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Abstract-- We overview the main semantics-based static 

analysis techniques for software verification: Data-flow 

analysis, Control-flow Analysis, Model Checking, and 

Abstract Interpretation. The complexity of control software, 

lying at the core of robotic systems, and the intensive use of 

numeric values pose several challenges for the formal 

verification of either functional or non-functional properties.   

 
Index Terms—Static Analysis, Formal Verification, 

Robotics Software, Abstract Interpretation. 

 

 

I.  INTRODUCTION 

Programming robotics software involves reasoning 

through complex system interactions among sensors, 

actuators, intelligence and control processors. This 

challenging and error-prone process requires strong 

collaboration between engineers and software 

programmers, and the resulting code sometimes lacks 

reliability due to the presence of bugs or improper 

response to hardware failures.  

The two main current practices to face this issue are:  

(1) adopt a (possibly object oriented) model-based 

programming approach, and use (possibly interactive) 

robotics simulation environments since the design phase, 

and (2) systematically apply testing techniques 

incorporating automated tests, online and offline analysis 

and software-in-the-loop tests in combination with real 

robot hardware. 

However, this is not often sufficient to guarantee the 

required behavior, and this is a crucial issue in particular 

when dealing with robots systems where safety of 

operations is crucial. Here, formal automatic verification 

techniques become necessary. The adoption of semantics-

based static analysis techniques may in fact certify the 

reliability of the resulting software, and it may also 

dramatically reduce the testing effort.  

In this paper, we discuss the main features of the main 

static analysis techniques, namely data-flow analysis, 

control-flow analysis, model-checking and abstract 

interpretation. This might provide robotics software 

developers useful hints about which is the most 

appropriate approach to follow depending on the kind of 

analyzed property and software system.  

These techniques has to be automatic, provably sound 

(i.e., semantically correct), though not necessarily 

complete. This makes them different from other static 

verification approaches like code surfing or manual 

source code review can be summarized as follows. 

Incompleteness means that given a program P and a 

property p, the result of the analysis must be either “every 

execution of P satisfies p” or “I don’t know”. In the 

second case, there could be actually an execution of P 

that does not satisfy p, or we could have a false positive 

because of a loss of accuracy in the analysis. 

II.  VERIFICATION ISSUES IN ROBOTICS SOFTWARE 

Writing software for robots is a difficult task, as it is 

often structured as a deep stack starting from driver-level 

layers (managing sensor/actuator hardware components) 

and continuing up through abstract reasoning, and beyond 

[29]. Moreover, most manufacturers of robot hardware 

also provide their own software, leading to the lack of 

standardization of programming methods for robot 

software. This is why robotics software architectures 

often support large-scale software integration efforts, 

where the layers may deeply differ with respect to 

programming paradigm, programming language, and 

program development platform.  

  As a first consequence, any classical program 

verification approach based on a programming 

environment supporting pre/post condition constraints 

may be not an effective solution in this scenario (and we 

will not consider it in the rest of the paper). In fact, it 

assumes full control over the whole programming 

development, whereas the software to be integrated 

comes too often from different and non-standardized 

programming development environments.  

  The presence of different layers of software leads to 

the need of a suite of different verification tools, where 

the most difficult task remains the verification of the so 

called emerging properties of the system, the ones that do 

not immediately rely on components’ features but emerge 

only after their integration. 

III.  SEMANTICS-BASED STATIC ANALYSIS TECHNIQUES 

  In this Section, for each of the analysis techniques 

mentioned in the Introduction, we will briefly describe 
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how the program is represented, how the property to be 

analyzed is represented, how the analysis process is 

expressed, how the analysis result is computed, and a 

simple applicative example.    

 

A.  Data-Flow Analysis 

 

In Data-Flow Analysis [23,28,30,31], the program is seen 

as a graph, whose nodes are elementary basic-blocks of 

statements and edges depict how control may pass from 

one node to another. Each node is associated to an in-set 

and an out-set of elements, describing respectively the 

state of the program variables when entering or exiting 

the node with respect to the analyzed property. So, the 

property is expressed by elements of a suitable set 

ranging over syntactic program elements (variables, 

expressions, etc.) and node labels. The analysis is 

computed as the least solution of a pair of mutually 

recursive equations stating, for each node, (1) the effect 

of the statement on the in/out-sets, and (2) how the 

in/out-set information associated to a node propagates to 

the adjacent nodes (predecessor/successor nodes in the 

control graph).  For the termination of the analysis, it is 

sufficient that the transfer functions are monotone and 

closed under composition, and that the values in the in-

/out-sets range into a partial ordered structure satisfying 

the ascending chain condition [28]. 

 

Consider, for instance, the following slice of code: 

 
  timer = 0; arm_status=0; step=D; 

while (timer < N){ 
  timer = timer +1; 
  arm_status= arm_status + step; 
}   

 

The data-flow analysis needs to work on its associated 

control-flow graph: 

 

 
 

 

Fig.1 : Graph representation of a program for Data-Flow Analysis 

 

We are interested to establish, for each program point, 

which assignments may have been made and not 

overwritten when program execution reaches this point 

along some execution path (reaching definition analysis). 

This property is represented by means of sets of pairs 

(x,l) where x is a variable and l is a label, associated to 

each nodes’ entrance/exit. The mutually recursive 

equations are: 

out-set(n) = (in-set(n) – {(x,m) | x is defined in n}) 

              U {(x,n) | x is defined in n}      

in-set(n) = U {out-set(m) : n is a successor of m} 

 

The iterative computation of the least solution of these 

equations, starting from the empty-set, leads to a fix-point 

which says, for instance, that the only definition that 

affects variable step at node 3 is the one at note 1, and 

so we can optimize the code getting rid of the variable 

step, using D in node 3 in place of step. 

 

Typical examples of properties properly computed by 

data-flow analysis include constant propagation, variable 

liveness, reaching definition, available expressions, just 

to name a few. 

   

B.  Control-Flow Analysis 

 

We have just seen that Data-Flow Analysis takes as a 

starting point a graph representation of the program, 

capturing the control flow in its executions. Depicting the 

control flow graph is straightforward for programs 

written in imperative or object oriented programs. Instead, 

this might not be the case when dealing with higher-order 

or concurrent languages, and in particular when there is 

no static control-flow graph at compile-time, as in the 

case of communication protocols [3,5,6,8,17, 28,32].  

For example, in a programming language with higher-

order functions like Scheme, the target of a function call 

may not be explicit: in the isolated expression 

lambda(f)(f x) it is unclear which procedure f may 

refer to. In order to collect the possible targets, we must 

consider where this expression can be invoked, and what 

argument it may get as an input. Hence, the aim of a 

control-flow analysis is to compute information about the 

behavior of a process and to store it in some data 

structures, called analysis components. The result of a 

control-flow analysis can be expressed by a pair (C,r). 

The first component C serves as a cache associating 

abstract values with each labeled program point, whereas 

the second component r serves as an environment 

associating abstract values with each variable. The 

technique consists in four steps: (i) acceptability 

conditions for pairs (C,r) are stated w.r.t. expressions, (ii) 

a syntax-directed specification of the analysis is 

expressed by a set of constraints that capture the impact 

of each statement on the pairs (C,r), (iii) a fixpoint 

iterative algorithm is applied to find a minimal solution 

of this set of constraints, and (iv) the solution is proven to 

satisfy the acceptability condition above, and it may be 

depicted graphically.  

  Figure 2 depicts a higher order functional language 

expression, and the control graph generated by the 

analysis [32]. 

 

 

 



 

 

 
 

 
 

Fig.2 : Control-Flow Analysis of a functional program 

 

C.  Model-Checking 

 

A model checker checks whether a system, interpreted 

as an automaton, is a Kripke model of a property 

expressed as a temporal logic formula [1,7,15,18,22,33].  

The core idea of the model checking technique is to 

model the behavior of real-time systems over time by 

following this procedure: (1) the system is represented by 

a finite state labeled automaton,  (2) the property to be 

verified is expressed by a temporal logic formula in a 

linear-time or branching time temporal logics, (3) each 

state of the automaton is associated with elementary 

properties that are true when the system is in that state, 

and (4) by structural induction on the logic formula, a 

fixpoint algorithm associates to each state of the 

automaton all the the subformulas of the formula to be 

verified that are true or false in that state. At the end of 

the procedure, if the initial formula is true in the initial 

state of the automaton, then the property is verified. 

The main advantage of model checking is that it 

provides information even in the case when the property 

to be analyzed cannot be formally proven by the analysis. 

In fact, in this case, a counterexample is generated by the 

analysis itself, giving evidence to at least an execution 

path that deserves to be deeply analyzed in order to fix 

the program. However, the price to pay for this additional 

feature is the very strong finiteness constraint on the 

initial software system to be analyzed, and a serious 

scalability issue due to state explosion in the construction 

of the automaton starting from the source code. 

   As an example of application of the model checking 

technique, consider for instance the hybrid automaton 

depicted in Fig.3. It models a robot that works on a 

conveyor belt with two boxes [36]. Variable d represents 

the clock. At the beginning, the robot is looking to the 

belt (d_stay). Then, when there are two boxes in the belt 

(s_ready), it picks them up (d_pick), it turns right 

(d_turnright), it puts them down (d_putdown), and it 

turns left (d_turnleft), waiting for other boxes (d_stay). 

All these actions have some timing represented by 

bounds on d. Each component of the system is modeled 

by a particular automaton. For instance, each box is 

modeled by an automaton aimed at checking if the box 

stays in the belt, it is picked up by a robot (d_pick), the 

robot put it down (d_put), or it falls. On these automata 

one may want to prove that the boxes never fall. 

 

 
 

Fig. 3: A robot automaton 

 

Model checking applies on the robotic system at high 

level, and usually the model of the system is manually 

written by an expert user. Therefore, model checking 

does not deal with the implementation of the system. 

 

D.  Abstract Interpretation 

 

Abstract interpretation can be seen as the most general 

setting to express and compute static analysis 

[4,9,10,11,12,19,25].  

In order to verify a behavioral property of a program, 

one needs to build up an abstraction on all the possible 

executions of the program, i.e., on the set of all its 

(possibly infinite) traces focusing on that property. 

Therefore, a verification process can be expressed in 

terms of a sound and computable abstraction of the 

concrete semantics (the latter is called “abstract 

semantics”). If the concrete semantics is expressed in 

terms of sequences of memory states, then data-flow 

analysis can be seen as an abstraction that just focuses on 

properties of variables values. When considering instead 

control sequences in the concrete program traces, we may 

get a control-flow analysis. Finally, when the abstraction 

is expressed in terms of temporal logic formulas, model 

checking may be seen as an instance of the abstract 

interpretation framework too.   

   

The two main key-concepts of abstract interpretation 

are (1) the correspondence between concrete and abstract 

semantics through Galois connections, and (2) the 

feasibility of a fixed point computation of the abstract 

semantics, through the fast convergence of widening 

operators. 

As a classical example of application of abstract 

interpretation, consider the imperative code depicted in 

Fig. 4.  

 



 

 1: int x = 1; 

2: while(x<=10000) 

3:   x++; 

4: println(x); 

 

Fig 4: a loop counter 

 

The semantics of this procedure can be computed by 

ranging the values of variable x on the domain of 

intervals instead of the domain of integer numbers. In 

particular, it can be computed as a fixpoint of the system 

of equations depicted in Fig.5, where xi represents the 

possible values of variable x after program point i, and ⊕ 

is the operation on intervals that soundly approximates 

the binary sum operation on integers. 

 

 
 

Fig 5: Abstract Program 

 

 By using both a threshold widening operator analysis, 

and by narrowing the solution through a chaotic 

decreasing iterative fixpoint computation, in about 15 

steps we get to the solution depicted in Fig 6, which 

provides a very accurate over-approximation of the 

values that variable x may be assigned in any actual 

program execution. 

 

 
 

Fig 6: Result of AI interval analysis 

 

The results of abstract interpretation-based static 

analyses are “sound by construction”. The accuracy of the 

analysis can be easily tuned at different levels of 

precision and efficiency by adopting various abstract 

domains. For instance, in the case of numerical properties, 

we can range from very efficient though not so 

informative domain like Sign or Parity, to infinite though 

still non-relational domains like Intervals, up to infinite 

relational domains like Octagons and Polyhedra, whose 

computational cost may anyway be acceptable for critical 

code. Usually, the static analyses based on abstract 

interpretation are completely automatic (e.g., the 

widening operator allows one to infer information on 

loops adopting infinite height domains like Intervals) and 

work directly on the code of the program. 

 
 DFA CFA MC AI

Program Control-flow 
graph 

Labeled source Automaton Source 
code  

Property Set of abstract Set of abstract Temporal Lattice 

representations representations logic 
formula 

(Galois 
connect.) 

Analysis Two mutually 
recursive 
equations 

Set of const-
raints on cache 
+ environment 

Formulas 
propagation 
associated 
to state 
transitions 

Abstract 
semantics 

Result Fixpoint Fixpoint Fixpoint Fixpoint

 

Table 1: Features of Static analysis techniques 

 

 
 

Fig 7: Application fields of Static Analysis Techniques 

 
 DFA CFA MC AI

Automatic � �  �

Precise  � �

Scalable � �  �

Soundness � �  �

 

Table 2: Evaluation of Static analysis techniques 

IV.  A SYNOPSYS OF STATIC ANALYSIS TECHNIQUES 

 

Table 1 summarizes the main features of the 

techniques described in the previous Section, by 

considering how the program and the analyzed property 

are represented, and how the analysis is defined. Observe 

that in all the cases the result is obtained by applying a 

fix-point algorithm, whose termination must be 

guaranteed in order to ensure the effectiveness of the 

analysis.   

When focusing instead on the application target of the 

techniques above, we may classify them with respect to 

the complexity of the source program and of the property 

to be verified, respectively, as depicted in Fig. 7. 

Finally, Table 2 reports a tentative evaluation of the 

various static analyses techniques. We follow four axes 

taken from [4]: automation, precision, scalability, and 

soundness. 
 

 On the one hand, data and control flow analyses are 

automatic, scalable, and sound, but they cannot deal with 

complex properties. On the other hand, model checking 

has been already applied to rather complex properties, but 

it is neither automatic (the model has to be manually 

specified), nor scalable (because of the state explosion 

problem), nor formally sound (there is usually no relation 

between the model and its actual implementation). The 

only approach covering all the four axes of evaluation is 

abstract interpretation. Nevertheless, the price to pay is 

higher in terms of user competence required to develop 

the analysis. In fact, while it is a relatively simple task, 

for an average skilled engineer, to draw an automata 

representation out of a robot model and verify it by a 



 

model checker (like the one in Figure 3), it is a much 

more complex task the specialization of a generic abstract 

analyzer. The latter requires in fact the combination of 

strong and specific background both on programming 

language semantics and on algebraic structures. 

The picture above is confirmed also by the use of the 

mentioned techniques as reported by the recent literature 

in the robotics area. In fact, model checking has been 

mainly applied for high- level verification of the robot 

model, and not much to the final implementation code 

[29]. Instead, abstract interpretation has been successfully 

applied to safety critical source code to automatically 

detect absence of run-time errors in standard 

programming languages like C [4], and it may cover also 

the interaction with database query languages [19]. 

Finally, data and control flow analyses are used inside of 

the compilers of domain specific programming languages 

mainly as a support for program transformation and 

generated code optimization [28].  

V.  CHALLENGES OF ROBOTICS SOFTWARE VERIFICATION 

There are still various research challenges that have to 

be solved in robotics software verification. In particular, 

it is nowadays clear that static analysis techniques will be 

fundamental to produce robust robotics software. If on 

the one hand the problem has been already studied (and 

sometimes successfully solved) on particular systems and 

software, on the other hand a general solution has not yet 

been identified. This is mainly due to the fact that “most 

manufacturers of robot hardware also provide their own 

software. While this is not unusual in other automated 

control systems, the lack of standardization of 

programming methods for robots does pose certain 

challenges. For example, there are over 30 different 

manufacturers of industrial robots, so there are also 30 

different robot programming languages required.” [36] 

The development of automatic static analyses of 

complex properties is a rather expensive and time 

consuming process. The wide spectrum of programming 

languages and robotics system often limits the benefits of 

static analysis techniques, since these could be only 

applied to particular sub-systems.  

A unifying scenario would surely push to apply static 

analysis techniques to robotics software verification, 

since these static analyses could be applied to a broad 

range of software. 

On the semantic level, the main open problem is how 

to cover the gap between the complex high level 

properties proved by model checking, and the source 

code level properties proved automatically by abstract 

interpretation. In particular, it would be quite relevant to 

prove that the actual implementation of a system 

corresponds to its high-level model. 

Finally, it would be very important to further develop, 

both at theoretical and practical level, methods and tools 

for the static analysis of non-functional properties (like 

portability, usability, robustness, etc.) that play a crucial 

role in robotics software, but received very limited 

attention in the formal verification literature, with the 

notable exception of [10].  
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