
Purdue University
Purdue e-Pubs

International Compressor Engineering Conference School of Mechanical Engineering

1980

Static and Dynamic Analysis Of Reed Valves Using
a Minicomputer Based Finite Element Systems
G. C. Griner

G. W. Gatecliff

H. Richardson

Follow this and additional works at: https://docs.lib.purdue.edu/icec

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Griner, G. C.; Gatecliff, G. W.; and Richardson, H., "Static and Dynamic Analysis Of Reed Valves Using a Minicomputer Based Finite
Element Systems" (1980). International Compressor Engineering Conference. Paper 327.
https://docs.lib.purdue.edu/icec/327

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ficec%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/icec?utm_source=docs.lib.purdue.edu%2Ficec%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Ficec%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/icec?utm_source=docs.lib.purdue.edu%2Ficec%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


STATIC AND DYNAMIC ANALYSIS OF REED VALVES USING A 
MINICOMPUTER BASED FINITE ELEMENT SYSTEM 

G. C. Griner, Research Mechanical Engineer 
G. W. Gatecliff, Chief Research Engineer 

H. Richardson, Project Engineer 

Tecumseh Products company 

ABSTRACT 

The purpose of this paper is to present a 
minicomputer based finite element design 
procedure and describe its use as a valve 
design tool. The report consists of a 
discussion of automatic mesh generation, 
the finite element method, solution of the 
static and eigenvalue problems, and two 
examples where the techniques have been 
applied to real valve geometries. A com­
parison of predicted and experimental 
values of stress, natural frequencies and 
mode shapes for the two test cases is also 
included. 

INTRODUCTION 

Pressure actuated hermetic compressor reed 
valves are thin plates made of high strength 
steel. Their shape is determined by the 
number and layout of the ports they seal. 
The dynamic behavior of these components 
is a function of elastic restoring, in­
ertial body and fluid forces generated 
during their operation. 

The finite element method can be used to 
perform static and dynamic analyses of 
reed valves. This method can accommodate 
any valve geometry and predict deflection, 
stress and modal characteristics. 

The work presented here is an outline of a 
finite element analysis system used to 
design and improve reed valves. The 
difficulties involved in using the method 
and their solution are discussed. A brief 
summary of finite element mathematics and 
solution techniques is included. 

GEOMETRIC MESH GENERATION 

Application of the finite element method 
can be complex and time consuming. Many 
opportunities exist for the introduction 
of errors. A few of the more important 
considerations include: 

1. Are the nodes at the correct geometric 
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locations? 

2. Are the nodal connectivities correct? 

3. Do the boundary conditions give an 
accurate portrayal of the component in 
its operating environment? 

4. Are there sufficient elements in re­
gions where the stress being modeled 
is changing rapidly? 

Automatic mesh generation programs can be 
used to alleviate these types of errors. 
The approach described here divides the 
component into regions which are automatical­
ly subdivided into triangles or quadri­
laterals (1). Figures 1 and 2 demonstrate 
this discretizing process. 

y 

X 

Figure 1 Reed Valve Regions 
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Figure 2 Discretized Reed Valve 

FINITE ELEMENT METHOD 

The element stiffness matrix [Ke] and 
equivalent nodal load vector JFe} as de­
rived by the minimum potential energy 
theorem appear as follows: 

[Ke] =hal [B] T (D] (B] DV, 

{Fe} =/val [N] T P DV (body forces), 

{Fe} = f [N] T Q DS (surface tractions), 
}surface 

where [B] is a matrix which maps nodal 
degrees of freedom to interior 
strains, 

(D] is a matrix which maps interior 
strains to interior stresses or 
interior moments in the case of a 
plate 

is a matrix of shape functions 
which maps nodal degrees of 
freedom to interior degrees of 
freedom, 

P is a vector of nodal magnitudes 
of the body forces, 

Q is a vector of nodal magnitudes 
of the surface tractions. 

The element mass matrix as derived through 
the finite element kinetic energy expression 
is shown below: 

(Me] = !val (N] T P [N] DV 

where 

P mass density 
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Details of these derivations may be found in 
reference (2). 

The element mass and stiffness matrices used 
in this work were developed simultaneously 
by Argyris (3), Bell (4), and Cowper et al 
(5). The element is an eighteen degree of 
freedom plate bending triangle with the 
following degrees of freedom at each node: 
deflection (w) , slopes (ow/ox, ow/oy) , 
CUrvatureS (Q2W/dX2 1 o2wjoy2) and twist 
(o2wJoxoyl. 

The global mass [Ma] and stiffness [Kg] 
matrices are assemnled from the element mass 
and stiffness matrices. The global force 
vector {Fg} is created from the element 
equivalent nodal loads in a similar manner. 

STATIC SOLUTION 

Operating stress levels are an important 
concern in the design of a valve. These 
levels are predicted by solving the statics 
problem subject to the imposed boundary 
conditions and applied loads. The static 
solution is of the following form: 

{Fg} = (Kg] {xg} 

where {xg} represents a vector of unknown 
nodal displacements. The nodal displace­
ments are found by inverting the stiffness 
matrix and multi~lying by the force vector. 

A full inversion and multiplication requiring 
N3 and N2 operations respectively (where 
N is the order of the [Kg] matrix) is not 
necessary. The prc:::>lem can be solved by 
using a form of Gaussian elimina·tion called 
Cholesky decomposition, followed by forward 
and backward substitution which uses only 
N3j3 and 4N operations respectively (6). 
Element stresses can be calculated once the 
nodal displacements are known. 

Two programs are being used to solve the 
statics problem at Tecumseh Products. The 
first is an 'in-core' solver (one in which 
the entire [Kg] matrix is solved in main 
memory) . As a result of the highly banded 
nature of the [K0 ] matrix this program 
utilizes the 'skyline' (7) or variable band­
width storage scheme. The technique stores 
only non-zero coefficients of the ~~ 
matrix with exception of the zeroes residing 
within the bandwidth. The second program 
is an 'out of core' solver (one in which 
the Gaussian elimination is carried out with 
only part of the [Kg} matrix in main memory). 
This allows large problems to be solved on 
a relatively small minicomputer. Structures 
with as many as 800 degrees of freedom have 
been solved with less than 32K words of 
memory using this algorithm. 



EIGENVALUE SOLUTION 

The following generalized eigenvalue pro­
blem results whenever the applied forcing 
function is periodic in nature. 

The solution of this equation yields natural 
frequencies (w) and mode shapes (X) . 

Iterative solution techniques were chosen 
because they efficiently predict dominant 
frequencies while preserving the banded 
nature of the problem. Two programs were 
written for the eigensolution. The 'in­
core' eigensolver uses the simultaneous 
iteration scheme presented by Jennings (8), 
whereas the 'out of core' solver employs 
the subspace iteration method of Bathe (7). 

The calculated natural frequencies and mode 
shapes may also be used as input data to a 
valve simulation. Through the use of the 
mode superposition method and a compressor 
simulation, (9, 10) an accurate valve 
motion and stress history can be calculated. 

EXAMPLES 

Two examples are presented to demonstrate 
the accuracy of the finite element techni­
que. 

The first example is the stress analysis of 
a ring-type reed valve. Figure 3 shows the 
finite element mesh. Due to symmetry about 
the x and y axes it was necessary to model 
only one quarter of the valve. The edge 
of the tab is simply supported. A pre­
scribed deflection of 0.082 in. was 
enforced along nodes 56 through 60 to 
simulate contact with a step relief on the 
edge of the cylinder bore. The maximum 
principal stress contours are displayed in 
figure 4. An experimental stress of 
78000 psi was found at location 1 (figure 
4) using strain gages. 
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Figure 3 Ring Valve Mesh 
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Figure 4 Stress Contours 

The second example is the dynamic analysis 
of a cantilever reed valve. Because of 
symmetry about the Y axis, only half the 
valve was modeled. The finite element model 
and the mode shape corresponding to the 
fifth natural frequency are shown in figure 
5. Figure 6 shows the experimental nodal 
lines for the fifth mode. Natural frequen­
cies and mode shapes were determined using 
sinusoidalelectromagnetic excitation and a 
narrow band analyzer. The nine lowest 
predicted modes and the corresponding 
experimental values are listed in Table I. 

Mode Natural Frequency (Hz.) 
Number Predicted Experimental 

1 llO llO 
2 468 478 
3 776 830 
4 1432 1536 
5 2095 2213 
6 3094 3102 
7 3321 3574 
8 4076 4362 
9 4920 5064 

Table 1 Natural Frequencies of a 
Cantilever Valve 

m-L • 
TOP 3/4 

FAON 

Figure 5 Cantilever Reed Valve 
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Figure 6 Experimental Mode Shape 

CONCLUSION 

It is not the intention of the authors to 
claim originality for the finite element 
method nor any of the various associated 
solution techniques, but rather to show the 
application of the method in a systematic 
manner. The design system presented here 
operates on a minicomputer and may be used 
to solve the static and eigenvalue problems. 
It should also be noted that the finite 
element ~ethod may be used to analyze many 
other compressor components and is not 
limited to structural mechanics. 
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