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Geometric algorithms are usually described assuming that arithmetic operations are per-

formed exactly on real numbers. A program implemented using a naive substitution of

floating-point arithmetic for real arithmetic can fail, since geometric primitives depend upon

sign-evaluation and may not be reliable if evaluated approximately. Geometric primitives are

reliable if evaluated exactly with integer arithmetic, but this degrades performance since

software extended-precision arithmetic is required.

We describe static-analysis techniques that reduce the performance cost of exact integer

arithmetic used to implement geometric algorithms. We have used the techniques for a

number of examples, including line-segment intersection in two dimensions, Delaunay trian-

gulations, and a three-dimensional boundary-based polyhedral modeller. In general, the

techniques are appropriate for algorithms that use primitives of relatively low algebraic total

degree, e.g., those involving flat objects (points, lines, planes) in two or three dimensions. The

techniques have been packaged in a preprocessor for reasonably convenient use.
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1. INTRODUCTION

It is convenient to describe geometric algorithms in the “real number RAM”

model of computation, with unit-cost operations—including arithmetic,

assignment, and comparison-on real numbers. Computer programs that

implement these algorithms are often written by naively substituting

floating-point operations for real. This replacement is undeniably conve-

nient, and yields a program with very fast numeric operations.

Since floating-point arithmetic is intrinsically approximate, however, the

machine’s native precision may not suffice for all geometric tests. For

example, when a point lies very close to a line, substituting the point

coordinates into the line equation can yield a floating-point number whose

rounding error exceeds its magnitude. This makes it impossible to tell

reliably whether the point lies above, on, or below the line.

There are several techniques to cope with the limited precision of

floating-point arithmetic. One is to choose an ●, and to treat any

quantities that are smaller in absolute value than c as if they were zero.

Many examples are known where using such ad hoc tolerances causes

geometric programs to fail catastrophically [Fortune 1993, Sect. 3.4,

Hoffman 1989, Ch. 4]. Another approach is to perform a careful analysis

that describes when an algorithm is stable in the face of floating-point

errors [Fortune 1995b; Li and Milenkovic 1990; Sugihara and Iri 1989].

The required analysis is quite difficult and has been completed for only a

few algorithms.

Many geometric algorithms can be written in terms of integer or rational

arithmetic, so careful programmers might consider avoiding floating-point

altogether. For all but the simplest geometric computations, however, the

required bit-length of the integers will exceed the native machine precision,

so this strategy requires using software multiprecision integer arithmetic.

The large performance cost of this approach seems to have made it

unpopular. For example, Karasick et al. [1990] report that substituting

off-the-shelf software rational arithmetic for every use of floating-point

arithmetic in a program to compute planar Delaunay triangulations slowed

the program by a factor of about 104; Jaillon reports a similar slowdown for

a polyhedral modelling program [Jaillon 1993].

Thus, floating-point arithmetic is fast but unreliable, while multipreci-

sion integer arithmetic is exact but slow. Several researchers have tried to

marry the two kinds of arithmetic to obtain the best features of both. The

common theme of these “adaptive” techniques is to evaluate each expres-

sion to just enough precision to obtain a reliable answer. Karasick et al.

[1990] report dramatic improvements in performance from combining adap-

tive-precision arithmetic with a variety of other optimizations specific to

the algorithm; eventually they obtained an overall runtime slowdown of

about 4 from the floating-point to the adaptive-precision implementation.

Using only adaptive-precision techniques, Jaillon obtained a ratio of about

8. Section 3.2 describes some approaches to adaptive precision and mea-

sures the runtime overhead contributed by each.
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The runtime ratios of adaptive precision arithmetic represent a big

improvement over naive exact arithmetic. Still, few programmers will

welcome such a large increase in runtime, especially when the slowdown

occurs even on problems that rarely need full-precision computation. Imple-

mentations of adaptive-precision arithmetic typically exhibit such high

overhead because they replace each arithmetic operation, which in floating-

point is a single machine instruction, by a subroutine call or a macro

expansion that does relatively complicated bookkeeping, often including

some form of memory management. Since arithmetic computation typically

appears in the inner loop of a geometric computation, this substitution

imposes substantial overhead.

We present a strategy that can be applied before compilation to generate

efficient adaptive code for multiprecision integer arithmetic. Our strategy

statically analyzes entire arithmetic expressions; this makes it especially

suitable in the context of computational geometry, where the expressions

that define geometric primitives are known in advance. The generated code

uses two levels of adaptive precision to compute the sign of an arithmetic

expression. First, it evaluates the expression in floating-point arithmetic. If

the magnitude of the floating-point result exceeds an error bound, then the

sign of the floating-point value is the true sign of the expression. The error

bound is computed by static analysis of the structure of the expression and

estimates of the sizes of the operands; thus, testing the magnitude of the

floating-point approximation against the error bound requires two compar-

isons at runtime. If the floating-point approximation is smaller in magni-

tude than the error bound, the expression is evaluated exactly using code

generated from the static analysis. Section 4 includes more details of the

static analysis.

We have packaged this strategy in a preprocessor called LN. (LN stands

for “little numbers,” to emphasize that the preprocessor is not a general-

purpose “big number” package. ) The input to LN is a set of geometric

primitives, each expressed in integer polynomials. The output of LN is

C++ code that simulates exact evaluation of the primitives. Section 5

describes LN.

Section 6 presents some results from experiments with programs that

use LN to implement several geometric algorithms, including Delaunay

triangulation, planar line segment intersection, and three-dimensional

polyhedral modeling. On generic problem instances, the primitives gener-

ated by LN impose very little runtime penalty: the exact-arithmetic version

runs almost as fast as a floating-point version of the program. On degener-

ate instances contrived to require many exact evaluations, the runtime

penalty typically has been less than a factor of two. The exact penalty

depends heavily upon the details of the algorithm and the problem in-

stance.

Moving from the real number RAM version of an algorithm to an integer

version suitable for programming is harder than simply changing the

definitions of “number” types. First, it must be possible to represent

geometric data using only integers. Next, the programmer must define
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primitives carefully, paying particular attention to the bit-length required

to evaluate them exactly. The primitives for some algorithms are well

understood, while other algorithms may require considerable ingenuity,

particularly to reduce the necessary bit-length. (The details of an example

using circles appear in Van Wyk [1995 ].) Third, the programmer should

consider which parts of a computation do not require exact arithmetic at

all, partitioning the program into floating-point and exact-arithmetic

pieces. Because of engineering choices made during the design and imple-

mentation of LN, using it to implement a geometric algorithm also imposes

its own peculiar challenges. Section 7 contains some observations about

these issues.

1.1 Other Work

Software extended-precision arithmetic has been developed for many appli-

cations; for example, Brent’s MP package [1978] provides arbitrary-preci-

sion floating-point arithmetic, while the INRIA BigNum package [1989]

provides arbitrary-precision integer arithmetic. More recently, attention

has focused on the specific needs of computational geometry (Yap and Dube

[19951 offer a recent survey).

Several authors have reported experiments with some form of integer (or

rational) arithmetic. We have already mentioned the work of Karasick et

al. using adaptive-precision rational arithmetic. The LEDA algorithms

library [Naher 1995] provides several C++ arithmetic packages, including

arbitrary-precision integer (see Section 3.1) and a variation of adaptive

precision called floatf (see Section 3.2); Mehlhorn and Naher used these

LEDA packages to implement the Bentley-Ottmann plane-sweep algorithm

[19941. Benouamer et al. [1993; 1994] detail their experience using lazy

rational arithmetic to implement the Bentley-Ottmann algorithm and a

polyhedral modeller [Jaillon 19931.

Sometimes integer or rational arithmetic is not enough to describe

geometric primitives conveniently. Yap [1993] advocates general computa-

tion on algebraic numbers, and has offered a preliminary software design.

The LEDA library also includes a real package that provides exact +, –, x,

+ and v; Burnikel et al. [1994] measure empirically the precision required

for the incircle test on line segments, a predicate best expressed using

nested square roots.

Many geometric predicates use the sign of a determinant. Clarkson

[19921 and Avnaim et al. [19951 present algorithms to compute the sign of

an integer determinant using less arithmetic precision than would be

required to represent the value of the determinant. It is not clear how these

algorithms compare to direct evaluation in practice.

Since most scientific computation is performed using floating-point arith-

metic, the input to a geometric algorithm is often expressed with floating-

point values. It would be convenient to perform exact computation on

floating-point values directly. Since floating-point numbers are rational,

they could be manipulated with software rational arithmetic. Priest [1995]
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Fig. 1. Geometric predicates; 3D afflne orientation (left); 3D homogeneous orientation

(center); 2D incircle ~rightl.

and Shewchuk [ 1995] give alternate techniques that use a purely floating-

point representation, and analyze a few geometric predicates. The repre-

sentation used in Section 4.2 is similar in spirit to the representations of

Priest and Shewchuk.

2. PRELIMINARIES

2.1 Geometric Primitives in Integer Arithmetic

Our methods apply when geometric data can be represented using integer

values and geometric primitives can be written as multivariate integer

polynomials in those values. Homogeneous coordinates are a convenient

way to express rational afflne coordinates as integer tuples. The three-

dimensional point with homogeneous coordinates (x, y, z, w J has afllne

coordinates ( XIW, ylw, ZIW ).

Geometric primitives can be partitioned into predicates, which determine

control flow and require only the sign of a polynomial, and constructors,

which generate new geometric objects and require the value of a polyno-

mial. A rough estimate of the arithmetic bit-length required to evaluate a

polynomial is the product of the bit-length of the coordinate data and the

total degree of the polynomial. (Whenever we use the word “degree” below,

we mean “total degree.”)

Figure 1 includes three examples of predicates. The sign of the orienta-

tion determinant tells whether the fourth point lies above, on, or below the

oriented hyperplane through the other three points. In d dimensions, the

orientation test is a polynomial of degree d for affhe coordinates and d + 1

for homogeneous coordinates. The two-dimensional incircle test tells

whether the fourth point lies outside, on, or inside the circle defined by the

other three points; for points with afllne coordinates in d dimensions, its

degree is d + 2.

As an example of a constructor, consider the plane through three given

points. The plane coefilcients are given by the 3 X 3 subdeterminants of the

first three rows of the orientation determinant. For homogeneous point

coordinates these coefficients are of degree 3, while for afhe coordinates

they are a mixture of degrees 2 and 3. By duality, the same constructor

gives the point of intersection of three planes. Degree estimates multiply as

constructors are composed; for example, the point of intersection of three

planes, each defined by three points, has degree 9 in the coordinates of the

original points (assuming homogeneous coordinates ).
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2.2 IEEE Floating-Point Arithmetic

We assume throughout that IEEE double-precision floating-point arith-

metic [IEEE 1987] is being used. This means that a floating-point value

effectively has a 53-bit mantissa, which implies that the relative error in

any floating-point operation is at most 2 ’53. It also means that floating-

point operations are exact so long as the result can be represented

exactly.

3. SOFTWARE OPERATORS

Implementing arithmetic in software means, in effect, replacing every

arithmetic operation in an expression like

det = sign(a*d– b*c);

by invocations of the appropriate subroutine or macro to yield code like

tl = mul(a, d); t2 = mul(b, c); t3 = sub(tl, t2); det = sign(t3);

C++ makes this approach particularly convenient, since the arithmetic

operators can be overloaded to denote subroutine calls. In this section we

consider various alternatives for what happens inside the subroutines,

emphasizing the performance implications of each choice.

Suppose that a floating-point geometric program spends a fraction a of

its runtime performing geometric computations. If substituting subroutine

calls for native floating-point operations increases the time required for

those computations by a factor off, then the overall runtime of the program

will increase by a factor of

l–a+af=l+(~–l)a.

The fraction a varies widely; when computing Delaunay triangulations in

two and three dimensions, we have observed 0.2 s a 5 0.5 [Fortune and

Van Wyk 1993].

We wrote some short test programs to estimate the factor f for various

alternatives. Details of the programs appear in Appendix A. We timed each

program as it computed one million 3d homogeneous orientation tests.

Since arithmetic accounts for almost all the runtime of the floating-point

version of this program, the ratio of the runtime for an alternative version

to the floating-point runtime gives a good idea of the magnitude off for that

alternative.

3.1 Universal Exact Arithmetic

Arithmetic operators can be overloaded to replace floating-point operations

by calls to exact integer arithmetic subroutines in a library; in Appendix A,

for example, we use the LEDA integer class. The increase in runtime

depends on the bit-length of the input coordinates. When the determinant

entries are initialized with random 31-bit integers, runtime increases by

about a factor of 60 over floating-point; with random 53-bit integers, it
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int det2x2(integer a, integer b, integer c, integer d)

{

floatf fa = a, fb = b, fc = c, fd = cl;

int approxresult = Sign(fa*fd - fb*fc);

if (approxresult != lUO_IDEA)return result;

return sign(a*d - b*c);

1

Fig, 2. Hand-codedlazy evaluationusing LEDA classes floatf and integer.

increases by about a factor of 100 over floating-point. We have observed

similar performance ratios with other off-the-shelf software libraries for

exact integer arithmetic [Fortune and VanWyk 1993].

3.2 Adaptive Precision

The idea ofadaptive-precision arithmetic isto evaluate the expressions ina

geometric primitive to just enough precision to permit reliable computa-

tion. This simple idea admits a rich spectrum of engineering choices. To

focus the discussion on overhead, we shall consider only a two-level

adaptive-precision strategy for evaluating predicates: first, evaluate the

expression in floating-point; ifits sign cannotbe determined, evaluate the

expression using exact arithmetic. We refer to this strategy as “filtered

floating-point”: we use floating-point to “filter out” easy instances of primi-

tives.

To implement this strategy, each arithmetic operation (+, –, X ) must

compute both a result and an error bound on that result, and also must

record the operation and its operands in an expression graph for possible

later use. We can estimate the relative cost f of this two-level strategy as

f= f.+ f.+xe,

where fE is the cost of accumulating error bounds on floating-point opera-

tions and comparing against them, fR is the cost of recording the opera-

tions, x is the fraction of tests that must be evaluated exactly, and e is the

overhead of exact evaluation. Notice that the overhead fE + fR applies even

when exact evaluation is never necessary (i.e., x = O); thus, f,q + fR is a

lower bound on f.

We estimated fE and fR separately. Our measurements suggest that 12 s

fE ~ 14 and 24 ~ fR s 33. We also measured 11 s fE s 15 for LEDA’s

floatf class. Combining these estimates, we conclude that two-level adaptive

precision arithmetic is between 35 and 48 times as expensive as floating-

point arithmetic when no exact evaluation is required.

3.3 Hand-Coded Lazy Evaluation

Since it is so expensive to record an arithmetic expression graph at

runtime, a clever programmer might code lazy evaluation by hand. Figure 2

depicts lazy evaluation of 2 X 2 determinants using classes provided by
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LEDA. This simple approach is still fairly expensive. Assuming fE = 11 (as

for LEDA floatf) and a = 30% of total runtime, this substitution will

increase the runtime of the program by at least a factor of four, even when

exact arithmetic is never needed.

Recent versions of the LEDA library contain predicates (such as

orientation ) and lexicographical order on points) that include code to

compute error bounds (which appear to have been derived by hand).

These error bounds are used to filter exact arithmetic. Such careful

fine-tuning of the library subroutines can reduce dramatically the

overhead of lazy evaluation.

3.4 Other Work

The work reported by Karasick et al. [1990] most closely resembles the

hand-coded lazy evaluation of Section 3.3, while the work of Benouamer et al.

[1993; 1994] most closely resembles the adaptive-precision techniques of

Section 3.2 modified for rational, rather than integer, values. Both sets of

authors report performance ratios that seem generally consistent with our

observations. More detailed comparison is difficult, since neither group gives

enough timing statistics to determine how much runtime was devoted to

arithmetic, hence how much overhead their technique imposes, nor does either

group give details of the behavior of their implementation on degenerate

instances.

4. STATIC ANALYSIS TECHNIQUES

The set of primitives used by a geometric algorithm is fixed when the

program is written. This suggests that it should be possible to reduce the

performance costs of the components of adaptive-precision arithmetic with

the help of static analysis of the arithmetic expressions. That is, we can use

this analysis to move many of the computations associated with adaptive-

precision arithmetic from runtime to compilation time.

We show how to analyze an arithmetic expression to obtain static error

bounds and to generate efficient code for exact evaluation. The methods

apply to any multivariate integer polynomial, i.e., an expression over the

operations [+, –, x } with integer constants and variables. To use the

methods, we need an upper bound on the bit-length of each variable that

appears in the expression. Given such bounds, we can compute bounds

inductively on the bit-length of each subexpression:

maxbitlen(a ~ b) = 1 + max(maxbitlen(a ),maxbitlen(b)),

maxbitlen(a x b) = maxbitlen(a) + maxbitlen(b).

4.1 Static Error Bounds

We can compute a static upper bound maxerr on the absolute error in

double-precision evaluation of an integer polynomial as follows. If max-
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bitlen(x) s 53, then maxerr(x) = O. Otherwise,

maxerr(a ~ b) = maxerr(a) + maxerr(~) + 2m”Xbitl’”~”-~1 53

maxerr(a X b) = maxerr(a)2m8’bit1e”(6’

+rnaxerr(~ )zmaxbitlen(a] + Zmaxbitlen[a /h} 53

Since maxerr depends only on the structure of the expression and the

bit-lengths of the variables, it can be computed statically. The runtime

error-bound test compares the magnitude of the floating-point value with

maxerr; this can be implemented in two comparisons.

Since maxerr does not take into account the actual values of the

variables, it is more conservative than the error bounds in Section 3.2. To

estimate how much more conservative, consider the three-dimensional

homogeneous orientation determinant (evaluated using dynamic program-

ming), and assume that all matrix entries have 31-bit coordinates. For this

situation, the value of maxerr is about 280 = 1.2 x 1024. For sixteen 31-bit

integers, chosen randomly from the range 230 . . . 2:}1, the LEDA floatf

bound is about 1.3 x 1025, and the dynamic bound (from the standard

formulae) is about 4 x 1021. (It may help to look at these bounds by

91 to [0, 1]. Dividing by 2s1’”4 = 2.1 xresealing coordinate data from O. . .2’

1037 we find a scaled static error bound of about 5 x 10-14, a scaled floatf

error bound of about 6 X 10-13, and a scaled dynamic bound of about 8 x

10- 16.) The floatf bound and the dynamic bound, of course, depend upon the

actual magnitudes of the coordinates. If each coordinate in the orientation

determinant were divided by 2, these bounds would be reduced by 24 = 16.

The static bound, on the other hand, would not change. Thus, the static

bound is most effective when the input coordinates do not lie far from their

maximum possible value.

4.2 Compiled Exact Evaluation Code

Part of the high performance cost of conventional multiprecision integer

arithmetic can be attributed to bookkeeping overhead, including subroutine

linkage, memory management, and loops to handle integers of arbitrary

bit-length. When every arithmetic operator incurs such costs, the total

overhead for operations on the relatively short integers needed by geomet-

ric predicates can be quite significant. Most of this overhead can be

eliminated by generating evaluation code that is carefully tailored to each

expression.

This section describes one scheme that such tailored evaluation code can

use. It stores a multiprecision integer as a tuple of double-precision

floating-point values. Though it may seem odd to use floating-point arith-

metic to implement exact arithmetic on integers, we do so because double-

precision floating-point has been extensively optimized on current machine

architectures and allows exact operations on 53-bit integers.

A multiprecision integer value a is represented as the unevaluated sum
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of double-precision floating-point variables

ao+. ..+a~, where ai = a j X 2ri, a ~integral, (1)

and r is the digit (or radix) length. The number of variables depends upon

the radix length and the estimated bit-length of the value; any integer up

to 21023 can be represented in this way (the limit comes from the limit on

exponents in IEEE double precision). A multiprecision value is normalized

if each a \ is at most 2’ in absolute value. Integer values need not be

normalized, so the representation of a multiprecision value is not unique.

Suppose that a=ao+. .”+a~ and b= be+. ”.+ b~. The

multiprecision sum c : = a + b can be implemented simply as the

floating-point sums:

co := ao+bo, cl:= al+ bl, . . ..c~. = a~+b~. (2)

so long as each result is exactly representable. The multiprecision product

c : = a b is implemented using the usual O ( rn2) algorithm:

Ck := ~ ajbk.j, (3)

Osj=rn

again so long as each result is exactly representable.

Often with (3) and sometimes with (2), some term in the result cannot be

represented exactly as a floating-point value, and the operands must be

normalized before the operation. To normalize, we execute the following

simultaneous assignment in order of increasing i:

al, ~i+l := ai mod 2“i, a,+l + ai – (at mod 2’i);

This guarantees that for each i, a j is at most 2’ in absolute value. Profiling

revealed that the library modulus routine is slow. If ai < 2127, an

alternative is to add a large constant to align the bit positions in the

normalized floating-point significands, perform the mod by converting to

single-precision floating-point and subtracting, and finish by subtracting

the large constant; scaling is required if the value ai 2 2127. Another, less

portable, alternative would be to use bit operations on the significands.

The choice of the radix bit-length r is subtle. To minimize the number of

variables needed to represent a value, it should be as large as possible, i.e.,

about half the bit-length of a double-precision significant. Since determi-

nant evaluation typically alternates sums and products, however, and we

would like to be able to add several products between normalizations, it is

useful to reduce the radix length slightly. The value r = 23 appears to be

an appropriate compromise, which was used for all timing results reported

in this article.

Figure 3 presents counts of double-precision floating-point operations for

three methods of evaluating various primitives: naive floating-point evalu-

ation, exact evaluation on 3 l-bit integer coordinates, and exact evaluation

ACM Transactions on Graphics, Vol. 15, No, 3, July 1996,
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total Operation count

primitive degree fp 31-bit 53-bit

exact exact

affine 2d orientation 2 7 35 120

affine 3d orientation 3 23 110 480

affine 4d orientation 4 61 570 1500

plane from three affine 3d points 3 38 468 1135

constructed plane: point dot product 4 6 61 180

homogeneous 2d orientation 3 14 155 500

homogeneous 3d orientation 4 45 645 1380

2d incircle 4 35 455 860

3d incircle 5 87 1010 2360

line through two affine points 2 5 60 145

intersection of two constructed lines 3 10 150 315

coordinate comparison of intersection points 5 4 115 280

Fig. 3. Floating-point operation counts. The total degree is expressed in input coordinates.

Operation counts for exact evaluation are approximate.

on 53-bit integer coordinates. For the exact evaluation, each normalization

counts as four floating-point operations. The operation counts suggest the

cost of evaluation, but they do not predict it exactly. The homogeneous 3d

orientation test on 31-bit coordinates takes 14–21 times as long to evaluate

the determinant exactly as it takes using double-precision floating-point

arithmetic.

5. THE LN PREPROCESSOR

The static analysis techniques described in Section 4 have the potential to

improve substantially the performance of two-level adaptive-precision

arithmetic. The LN preprocessor [Fortune and Van Wyk 19931 packages

these techniques for reasonably convenient use.

The LN preprocessor generates C++ classes and subroutines. A class

generated by LN stores integers, while a subroutine generated by LN

evaluates an integer polynomial. Thus, the interface to LN, while relatively

low-level, is at a higher level of abstraction than a “number” data type and

a set of operations. A class that is useful for representing geometric data

will probably require both numeric and nonnumeric data; such a class could

include an LN-generated class as a data member, or could be derived from

an LN-generated class. Similarly, a high-level geometric primitive might

need to invoke several subroutines generated by LN.

The input language to LN describes integer polynomial expressions.

Primitives include variables, constants, arithmetic operations +, –, x,

assignment, conditionals, and a few predefine functions such as sign

(which returns – 1, 0, or +1). To simplify coding one can define tuples of

fixed arity and parametrized expressions called macros. To turn the expres-

sions into C++, the maximum bit-length of any input variable must be

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.
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tuple EPoint3d(x, y, z ,v);

macro det4x4(a:HPoint3d, b: EPoint3d, c: EPoint3d, d: HPoint3d) =

{ dxy = a.x*b. y - b.x*a. y; dxz = a.x*b. z - b.x*a. z; dxtr = a.x*b. w - b.x*a. s;
dyz = a.y*b. z - b.y*a. z; dyri = a.y*b. v - b.y*a. u; dziI = a.z*b. u - b.z*a. v;

dxyz = C .x*dyz - c .y*dxz + C .z*dxy ; dxyv = c .x*dym - c .y*dxm + c .l?*dXy;

dxzw = C .X*dZV - c.z*dx~ + c.u*dxz; dyzw = C .y*dZ17 - C .z*dyw + C w*dyz;

det = d. x*dyzs - d. y*dxzv + d. z*dxyw + d. u*dxyz;

sign(det)

}:

class integer = int<31>, IlPoint3d;

proc det4x4;

Fig. 4. Homogeneous 3D orientation in LN.

specified. LN uses this information to compute bounds on the bit-lengths of

all intermediate and output values, to generate error bounds, and to

produce exact evaluation code.

Figure 4 contains an LN definition of the 3d homogeneous orientation

predicate. The class line directs LN to define a C++ class integer that can

hold 3 l-bit integers, and another C++ class HPoint3d that holds four

integer coordinates. The proc line directs LN to define a subroutine

det4X4( ) that returns the sign of the implied 4 X 4 determinant. Figure 5

contains an edited portion of the C++ code generated by LN.

The code in Figure 5 evaluates the determinant in floating-point; if and

only if its magnitude is less than the static error bound, the code evaluates

the determinant exactly. This lazy evaluation strategy extends to arbitrary

Boolean tests, so a Boolean test in the expression language usually gener-

ates two tests in the C + + program: one determines whether the floating-

point computation is reliable; the second actually performs the test. The

precompiled also avoids generating code that evaluates the same expression

more than once. Since the generated code has more tests than appear in the

source language, and since the dynamic flow of control cannot be predicted

statically, the actual code generation algorithm is rather complex. We omit

details of the algorithm here.

LN can also be used to define a constructor, which produces new

geometric data. Figure 6 gives the LN definition of a primitive that

computes the plane through three homogeneous points in R 3. From this

definition, LN generates a declaration for class Plane, one of whose member

functions is a constructor generated from the LN macro plane. If a, b, and c

are variables of class HPoint3d, the programmer could define and initialize

an instance of Plane by writing

Plane pi(a, b, c);

The plane coefficients are computed exactly, Since each of them is about 97

bits long, they do not fit into a native C++ type. LN generates an

appropriate representation, which is not usefully accessible within the
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int det4x4(const liPoint3dk a, const IiPoint3dt b, const EPoint3d& c, conat HPoint3dk d){

t[l] = a.z*b. w-b. z*a. w;

t[2] = a.y*b. v-b. y*a. u;
t[3] = a.y*b. z-b. y*a. z;
t[41 = a,x*b. w-b. x*a. w;

t[6] = a.x*b. z-b. x*a. z;
t[6] = d.x*(c. y*t[l]-c. z*t[2]+c .w*t[3] )-d. y*(c. x*t[l]-c .z*t[4]+c. w*t[6]);

t[7] = a.x*b. y-b. x*a. y;

t[81 = t[6]+d. z*(c. x*t[2]-c. y*t[4]+c .w*t[7] )+d. s*(c. x*t[3]-c .y*t[6]+c. z*t[7]);

if (-p2 [@31<t [8] at t [8] <P2[86] ) {
t[9] = d.x; // splits d.x into 10V and parts

t [101 = f loat(P2x3 [461+t [91 )-R2x3 [451 ;
t[9] -= LIlt[l O] ;

// accuroulat e determinant as sum of f. p. numbers

t[81 = ((((( t[134]+t [133] )+t[132] )+t[131] )+t[130])+t[129]); // sign of sum is correct

}
return t[8]<0 ? -1 : tE61>0 ? 1 : O;

}

Fig. 5. Edited C++ subroutine produced by LN from Figure 4. P2~] contains 2’ and P2x3~]

contains 3 X 2’. Required conversions from int to double have been omitted for clarity.

tuple 8Point3d(x, y,z, @) , Plane (a, b,c, d) ;

macro plane (a: fIPoint3d, b: HPoint3d, c: IiPoint3d) =

{ dxy = a.x*b. y - b.x*a. y; dxz = a.x*b. z - b.x*a. z; dx~ = a.x*b. u - b.x*a. u;
dyz = a.y*b. z - b.y*a. z; dyw = a.y*b. v - b,y*a, w; dzu = a.z*b. u - b.z*a. u;

dxyz = C x*dyz - C y*dxz + C ,z*dxy; dXyW = C .x*dyw - C y*dxv + C .W*dXy ;

dxzw = c x*dzw - C z*dxw + c wtdxz; dyzw = C .y*dzw - C z*dyw + C v*dyz ;

Plane (dxyz, -dxyw, dxzw, -dyzs)

};
macro beyond (pi: Plaae, p: HPoint3d) = siga(pi. a*p. x + pi. b*p. y + pi. c*p. z + pi. d*p. v) ;

class integer = int<31>, iiPoint3d, Plane (-) ;

proc Plene: :Plane = plaae;

proc beyond;

Fig. 6. LN program to calculate the plane through three points,

class HPoint3d {public: int x,y, z,w; };

class extended97 { public: double vO, V1,v2, v3, v4; };

class Plane { public:

extended97 a, b,c, d;

Plsneo{};

Plane (const HPoint3d&, const HPoint3d&, const HPoint3dk) ;

};

int beyoad(const Planet, const HPoint3dk) ;

Fig. 7. LN generated C++ signatures for the example in Figure 6 (slightly edited)

C++ program. An instance of Plane, however, may appear as a parameter

to another subroutine generated by LN, such as beyond in Figures 6 and 7.

LN associates information about maximum bit-lengths with each class it

generates. This means that the programmer need not know the actual

bit-length of Plane coefficients. It also means that another “plane” with

different maximum bit-length would have to be an instance of a different

C++ class. Section 7.2 discusses the reasons for and some consequences of

this tight association between bit-length and class.
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6. EXPERIMENTAL RESULTS

We have used LN to implement several geometric algorithms. This section

describes the performance of the resulting programs. Section 7 describes

our experience coding the algorithms.

One measure of performance would be the relative cost of floating-point

and LN implementations of a geometric algorithm. We did not, however,

implement each algorithm separately using floating-point and LN. Instead,

we can estimate the extra performance cost of the LN version as the cost of

the floating-point filter plus the cost of any required exact evaluations of

primitives.

The total cost of exact primitive evaluations is determined by the cost of

each exact primitive and the number of times each is evaluated. The cost of

a primitive depends only on the algorithm and bit-length, and can be

determined relatively easily (see Figure 3). The number of exact evalua-

tions required depends on the distribution of data and the effectiveness of

the floating-point filter. Random data requires very few exact evaluations;

degenerate or nearly degenerate data may require many exact evaluations.

We report the behavior of each algorithm on a wide range of data sets,

from highly degenerate to random. Behavior on real-world data should lie

somewhere in this range; real-world data might well be generated by a

nonrandom process, and so contain many degeneracies.

6.1 Delaunay Triangulations

We experimented with the divide-and-conquer algorithm for planar Delau-

nay triangulations [Guibas and Stolfi 1985]. The required primitives are

the orientation test and incircle test (both in two dimensions). If points are

represented with afline coordinates, these primitives have degrees 2 and 4,

respectively.

Each input data set consisted of 104 points with 53-bit integer coordi-

nates. Input sites were chosen from two families of distributions; each

family depends upon an interpolation parameter @[O, 11. The ith site in

the first family was chosen by

where ri has 53-bit integer coordinates chosen uniformly at random and Ci

is an integer point that lies approximately on the circle of radius 253 around

the origin (i.e., each coordinate was computed in double-precision floating-

point using trigonometric functions, then rounded to integer). When ~ = 1,

the sites are random; as ~ approaches zero, the sites become more nearly

cocircular. The second family of distributions is similar, except that Ci was

chosen from a circle of radius 253/16 = 249 centered at (15 X 249, 15 X 249).

Figure 8 plots the percentage of incircle tests that required exact arith-

metic as a function of the interpolation parameter @. While the percentage

of exact tests increases as @ decreases, the total running time also de-

creases with o. This happens because the total number of incircle tests also
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Fig. 8, Percentage of incircle tests that required exact arithmetic in divide-and-conquer

planar Delauney triangulation, as a function of interpolation parameter O.

decreases, from about 20 per site at O = 1 to about 5 per site at @ = 10-7.

The percentage of time devoted to incircle tests ranges from about 25’% at

@ = 1 to a maximum of about 55% at @ = 10-4.

We report on experiments with the flipping algorithm in two dimensions

and the random-incremental algorithm in three dimensions in Fortune and

Van Wyk [1993].

6.2 Segment Intersection

The Bentley -Ottmann plane-sweep algorithm [ 1979 ] reports all intersec-

tions in a set of line segments. Conceptually, the algorithm maintains the

state of a vertical sweepline as it moves across the plane; the state changes

at events where a segment starts or ends or two segments cross.

Profiling our implementation [Van Wyk 1994] revealed that it spends

over half its time maintaining the event queue. This requires comparing

the coordinates of points, of which there are two kinds. Segment endpoints

are represented using affine coordinates, while intersection points are

naturally represented using homogeneous coordinates. Our program stored

all intersection points, which meant their coordinates had to be computed

to full precision; this took about 10% of the total runtime. Subsequent

coordinate comparisons, however, use the floating-point filter provided by

LN.

We experimented with several data sets of 250 segments whose endpoint

coordinates have bit-length 31. If the segments were chosen uniformly at

random, then only about 5!%0of the coordinate comparisons required exact

arithmetic; altogether, arithmetic operations accounted for about 33% of

runtime. Two other sets of example data illustrate the performance cost of

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.



238 ● S. Fortune and C.J. Van Wyk

100 – .Oeoooo
● o

●

80 – ● o

●

60 – o
Percentage of comparisons

requiring exact arithmetic 40 —
●

●

●
o

20 – o
●

● eO*@
04

I I I I I
IO-8 10-6 ~()-4 0.01 1

max lCij ]

● Data Set I

o Data Set II

Fig. 9. Exact coordinate comparisons required for Bentley -Ottmann plane-sweep as a func-

tion of relative perturbation c.

degenerate input. Data Set I started with the 250 segments

{(O, 109 xj/250), (10’, 10’x (250 -j)/250):j = O, . . . . 249}

(i.e., 250 segments crossing at a single point), then perturbed each endpoint

coordinate independently by a random integer chosen in the interval – ●lOg

. . . ●109. Data Set 11 consisted of 250 copies of the segment ((O, 109), (109,

109)), with each endpoint perturbed as for Data Set I.

Figure 9 gives the percentage of intersection-point coordinate compari-

sons that require exact arithmetic as a function of e. The total running time

for Data Set I increased by about 30% as e decreased from 1.024 to 10-9,

with arithmetic eventually accounting for about 45’%0of the runtime. Note

that once ● becomes smaller than 10- 3, the number of intersections

remains constant.

As ● decreased from 1.024 to 10-9 on Data Set II, the total running time

more than doubled, as did the number of intersections between segments.

In some applications it is desirable to round the intersection points to

have the same bit-length as the original data; our implementation does not

do this. Such rounding can be accomplished by modifying the Bentley-

Ottmann algorithm [Greene and Yao 1986; Hobby 1993; Milenkovic 1989].

6.3 Polyhedral Modelling

A polyhedral modeller [Hoffman 1989] supports Boolean operations on

three-dimensional polyhedral solids, as well as afflne transformations such

as rotation and translation. We implemented a bare-bones boundary-

representation modeller, starting with ideas of Sugihara and Iri [1989].
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More details of the algorithms and implementation appear elsewhere

[Fortune 1995].

Plane equations are the primary geometric information used to represent

a polyhedron. A Boolean operation on two polyhedral solids introduces no

new face planes, hence no new primary geometric information. A vertex is

defined as the point of intersection of three planes.

A transformation on a polyhedral solid is effected by multiplying plane

coefficients by a transformation matrix with integer entries. This multipli-

cation increases the bit-length of the plane coefficients; since this increase

is undesirable, the coefficients are rounded to a specified maximum bit-

length. Geometrically, the rounding perturbs the plane slightly, which may

cause inconsistencies between geometric and combinatorial information. An

important component of the implementation is an algorithm that recon-

structs consistent combinatorial information after the face planes have

been rounded [Fortune 1995].

The orientation test on planes suffices to implement the modeller. In

effect, this test decides whether the point of intersection of three oriented

planes lies above, on, or below a fourth oriented plane; it is dual (and

mathematically identical) to the orientation test on homogeneous points in

three dimensions. As a performance optimization, the program computes

and caches vertex locations. This means that most orientation tests, which

involve a vertex and a fourth plane, can be replaced by a cheaper dot-

product of vertex and plane coefficients.

For the experiment reported here, we used 31-bit integers for face-plane

coefficients. This implies that each (homogeneous) vertex coefficient has

absolute value at most about 2100. The exact computation of vertex coeffi-

cients contributes about 7% to total runtime.

We chose a convex polyhedron with about 250 sides (obtained by inter-

secting randomly-oriented unit cubes centered at the origin). We inter-

sected the polyhedron with a copy of itself rotated by an angle (-), for O

varying between 10-1 and 10 ‘g radians. Figure 10 plots the percentage of

the orientation tests that had to be performed exactly, as a function of 0.

The percentage of required exact dot-products also increased as 0 de-

creased, though not as quickly. For large 9, arithmetic occupied about 30%

of total runtime; this increased to somewhat more than 50% at 0 = 10-‘,

mostly due to the large number of exact orientation tests. Total runtime

increased by about 5090 as o decreased.

7. PROGRAMMING EXPERIENCE

The preceding sections show that LN can be used to implement geometric

algorithms expressed using integer arithmetic as reliable programs that

run almost as fast as naive floating-point implementations. Unfortunately

it is not entirely straightforward to obtain such good performance; it is

certainly harder than simply replacing the “number” types in a hypotheti-

cal real-arithmetic implementation. The difficulties can be attributed both
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Fig. 10. Exact orientation tests required for polyhedral intersection as a function of rotation

angle +.

to formulating a geometric algorithm in terms of integer arithmetic and to

using LN to write the program.

7.1 Geometric Algorithms With Integer Arithmetic

The first task in writing a geometric program is deciding which parts

require exact arithmetic. Exact arithmetic guarantees geometrically consis-

tent answers to arbitrary geometric tests on arbitrary input data. Not all

geometric algorithms, however, require such complete consistency. Since

exact tests are potentially expensive, it is appropriate to avoid exact

computation when possible. This is particularly relevant for constructed

geometric data, where bit-length increases multiplicatively as constructors

are applied.

The Delaunay triangulation and the Bentley-Ottmann algorithm each

compute some geometric objects whose bit-length is a small multiple of the

bit-length of the input data, so it was appropriate to assume exact arith-

metic everywhere in those programs. Implementing the polyhedral mod-

eller offered more choices. For our program, each Boolean operation is

guaranteed to produce the mathematically defined exact result. The exact

results of afflne transformations, however, must be rounded to prevent

coordinates from growing arbitrarily large. Each of these transformations

returns an approximation to the mathematically defined exact result; there

is no guarantee that applying a transformation followed by its inverse will

yield the original solid. This appears to be a reasonable tradeoff between

performance and complete mathematical consistency.

Once the exact-arithmetic part of a geometric algorithm has been identi-

fied, we can choose the representation of data and the required geometric

primitives. The performance cost of a geometric primitive is largely deter-

mined by its degree and the bit-lengths of input data values. Minimizing
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this cost can require choosing among alternatives that interact in compli-

cated and perhaps unfamiliar ways. Each of our implementations uses a

representation that minimizes the degree of the required primitives.

The Delaunay triangulation algorithms were particularly easy to imple-

ment, since the required predicates have been worked out in detail. Points

are represented using afilne coordinates. Using a homogeneous representa-

tion would double the degree of the incircle primitive.

The Bentley-Ottmann algorithm requires exact computation of intersec-

tion points and exact coordinate comparison to maintain the event queue,

and exact comparison of segments along a vertical line to maintain the

sweepline. We used afflne coordinates to store the endpoints of the input

line segments, and homogeneous coordinates to store intersection points

between segments. The highest degree of any predicate is 5, which is

attained when comparing two intersection points. If the segment endpoints

had also had homogeneous coordinates, the highest degree would have

been 8.

The polyhedral modeller uses plane equations to represent polyhedral

boundaries. It could have used vertex coordinates instead as the primary

geometric information. Boolean operations still would not introduce any

new face planes, and the plane orientation primitive would still suffice to

implement all necessary geometric tests. The bit-length required to store

plane coordinates, however, would be about three times that needed to

store vertex coordinates, so total bit-length bounds would triple.

In each of these three examples, the choice of representation and primi-

tives depends strongly upon such factors as where a program spends most

of its runtime, what kinds of arithmetic and other operations are especially

fast or slow on a particular machine, and the quality of the code produced

by a particular compiler. All of these practical considerations affect which

of several possible representations will yield the best program when

implemented. Moreover, once a representation has been chosen, converting

to a different representation, even one that is mathematically equivalent in

real arithmetic, may require either extensive changes to the program or

expensive computations at runtime.

7.2 Expressing Algorithms With LN

The LN interface to C++. Ideally, subroutines generated by LN would

correspond exactly to low-level geometric primitives. This produces some

tension between enriching the expression language so it can express

geometric predicates, and keeping the expression language small so as to

simplify the implementation of LN. We chose to concentrate on arithmetic:

LN’s arithmetic expression language is quite versatile and allows fine

control of generated primitives. Support for Boolean case analysis, how-

ever, is minimal: complicated case analyses should be written in C+ +.

Take the test that decides whether two nondegenerate planar segments

a b and cd intersect. This can be resolved using at most four 2d orientation

tests: test whether a and b lie on opposite sides of line cd and similarly if c
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and d lie on opposite sides of line ab. The orientation test is easily coded in

LN. C++ is more appropriate for the intersection test, however, since it

requires a case analysis of results from various orientation tests. If the

segments can be degenerate, it is even more important to partition the case

analysis between LN and C++, because the computation in this case

requires a more intricate case analysis and another numeric test to order

three points lying on a common line.

As a more complex example, consider the coordinate comparison test

required for the Bentley-Ottmann algorithm: lexicographically ordering

points, first by x-coordinate, then by y-coordinate. If the afflne coordinates

of two points p and q are stored in a native C + + number type (i. e., they are

endpoints of input segments), then the lexical ordering could be coded in

C++ as

Iexorder = sign(p.x-q.x); if (Iexorder= =0) Iexorder = sign(p.y-q.y);

(assuming sign returns – 1, 0, or 1). If the two points are each intersection

points of segments, then they are represented in homogeneous coordinates,

say x, y, w, and the afiine coordinates x/w, ylw are rational. Hence the

comparison requires cross-multiplication. Furthermore, the coordinates are

not a native C++ number type, so only functions generated by LN can

access them.

There are several ways one might express this test using LN. One is to

have LN generate two subroutines, xorder(p, q) and yorder(p, q), which

would be called instead of sign in the lexical-ordering code above. Function

xorder would compare two homogeneous points by their affine x-coordinates

(p. x/p. w: q. xlq. w ), whereas yorder would compare the points by y-coordi-

nates. Another is to have LN generate a single subroutine rationalorder

(a,b,c,d) that performs the comparison a/b : c/d, which would be called

successively with p.x, p.w, q.x, q.w, then with p.y, p.w, q.y, q.w. This

approach, however, requires the C++ client to expose the internal details

of the homogeneous representation of p and q, and involves considerable

argument passing. The solution that best captures the geometric meaning

of the test is to package all of Iexorder as an LN-generated subroutine;

the required case analysis is minimal. (This example, in fact, motivated

the inclusion of any Boolean operators at all within the LN expression

language.)

Lazy constructors. The LN two-level evaluation strategy does not extend

to constructed objects. A constructed object is always evaluated exactly,

although subsequent predicates on a constructed object are first performed

in floating-point, using the floating-point rounding of the exact object. We

considered extending the two-level evaluation strategy to constructors as

well. For the examples that we tried, however, exact evaluation of con-

structed objects contributes only a small percentage of total runtime; the

real benefit of LN comes from lazy evaluation of subsequent predicates. For

more complex algorithms that involve cascaded constructions, lazy con-

structor evaluation might well prove advantageous.
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Class distinction by static bit-length. LN determines a maximum bit-

length bound for each data member of each class that it generates. The

bound is used to compute error bounds, to generate exact evaluation code,

and also to determine a static storage representation for integers up to that

bound. Thus, changing a bit-length bound requires defining a new class. In

the Bentley -Ottmann example, an input point, whose coordinates have

short bit-length, is stored in a different class from the intersection point of

two segments, whose coordinates have much longer bit-length. In general,

every function that constructs a point may result in a different bit-length

bound, and hence require a new class.

The profusion of classes to hold “different-sized” objects of the “same

geometric type” does not arise at all when algorithms are written with real

numbers, and it certainly complicates programming. We originally had two

reasons for this design. First, the tight association between class and

bit-length allows LN to generate eftlcient filtering and exact evaluation

code, as described in Section 4. Second, the potential cost of an operation on

a geometric object varies enormously with bit-length (see Figure 3); distin-

guishing classes by bit-length forces the programmer to be aware that

conceptually identical operations may in fact have very different costs.

So far we have been able to tolerate the enforced class distinctions. Only

the Bentley -Ottmann algorithm requires an operation on pairs of points,

where either point can be an input or a constructed intersection point. The

implementation uses double-dispatching to determine which LN function

should be called. The additional complexity caused by the class distinctions

is manageable since there are only two point classes.

The enforced class distinctions become very unattractive for more com-

plex algorithms, with many constructors for the same geometric object

[Chang and Milenkovic 19931. It would be desirable to obtain the perfor-

mance advantages of LN while allowing bit-length to vary. Both error

bounds and exact-evaluation code would have to be determined by the

actual magnitude of operands, rather than worst-case estimates. Of course,

such dynamic computation gave rise to the unattractive cost estimates in

Section 3. We speculate that the costs can be reduced considerably by

compile-time processing of an entire arithmetic expression, much as LN

already does for static bit-lengths.

8. CONCLUSION

We began this work hoping to get the reliability of exact arithmetic without

having to pay (much) for it. Replacing all floating-point by general-purpose

exact arithmetic proved unthinkably expensive, but adaptive-precision

arithmetic reduced the overhead to the realm of the possible. Between the

adaptive precision of Section 3.2 and LN there lies a spectrum of implemen-

tation possibilities, each of which has its own advantages and disadvan-

tages. LN moves as much analysis and computation as possible to precom-

pilation and compilation, which reduces the amount of work at runtime,
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struct IiPoint3d {

Ifumber x,y, z,v;

HPoint3d(double x, double y, double z, double u)

: x(x), y(y), z(z), w(u) 0;

};

int det4x4(const EPoint3d# a, const HPoint3dk b,

const HPoint3d& c, const HPoint3dk d)

{

Ihunber dxy = a.x*b. y - b.x*a. y;

Iiumber dxz = a.x*b. z - b.x*a. z;

thmber dxw = a.x*b. u - b.x*a. w;

Number dyz = a.y*b. z - b.y*a. z;

lhmber dyu = a.y*b. u - b,y*a. u;

Uumber dzw = a.z*b. u - b.z*a. m;

Iiumber dxyz = c. x*dyz - c. y*dxz + c. z*dzy;

l!hmber dzyw = c. x*dyu - c. y*dxm + c. w*dxy;

Member dxzu = c. x*dzri - c. z*dxw + c. w*dxz;

Iiumber dyzw = c. y*dzu - c. z*dyu + c. u*dyz;

Ihmber det = d. x*dyzu - d. y*dxzw + d. z*dxyu - d.u*dxyz;

return sign(det) ;

}

void main( )

{

EPoint3d a, b, c, d; II initialized pseudo-randomly

for (int i = O; i < 1000000; i++)

int ans = det4x4(a, b,c, d) ;

}

Fig. 11. Key deiinitione for timing loop.

but also reduces the flexibility available to the programmer. Hand-coded

lazy evaluation using LEDA floatf and integer (Section 3.3) does more work

at runtime, but is more flexible.

Our methods apply when an algorithm has been written in terms of

integer arithmetic. Except for Section 7.1, we have not said much about the

difficulties one may encounter while switching from real to integer arith-

metic. Researchers in geometry are accustomed already to devoting close

attention to the choice of data representation so that certain operations are

more or less convenient [Hoffman 19891. Our work suggests that consider-

ations of bit-length need to be weighed with other factors when choosing

how to represent geometric objects.

C++ offers a variety of means intended to make better abstractions

available to a programmer. There are, however, well founded concerns

about the costs of some of these techniques, especially those that require

memory management or copying large temporary variables [Cargill 1992].

Our interface to exact arithmetic is less convenient than one that overloads

each operator to do more work. But that very inconvenience can serve the

programmer as a not-so-subtle reminder that an operation is expensive,

and thus can encourage the programmer to recast the computation to

reduce or even eliminate the operation.
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~umber{

double value, absvalue, error;

lhunber(double value) : value (value) , absvalue (f abs(value) ),

srrOr(O. ) {1

Iiumber(double value, double absvalue, double error)

: value (value) , absvalue(absvalue) , error (error) {}

Mumber operator+ (const I/umber& 1, const Iiumberb r)

double sum = l.value + r.value, sumabs . fabs(sum) ;

return lhmber(sum, sumabs, 1. error + r. error + sumabs) ;

IIumber operator* (const liumber& 1, const Uumber&r)

double prod = 1. value*r. value, prodabs = f abs(prod) ;

return Iiumber(prod, prodabs,

1, absvalue*r. error + r. absvalue*l error + prodabs ) ;

int sign(const Humbera op)

{ return (op. ~bsvalue > epsilon* op. error) ? (op. value < 0. ? -1 : 1) : fallo ; }

Fig. 12. Excerpts from definition of Number to accumulate error bounds.

Here are the steps we recommend for users beset by precision problems.

( 1) Try the LEDA real class. When you find its performance unbearable, (2)

move to integer arithmetic. This may be moderately inconvenient, but you

can hand-code lazy evaluation with filtering. If performance is still a

problem, (3) move to LN. This may require more programming effort, but

the final program will be very efficient.

Appendix A: Timing Alternative Strategies

We used the 3d homogeneous orientation test as a typical floating-point

geometric primitive. Figure 1 shows how it can be expressed as the sign of

a 4 X 4 determinant. Function det4x4( ) in Figure 11 uses dynamic

programming to evaluate this determinant: evaluate all 2 X 2 subdetermi-

nants of the first two rows, then all 3 X 3 subdeterminants of the first three

rows, and finally compute the actual determinant. The whole computation

requires 28 multiplications and 17 additions or subtractions.

The program in Figure 11 computes one million 3d orientation tests. To

reduce the amount of work the program does besides arithmetic, det4x4( )

takes four (rather than sixteen) arguments by constant reference, and the

test is repeated on the same four points.

First we timed the program in Figure 11 when Number was defined to be

double, i.e., using double-precision floating-point arithmetic. To estimate f

for universal exact arithmetic, we defined type Number to be a LEDA

integer.

To estimate fE, we defined type Number and overloaded the arithmetic

operators as shown in Figure 12. The standard formulae for the error in
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emun Opcode {Add, Subtract, Multiply, Constant};

struct Record {

Record* lop, *rep;

Opcode opcode;

int ref cnt;

void ref ( ) { ref cnt++; }

void deref ( ) { if (--ref cnt == O) {

if (opcode != Constant)

{ lop->deref (); rop->deref ( ); }

delete this; } }
Record (Record* lop, Record* rop, 13pcode opcode)

: 10P(1oP) , rop(rop) , opcode(opcode), ref cnt (1) {}

void* operator new(size.t) {

Record* ans = freelist;

return (ans != O) ? (f reelist=sns->lop, ane) : alloco; }

void operator delete (void* r) {

( (Record* )r)->lop = freelint; freelist = (Record*)r; }

};

strnct ?hmber {

Record* record;

Ihuuber( ) { record = new Record (O, O, Constaat ) ; }

Humber(double) { record = new Racord(O, O, Constant); }

Kumber( const hmber& 1, const hiaberk r, Opcode opcode ) {

record = new Record (l. record, r. record, opcode);

1.record->ref (); r. record->ref ( ); }

Kumber(const Eumber& arg) { record = arg. record; record->ref (); }

Humberk operator= (const hmber& rhs ) {

rhs. record->ref () ; record->deref ( );

record = rhs. record; return *this; }

‘Sumbero { record-> deref () ; }

};

inline Bumber operator+ ( const Humber&1, const hmber& r)

{ return Hanber(l, r, Add); }

Fig. 13. Excerpts from definitions to save state.

SGI SGI SGI DEC Alpha DEC station
Arithmetictype 40 Mhz 150Mhz 200 Mhz 3000/400 5000
doubl~precisionfloatingpoint 7.5 2.0 1.6 2.1 14.6
Errorbounds (figure 12) 93 25.7 19 29 169

LEDA floatf 87 22.2 16.7 32.3 156
State saving (figure 13) 183 67 53 464

LN exact (31 bit operands) 111 43.6 33 42.2 200

Fig. 14. Times in seconds for one million evaluations of the 3D homogeneous orientation test.

SGI clock rates of 150 Mhz and 200 Mhz are effective rates (two instmctions are iseued per

major cycle, with major cycle rates of 75 Mhz and 100 Mhz, respectively).

floating-point operations are

error(a @ b) = error(a) + error(b) + e[a Q bl,

error(a @ b) = error(a)lbl + error(b)lal + ~la @ b],

where ● = 2’53 for IEEE double-precision floating-point. Thus, the sign of a

computed floating-point value is correct if its magnitude exceeds the error

estimate. The code in Figure 12 incorporates two optimizations to the
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standard formulae. It defers the multiplication by ● until the error bound is

used to compute the sign. It also saves the absolute value of each floating-

point value, which eliminates two function calls when computing the error

bound for a product.

Figure 13 shows part of the code we used to estimate f~. Each arithmetic

operation allocates a Record that holds the arithmetic opcode and pointers

to the Records for its left and right operands. Since the lifetime of a Record

is not predictable, the code uses reference counts to decide when to reclaim

a Record. Operators new and delete are also overloaded to make Record

allocation and deletion be simple list operations.

Timings for the execution of the program in Figure 11 on a variety of

machines appear in Figure 14. Each row indicates a different substitution

for the class Number.
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