt

(s_ready), it picks them up (d_pick), it turns right

(d_turnright), it puts them down (d_putdown), and it

turns left (d_turnleft), waiting for other boxes (d_stay).

All these actions have some timing represented by

bounds on d. Each component of the system is modeled

by a particular automaton. For instance, each box is

modeled by an automaton aimed at checking if the box

stays in the belt, it is picked up by a robot (d_pick), the

robot put it down (d_put), or it falls. On these automata

one may want to prove that the boxes never fall.

Fig. 3: A robot automaton

Model checking applies on the robotic system at high

level, and usually the model of the system is manually

written by an expert user. Therefore, model checking

does not deal with the implementation of the system.

D. Abstract Interpretation

Abstract interpretation can be seen as the most general

setting to express and compute static analysis

[4,9,10,11,12,19,25].

In order to verify a behavioral property of a program,

one needs to build up an abstraction on all the possible

executions of the program, i.e., on the set of all its

(possibly infinite) traces focusing on that property.

Therefore, a verification process can be expressed in

terms of a sound and computable abstraction of the

concrete semantics (the latter is called “abstract

semantics”). If the concrete semantics is expressed in

terms of sequences of memory states, then data-flow

analysis can be seen as an abstraction that just focuses on

properties of variables values. When considering instead

control sequences in the concrete program traces, we may

get a control-flow analysis. Finally, when the abstraction

is expressed in terms of temporal logic formulas, model

checking may be seen as an instance of the abstract

interpretation framework too.

The two main key-concepts of abstract interpretation

are (1) the correspondence between concrete and abstract

semantics through Galois connections, and (2) the

feasibility of a fixed point computation of the abstract

semantics, through the fast convergence of widening

operators.

As a classical example of application of abstract

interpretation, consider the imperative code depicted in

Fig. 4.

 1: int x = 1;

2: while(x<=10000)

3: x++;

4: println(x);

Fig 4: a loop counter

The semantics of this procedure can be computed by

ranging the values of variable x on the domain of

intervals instead of the domain of integer numbers. In

particular, it can be computed as a fixpoint of the system

of equations depicted in Fig.5, where xi represents the

possible values of variable x after program point i, and ⊕

is the operation on intervals that soundly approximates

the binary sum operation on integers.

Fig 5: Abstract Program

 By using both a threshold widening operator analysis,

and by narrowing the solution through a chaotic

decreasing iterative fixpoint computation, in about 15

steps we get to the solution depicted in Fig 6, which

provides a very accurate over-approximation of the

values that variable x may be assigned in any actual

program execution.

Fig 6: Result of AI interval analysis

The results of abstract interpretation-based static

analyses are “sound by construction”. The accuracy of the

analysis can be easily tuned at different levels of

precision and efficiency by adopting various abstract

domains. For instance, in the case of numerical properties,

we can range from very efficient though not so

informative domain like Sign or Parity, to infinite though

still non-relational domains like Intervals, up to infinite

relational domains like Octagons and Polyhedra, whose

computational cost may anyway be acceptable for critical

code. Usually, the static analyses based on abstract

interpretation are completely automatic (e.g., the

widening operator allows one to infer information on

loops adopting infinite height domains like Intervals) and

work directly on the code of the program.

 DFA CFA MC AI

Program Control-flow
graph

Labeled source Automaton Source
code

Property Set of abstract Set of abstract Temporal Lattice

representations representations logic
formula

(Galois
connect.)

Analysis Two mutually
recursive
equations

Set of const-
raints on cache
+ environment

Formulas
propagation
associated
to state
transitions

Abstract
semantics

Result Fixpoint Fixpoint Fixpoint Fixpoint

Table 1: Features of Static analysis techniques

Fig 7: Application fields of Static Analysis Techniques

 DFA CFA MC AI

Automatic � � �

Precise � �

Scalable � � �

Soundness � � �

Table 2: Evaluation of Static analysis techniques

IV. A SYNOPSYS OF STATIC ANALYSIS TECHNIQUES

Table 1 summarizes the main features of the

techniques described in the previous Section, by

considering how the program and the analyzed property

are represented, and how the analysis is defined. Observe

that in all the cases the result is obtained by applying a

fix-point algorithm, whose termination must be

guaranteed in order to ensure the effectiveness of the

analysis.

When focusing instead on the application target of the

techniques above, we may classify them with respect to

the complexity of the source program and of the property

to be verified, respectively, as depicted in Fig. 7.

Finally, Table 2 reports a tentative evaluation of the

various static analyses techniques. We follow four axes

taken from [4]: automation, precision, scalability, and

soundness.

 On the one hand, data and control flow analyses are

automatic, scalable, and sound, but they cannot deal with

complex properties. On the other hand, model checking

has been already applied to rather complex properties, but

it is neither automatic (the model has to be manually

specified), nor scalable (because of the state explosion

problem), nor formally sound (there is usually no relation

between the model and its actual implementation). The

only approach covering all the four axes of evaluation is

abstract interpretation. Nevertheless, the price to pay is

higher in terms of user competence required to develop

the analysis. In fact, while it is a relatively simple task,

for an average skilled engineer, to draw an automata

representation out of a robot model and verify it by a

model checker (like the one in Figure 3), it is a much

more complex task the specialization of a generic abstract

analyzer. The latter requires in fact the combination of

strong and specific background both on programming

language semantics and on algebraic structures.

The picture above is confirmed also by the use of the

mentioned techniques as reported by the recent literature

in the robotics area. In fact, model checking has been

mainly applied for high- level verification of the robot

model, and not much to the final implementation code

[29]. Instead, abstract interpretation has been successfully

applied to safety critical source code to automatically

detect absence of run-time errors in standard

programming languages like C [4], and it may cover also

the interaction with database query languages [19].

Finally, data and control flow analyses are used inside of

the compilers of domain specific programming languages

mainly as a support for program transformation and

generated code optimization [28].

V. CHALLENGES OF ROBOTICS SOFTWARE VERIFICATION

There are still various research challenges that have to

be solved in robotics software verification. In particular,

it is nowadays clear that static analysis techniques will be

fundamental to produce robust robotics software. If on

the one hand the problem has been already studied (and

sometimes successfully solved) on particular systems and

software, on the other hand a general solution has not yet

been identified. This is mainly due to the fact that “most

manufacturers of robot hardware also provide their own

software. While this is not unusual in other automated

control systems, the lack of standardization of

programming methods for robots does pose certain

challenges. For example, there are over 30 different

manufacturers of industrial robots, so there are also 30

different robot programming languages required.” [36]

The development of automatic static analyses of

complex properties is a rather expensive and time

consuming process. The wide spectrum of programming

languages and robotics system often limits the benefits of

static analysis techniques, since these could be only

applied to particular sub-systems.

A unifying scenario would surely push to apply static

analysis techniques to robotics software verification,

since these static analyses could be applied to a broad

range of software.

On the semantic level, the main open problem is how

to cover the gap between the complex high level

properties proved by model checking, and the source

code level properties proved automatically by abstract

interpretation. In particular, it would be quite relevant to

prove that the actual implementation of a system

corresponds to its high-level model.

Finally, it would be very important to further develop,

both at theoretical and practical level, methods and tools

for the static analysis of non-functional properties (like

portability, usability, robustness, etc.) that play a crucial

role in robotics software, but received very limited

attention in the formal verification literature, with the

notable exception of [10].

ACKNOWLEDGMENTS

Work partiallly supported by PRIN “Security

Horizons” project.

REFERENCES

[1] Alur, R., C. Courcoubetis, N. Halbwachs, T. A. Henzinger,

P. -H Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.

1995. "The Algorithmic Analysis of Hybrid Systems."

Theoretical Computer Science 138 (1): 3-34.

[2] Bauer, N., S. Engell, R. Huuck, S. Lohmann, B. Lukoschus,

M. Remelhe, and O. Stursberg. 2004. Verification of PLC

Programs Given as Sequential Function Charts. Lecture

Notes in Computer Science. Vol. 3147.

[3] Bertolino, Antonia and Martina Marre. 1994. "Automatic

Generation of Path Covers Based on the Control Flow

Analysis of Computer Programs." IEEE Transactions on

Software Engineering 20 (12): 885-899.

[4] Blanchet B, Mauborgne L, Cousot P, Miné A, Cousot R,

Monniaux D, Feret J, Rival X. A static analyzer for large

safety-critical software. ACM SIGPLAN Notices.

2003;38(5):196-207

[5] Bodei C, Buchholtz M, Degano P, Nielson F, Nielson HR.

Static validation of security protocols. Journal of Computer

Security. 2005;13(3):347-90.

[6] Braghin, C., Cortesi, A., Focardi, R. “Information flow

security in Boundary Ambients”. 2008. Information and

Computation, 206 (2-4), pp. 460-489.

[7] Clarke, Edmund M., Orna Grumberg, and David E. Long.

1994. "Model Checking and Abstraction." ACM

Transactions on Programming Languages and Systems 16

(5): 1512-1542.

[8] Cook B, Podelski A, Rybalchenko A. Termination proofs

for systems code. In: Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI); 2006. p. 415-26.

[9] Cortesi A, Filé G, Giacobazzi R, Palamidessi C, Ranzato F.

Complementation in abstract interpretation. ACM

Transactions on Programming Languages and Systems.

1997;19(1):7-47.

[10] Cortesi, A., Logozzo, F., “Abstract interpretation-based

verification of non-functional requirements”. 2005. Lecture

Notes in Computer Science, vol. 3454, pp. 49-62.

[11] Cortesi, A., Zanioli, M. “Widening and narrowing

operators for abstract interpretation”. 2011. Computer

Languages, Systems and Structures, 37 (1), pp. 24-42.

[12] Cousot P, Cousot R. Abstract interpretation and application

to logic programs. The Journal of Logic Programming.

1992;13(2-3):103-79.

[13] Currie, David W., Alan J. Hu, Sreeranga Rajan, and

Masahiro Fujita. 2000. "Automatic Formal Verification of

DSP Software." Proceedings of the 37th Design

Automation Conference , pp. 130-135.

[14] DeFouw, Greg, David Grove, and Craig Chambers. 1998.

"Fast Interprocedural Class Analysis." Proc. ACM

Symposium on Principles of Programming Languages , pp.

222-236.

[15] Dierks, H. 2004. "Comparing Model Checking and Logical

Reasoning for Real-Time Systems." Formal Aspects of

Computing 16 (2): 104-120.

[16] Dudek, Gregory, Michael Jenkin. 2000. “Computational

principles of mobile robotics”. Cambridge Univ Press.

[17] Dwyer, M. B., L. A. Clarke, J. M. Cobleigh, and G.

Naumovich. 2004. "Flow Analysis for Verifying Properties

of Concurrent Software Systems." ACM Transactions on

Software Engineering and Methodology 13 (4): 359-430.

[18] Godefroid, Patrice. 1997. "Model Checking for

Programming Languages using VeriSoft.". Conference

Record of the Annual ACM Symposium on Principles of

Programming Languages, pp. 174-186.

[19] Halder, R., Cortesi, A. “Abstract interpretation of database

query languages”. 2012. Computer Languages, Systems

and Structures, 38 (2), pp. 123-157.

[20] Halder, R., Cortesi, A. “Abstract program slicing on

dependence condition graphs”. 2013. Science of Computer

Programming. Article in Press.

[21] Thomas A. Henzinger, Pei-Hsin Ho: HYTECH: The

Cornell HYbrid TECHnology Tool. Hybrid Systems 1994:

265-293, 1995.

[22] Henzinger, T. A., X. Nicollin, J. Sifakis, and S. Yovine.

1994. "Symbolic Model Checking for Real-Time

Systems." Information and Computation 111 (2): 193-244.

[23] Horwitz, Susan, Thomas Reps, and Mooly Sagiv. 1995.

"Demand Interprocedural Dataflow Analysis." Proc. of

the ACM SIGSOFT Symposium on the Foundations of

Software Engineering, Pages 104-115.

[24] Kramer J. and Scheutz M. 2007. “Development

environments for autonomous mobile robots: A survey,”

Autonomous Robots, vol. 22, no. 2, pp. 101–132.

[25] Logozzo, F., Cortesi, A. “Semantic hierarchy refactoring

by abstract interpretation”. 2006. Lecture Notes in

Computer Science, vol. 3855, pp. 313-331.

[26] Mantovani, Jacopo. 2008. “Automatic Software

Verification for Robotics”. AI Commun. 21(4): 263-264.

[27] Mertke, T. and G. Frey. 2001. "Formal Verification of

PLC-Programs Generated from Signal Interpreted Petri

Nets". Proceedings of the IEEE International Conference

on Systems, Man and Cybernetics 2001, pp. 2700-2705.

[28] Nielson, Flemming, Hanne R Nielson, Chris Hankin. 1999.

“Principles of program analysis”. Springer-Verlag

[29] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,

Leibs, J., Wheeler, R., and Ng, Andrew Y. "ROS: an open-

source Robot Operating System", ICRA Workshop on

Open Source Software, 2009

[30] Reps, Thomas, Susan Horwitz, and Mooly Sagiv. 1995.

"Precise Interprocedural Dataflow Analysis Via Graph

Reachability." Proc.22nd ACM Symposium on Principles

of Programming Languages, pp.49-61.

[31] Sagiv, M., T. Reps, and S. Horwitz. 1996. "Precise

Interprocedural Dataflow Analysis with Applications to

Constant Propagation." Theoretical Computer Science 167

(1-2): 131-170.

[32] Van Horn, D., Mairson, H.G. 2007. “Relating complexity

and precision in control flow analysis.” Proc. of the ACM

SIGPLAN International Conference on Functional

Programming, pp 85-96.

[33] Visser, W., K. Havelund, G. Brat, S. Park, and F. Lerda.

2003. "Model Checking Programs." Automated Software

Engineering 10 (2): 203-232.

[34] Völker, N. and B. J. Krämer. 2002. "Automated

Verification of Function Block-Based Industrial Control

Systems." Science of Computer Programming 42 (1): 101-

113.

[35] Yoo, J., Cha, S., & Jee, E. (2008). A verification

framework for FBD based software in nuclear power plants.

Paper presented at the Proceedings - Asia-Pacific Software

Engineering Conference, APSEC, 385-392.

[36] Wikipedia: “Robot Software”.

http://en.wikipedia.org/wiki/Robot_software

