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Recent developments in computed tomography (CT) technology have fulfilled the prerequisites for the clinical application of myocardial CT

perfusion (CTP) imaging. The evaluation of myocardial perfusion by CT can be achieved by static or dynamic scan acquisitions. Although both

approaches have proved clinically feasible, substantial barriers need to be overcome before its routine clinical application. The current review

provides an outline of the current status of CTP imaging and also focuses on disparities between static and dynamic CTPs for the evaluation of

myocardial blood flow.
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Introduction

There is mounting evidence favouring the functional relevance of

coronary stenoses over the angiographic severity of CAD with re-

gard to clinical decision-making and future outcomes.1,2 Additional-

ly, it has been shown that the functional significance of coronary

artery disease (CAD) is not unavoidably reflected by the angio-

graphic appearance of CAD as estimated by coronary computed

tomography angiography (CCTA) and invasive coronary angiog-

raphy (ICA).3 Although it enables the rule out of obstructive

CAD with near to absolute certainty, the morphologic information

provided by CCTA remains insufficient to determine the down-

stream functional consequences of a given coronary lesion.4,5 How-

ever, recent developments in computed tomography (CT)

technology have fulfilled the technical prerequisites for the applica-

tion of stress CT myocardial perfusion for the evaluation of CAD.

As such, CT provides not only anatomical information,6 but it

became also capable of determining the functional relevance of cor-

onary stenosis,7 rendering it a potential ‘one stop shop’ procedure

for the diagnosis and management of CAD.

The aim of the present review is to discuss the background of

CT perfusion (CTP), to address the different approaches of CTP

imaging and their concomitant limitations, and to provide an over-

view of the clinical value of CTP for the non-invasive detection of

myocardial ischaemia.

Cardiac CT approaches for the
evaluation of myocardial perfusion:
static CT imaging

Static imaging of myocardial attenuation during first-pass perfusion

provides a snapshot of myocardial iodine distribution at one time

point. The assessment of defects is qualitative and hypo-enhanced

regions are compared with normal remote myocardial segments

or normalized to the attenuation of the left ventricular cavity. Analo-

gous to nuclear MPI, perfusion defects on the stress images are eval-

uated against baseline perfusion to determine reversibility and

hencemyocardial ischaemia, whereas an irreversible defect is indica-

tive of dead tissue (e.g. scar tissue). An important caveat is that such

a qualitative assessment may disguise globally reduced myocardial

perfusion, since it highly relies on the presence of a normally per-

fused area to act as a reference. Nevertheless, the presence of se-

vere CADon CCTAmay unmask balanced ischaemia undetected by

static CTP imaging. In addition, the high spatial resolution of CT fa-

cilitates the detection of subendocardial ischaemia as a sign of three-

vessel disease. All in all, studies thus far have showed no inferiority of

static CTP compared with a quantitative evaluation. However, one

of the drawbacks of static CTP lies in the acquirement of only one

sample of data and mistiming of the contrast bolus results in poor

contrast-to-tissue ratios by missing the peak attenuation.8 Cardiac
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output and flow rate of the contrast material may affect bolus timing.

In addition, the acquisition of data from sequential heartbeats affects

the attenuation gradient and may result in a heterogeneous iodine

distribution, mimicking perfusion defects. However, with the intro-

duction of 320-detector row CT devices, the coverage of the entire

heart in one gantry rotation is accomplished ensuring temporal

uniformity.

Cardiac CT approaches for the
evaluation of myocardial perfusion:
dynamic CT imaging

Another approach to obtain CTP data is by dynamic imaging. In

contrast to static CTP, a high temporal resolution and detectors

that allow for entire myocardial coverage are required in order to

obtain multiple consecutive images at high heart rates.9 Although

dynamic CTP is feasible with narrow detector CT, the shuttle

mode that allows (sub)total coverage of the left ventricular myo-

cardium is a source of motion affecting the construction of the

time-attenuation curves (TACs). With the advent of cutting edge

scanners with 320 detector rows, coverage of the entire heart is

possible with one gantry rotation. As such, temporal uniformity is

ensured without a concomitant decrease in temporal resolution.

Quantitative CTP images can be acquired by considering the time

course of myocardial iodine distribution by serial temporal sampling

at different time points after injection to create TACs (Figure 1).

Mathematic modelling of these TACs allow for the quantification

of myocardial perfusion in absolute terms.10 Notably, the first-pass

extraction into the myocardium of iodinated contrast is low and

is dependent on flow rate. As such, the relationship between

iodinated contrast retention and myocardial perfusion is not linear,

resulting in the systemic underestimation of perfusion as deter-

mined by microspheres by dynamic CTP.11,12 Flow-dependent

correction factors are needed to account for this phenomenon

and subsequently to correct for the underestimation of perfusion

at the higher flow range. However, if extraction is rather low such

as for iodinated contrast agents, correction models will also multiply

potential scatter leading to more noise especially at the higher flow

range. However, quantitation of myocardial perfusion might be

useful for the uncovering of balanced ischaemia. The anticipated im-

proved detection of balanced ischaemia by quantitative CTP imaging

is explained by the fact that a homogeneously reduced left ventricle

perfusion may be disguised by qualitative approaches, since these

rely on a normally perfused area to act as a reference. As a conse-

quence, only the most impaired region is considered pathological

with qualitative imaging. It is therefore not argued that triple vessel

or left main disease always goes undetected with static imaging, and

its presence may be detected if heterogeneity in flow exists.

Furthermore, quantitative imaging has opened new opportunities

and has extended the scope from detection of haemodynamic sig-

nificant epicardial lesions towards an emphasis on microvascular

health. In the absence of obstructive CAD, abnormal myocardial

blood flow (MBF) is indicative of coronary microvascular dysfunc-

tion,13 which is considered the functional counterpart of traditional

risk factors. Several studies demonstrated the injurious impact of

cardiovascular risk factors on coronary microvascular function

and have encouraged stringent therapeutic strategies for cardiovas-

cular risk factor modifications. The incremental prognostic value of

quantitative MBF imaging has been established by studies showing

adverse outcomes in patients with normal regional perfusion images

in whom quantification revealed abnormal MBF values.14,15 Para-

doxically, the apparent advantage of quantitative analysis to reveal

low perfusion in the context of microvascular dysfunction, a condi-

tion that does not yield false-positive results with qualitative analysis,

is at the same time the Achilles’ Heel of quantitative MPI. It remains

rather challenging to distinguish between microvascular dysfunction

and epicardial disease based on quantitative results alone. An

important advantage of CTP, however, lies in the simultaneous

visualization of coronary anatomy, which allows one to differentiate

between these two conditions. Additionally, recent quantitative PET

and CTP studies reported relative flow reserve (i.e. MBF in compari-

son with healthy remote myocardium) to provide a more accurate

discrimination of haemodynamic significant CAD compared with

absolute MBF, arguably by mitigating the impact of microvascular

resistance on perfusion values.16–18

Important considerations when
interpreting quantitative CT
myocardial blood flow images

Although dynamic stress CTP has some distinct advantages over the

static technique, substantial barriers need to be confronted before

its routine clinical application. Firstly, determining an optimal cut-off

value of hyperaemic MBF with high diagnostic accuracy may prove

difficult in clinical practice. Table 1 summarizes the literature on

absolute flow by dynamic myocardial CTP for various definitions

of ischaemia-causing lesions. There is a wide range of cut-off values,

which is probably attributable to study design, sample sizes, coron-

ary risk profile, prevalence of CAD, and the applied reference

Figure 1 Schematic illustration of typical TACs as acquired by

dynamic myocardial CTP imaging. The green curve reflects the

TAC of the ascending aorta, while the blue curve in the graph

shows the TAC of normally perfused myocardium and the orange

curve that of an ischaemic myocardium.

Static and dynamic cardiac CT perfusion 837
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standard. Interestingly, studies in patients without obstructive CAD

have reported a broad range in myocardial perfusion values

due to a large physiological variation of minimal microvascular

resistance.19–21 Age, gender, and traditional cardiovascular risk fac-

tors have been proved to governMBF irrespective of CAD status.21,22

This is consistent with recent findings reporting large heterogeneity

in hyperaemic perfusion values as determined by CTP in a low-risk

population and healthy volunteers.19,20 In line with prior results

obtained from quantitative PET imaging,21,23 Kim et al. also found

physiological differences in perfusion with regard to gender as as-

sessed by quantitative CTP.20 It seems that women have in general

a lower microvascular resistance compared with their male counter-

parts, which may necessitate the implementation of gender-specific

cut-off values. Altogether, this will hamper the discriminatory power

of a single threshold with high diagnostic accuracy to distinguish

between normal and pathological MBFs. Therefore, large databases

on normal perfusion values are warranted to enable accurate

interpretation of quantitative perfusion values.

Disparity in rest/stress vs. stress/
rest scan protocols

The sequence of scan acquisition is still arbitrary and both rest–

stress and stress–rest sequences are used in clinical practice. How-

ever, these sequences are not interchangeable, and the applied scan

sequence has some important implications. There has been variabil-

ity of when to perform the ‘rest’ portion vs. the ‘stress’ portion, with

many contending that vasodilator stress is important to perform

first to reduce the chance of residual contrast that may confound

perfusion defects. In contrast, others have argued for a rest-first

protocol, which allows one to optimally benefit from the informa-

tion provided by CCTA. By harnessing the ability of CCTA to rule

out obstructive CAD with near to absolute certainty, one may only

proceed to stress CTP in the presence of anatomically defined

obstructive CAD. This approach will obviate the need of further

downstream testing in a significant portion of patients with con-

comitant reduction of contrast and radiation dose. Nevertheless,

such an approach relies highly on the image quality of CCTA, which

necessitates the use of sublingual nitrates and beta-blockers to op-

timize its quality. However, beta-blockers are known to disguise

myocardial ischaemia by an increase in the diastolic perfusion

time.24 Altogether, a rest–stress sequence comes at the expense

of cross-contamination of contrast in the stress phase and the use

of beta-blockers, which both may impede the sensitivity of stress

CTP for detection of myocardial ischaemia. However, one may ar-

gue to start with a stress phase to optimize the stress perfusion

study in patients who are expected to benefit from a stress perfu-

sion study, such as individuals with a high pre-test likelihood of

CAD or with a previous cardiac history yielding their CCTA likely

not interpretable due to severe coronary calcifications. In this spe-

cific subgroup, the question is not whether they have CAD, but ra-

ther whether there is ischaemia and how to guide subsequent

revascularizations.

Diagnostic performance of CT
myocardial perfusion imaging

The assessment of myocardial ischaemia is of upmost importance to

initiate an adequate therapeutic strategy. Stress myocardial CTP has

been well validated in preclinical studies demonstrating CT-derived

perfusion values to correlate favourably with microsphere derived

MBF data. Nowadays, a rapidly expanding body of literature shows

CTP to exhibit high accuracy for the detection of myocardial

perfusion defects attributable to flow-limiting stenosis,4,7,25 – 39

comparable with SPECT and magnetic resonance imaging (MRI)

myocardial perfusion imaging (Figure 2). Pooled analysis of the

current literature demonstrates a sensitivity and specificity on a

per-patient level of 88 and 71%, respectively. Of note, it seems

that quantitative and dual-energy CTP tends to have a higher sensi-

tivity than static CTP imaging (Figure 2). This might be attributable to

a higher detection of subtle perfusion defects that cannot be visually

appreciated by static CTP. A preclinical study by Bamberg et al.

showed the ability of dynamic CTP to detect subtler perfusion

defects than a qualitative approach. Moreover, the exploitation of

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Ischaemic cut-off values of stress MBF as assessed by dynamic CTP

First author Citation N Reference standard Stress MBF

Cut-off AUC

Bamberg et al. Radiology 2011;260(3):689–98 33 FFR ≤ 0.75 75 mL/100 mL/min 0.71

Greif et al. Heart 2013;99(14):1004–11 65 FFR, 0.80 75 mL/100 mL/min 0.71

Huber et al. Radiology 2013;269(2):378–86. 32 FFR ≤ 0.75 + ICA. 75% 1.64 mL/g/min 0.86

Rossi et al. Eur Heart J Cardiovasc Imaging

2014;15(1):85–94

80 FFR ≤ 0.75 78 mL/100 mL/min 0.95

Meinel et al. AJR 2014;203(2):W174–80 146 Defect visual CTP + CCTA. 50% DS 105 mL/100 mL/min 0.96

Kono et al. Invest Radiol 2014;49(12):801–7 42 FFR ≤ 0.80 103.1 mL/100 mL/min 0.75

Bamberg et al. JACC Cardiovasc Imaging 2014;267–77 31 MRI 88 mL/100 mL/min 0.84

Wichmann et al. AJR 2015;205(1):W67–72 137 CCTA ≥ 50% DS 103 mL/100 mL/min 0.88

AUC, area under the curve; CCTA, coronary computed tomography angiography; CTP, computed tomography perfusion; DS, diameter stenosis; FFR, fractional flow reserve;

ICA, invasive coronary angiography; MBF, myocardial blood flow.
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two different energy levels by dual-energy CT (DECT) increases the

conspicuity of hypoperfused regions leading to an improved accur-

acy. With regard to specificity, the number of patients with false-

positive findings seems to be equally divided amongst the different

CTP imaging techniques (Figure 2). However, the diagnostic per-

formance of CTP, albeit very high, has mainly been determined

against SPECT, MRI, and conventional angiography, despite

the fact that FFR is nowadays considered the gold standard

for the functional assessment of CAD severity. In this regard, a

recently published meta-analysis by Takx et al. revealed that CTP

permits accurate assessment of flow-limiting coronary stenoses,

as indicated by FFR, with a sensitivity and specificity of 88 and

80%, respectively.40 Surprisingly, they also found that CTP imaging

yielded less false-negative findings than SPECT as reflected by a high-

er sensitivity of 88 vs. 74%, respectively. These findings challenge

the utility of SPECT, which is consistent with the findings of a pro-

spective multicentre study by George et al., who showed in a

head-to-head fashion myocardial CTP imaging to be more accurate

than SPECT in the diagnosis of a ≥50% stenosis as defined with

ICA.37 Furthermore, in a recently published multicentre trial by

Figure 2 Pooled analysis (on a per-patient basis) of studies on the diagnostic performance of myocardial CTP imaging for the assessment of

haemodynamic significant CAD. CTP, computed tomography myocardial perfusion; FFR, fractional flow reserve; ICA, invasive coronary angiog-

raphy; MRI, magnetic resonance imaging; SPECT, single photon emission computed tomography

Static and dynamic cardiac CT perfusion 839
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Cury et al., wherein 110 patients were randomized to rest/

regadenoson-stress SPECT on day 1 followed by a stress/rest

CTP protocol on day 2 or vice versa, CTP displayed a sensitivity

and specificity of 90 and 84%, respectively, for the detection of myo-

cardial ischaemia as defined by a reversible perfusion defect on

SPECT.33 Interestingly, due to the multicentre setting of both stud-

ies, the results will be highly generalizable to the clinical population,

rendering CTP a potential alternative to SPECT MPI. The diagnostic

differences between CTP imaging and SPECTmay be attributable to

the higher spatial resolution of CT and the use of iodinated contrast

as a perfusion tracer. In contrast to SPECT, the higher spatial reso-

lution of CT allows perfusion defects to be more conspicuous and

therefore easily appreciated.

Hybrid cardiac imaging by
cardiac CT

A large body of evidence has established CCTA as an imaging

modality with high diagnostic accuracy for the detection of

CAD.41 Although all studies unambiguously portray the same pic-

ture of a high sensitivity and negative predictive value (NPV),41

CCTA is characterized by a systemic overestimation of the degree

of stenosis as reflected by high a modest specificity and positive pre-

dictive value, indicating high rates of false-positive findings prompt-

ing unnecessary referrals of patients to the catheterization

laboratory. These concerns have proved to be real problems as

indicated by the findings of Shreibati et al., who found that patients

who underwent CCTA were twice as likely to be referred for ICA

and underwent significantly more coronary interventions compared

with those who underwent SPECT imaging as an initial diagnostic

test, while outcome was similar amongst these two groups.42

Although the focus of cardiac CT has been on the non-invasive

evaluation of coronary anatomy, its unique characteristics also

enable the assessment of myocardial perfusion. As such, CT pro-

vides complementary information and may become a hybrid tool

on its own right. Supplementary data online, Table S1 lists the clinical

studies that have evaluated the incremental diagnostic value of CTP

as an adjunct to CCTA. Of note, the majority of these studies were

Figure 3 Diagnostic algorithm for detecting CAD using hybrid imaging. By harnessing the high sensitivity of CCTA, one may only proceed

to CTP imaging if CCTA reveals an angiographically obstructive coronary stenosis. As such, the rate of false-positive findings by CCTA will be

reduced with a concomitant increase in diagnostic accuracy, while obviating the need for additional imaging and subsequent radiation exposure

to patients if the CCTA shows no (obstructive) CAD. Adapted fromDanad I et al. J Nucl Cardiol. 2013 Oct.;20(5):874–90 with permission of the

publisher.

I. Danad et al.840
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hampered by a single-centre setting, questioning the generalizability

of their results. Nevertheless, a recently publishedmulticentre study

by Cury et al. demonstrated that the addition of myocardial CTP im-

aging to CCTA resulted in an improvement of accuracy from 69 to

85%, which was primarily driven by a reduction in the rate of false-

positive CCTA scans.33 Furthermore, the CORE320 study, a pro-

spective multicentre study, which included 381 patients, has clearly

demonstrated the benefit of CTP as an adjunct to CCTA for the

detection of .50% stenosis on ICA with concomitant perfusion

abnormalities on SPECT.7 The combined CCTA-CTP approach

yielded a significantly higher accuracy (AUC ¼ 0.87) compared

with CCTA alone (0.84; P ¼ 0.02). A case example showing the

incremental value of CTP is provided in Supplementary data online,

Figure S1. In contrast, the limited benefit of hybrid imaging in patients

with a previous cardiac history was another interesting observation

of the CORE320 trial.7 This finding is in line with the results of a

previous study by Greif et al. in high-risk patients, who described

no diagnostic benefit of a hybrid approach in this specific popula-

tion.28 Functional imaging alone probably suffices in patients with

a previous cardiac history, as the exclusion of haemodynamic signifi-

cant CAD will not alter the treatment regime since coronary ath-

erosclerosis already exists, rendering the role of CCTA limited in

these specific populations. As such, valid arguments have been

made whether the routine use of hybrid imaging is justified, especial-

ly considering the current financial constraints and the high radiation

dose of a hybrid CCTA-CTP protocol. Subjects with a low-

to-intermediate risk will likely benefit from a CCTA first strategy,

since roughly half of these patients will not display obstructive

CAD at CCTA. The added value of CTP is therefore limited in these

cases, considering the high NPV of CCTA, which obviates the need

Figure 4 Estimated effective radiation dose (mSv) for published studies of static (A) and dynamic (B) CT myocardial perfusion imaging. (a) Low

radiation dose achieved by low-tube-voltage imaging. (b) Combination of reducing scan acquisition time and low-tube-voltage imaging resulted in

an effective radiation dose of 3.8 mSv. *Inclusion of coronary artery bypass graft patients required greater scan lengths for visualization of both the

native arteries as well as the grafts, which resulted in a higher radiation dose.

Static and dynamic cardiac CT perfusion 841
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of further testing in patients without angiographically obstructive

stenoses. The importance of tailored imaging protocols was already

recognized at the very early stages of hybrid devices by Berman

et al., who therefore proposed a diagnostic algorithm43 (Figure 3).

The findings by Greif et al.,28 which were confirmed by the

CORE320 study,7 emphasize the importance of staged CTP proto-

cols to gain the highest benefit in terms of accuracy and costs along

with a reduction in contrast and radiation dose.

Image artefacts

For CTP, there are a few artefacts that may impede accurate

evaluation of myocardial perfusion by CT, namely motion and

beam-hardening (BH) artefacts. Both artefacts may lead to the ap-

pearance of hypoperfused areas that resemble myocardial ischaemia

resulting in false-positive interpretations. Motion artefacts arise by

patient movement during the scan procedure or by cardiac motion

due to high or irregular heart rates. Away to limit the impact of mo-

tion artefacts on interpretation of CTP scans is to examine different

cardiac phases. A motion artefact lasts only for a few cardiac phases,

while true perfusion defects persist in all phase of the cardiac cycle.

BH, on the other hand, arises from the polychromatic nature of

X-rays. The high volume of high-density iodinated contrast in the

left ventricle is a potential source of BH artefacts. High-density

structures preferable attenuate low-energy photons more than

their high-energy counterpart, thereby giving rise to a shift towards

a high-energy X-ray beam. Consequently, this may result in

hypo-enhanced areas in the myocardium resembling myocardial

ischaemia, hampering accurate assessment of myocardial perfusion.

Hence, images acquired during systole when the lowest amount of

contrast is present in the left ventricle are less susceptible to BH

artefacts. The correction of BH is a challenging task, and post-

reconstruction BH algorithms have been applied to minimize the

effect of BH on myocardial perfusion images. In addition, DECT

has been proposed as a more effective CT technique for the correc-

tion of BH. The unique features of DECT (i.e. the exploitation of

two different X-ray energy levels) allow for the generation of virtual

monochromatic images, which depict a scanned object at one X-ray

energy level. Therefore, since BH arises from the polychromatic

nature of X-rays, images acquired with a monochromatic X-ray

beam are in theory free of BH.

Radiation dose aspects

Rapid growth in CT procedures has sparked concerns about poten-

tial deleterious effects from cardiac CT and the high radiation doses

associated with stress CTP imaging. The natural lifetime risk of dying

from cancer is ≏21% for the US population, and a cardiac CT scan

with an effective radiation dose of 10 mSv could add 0.05% to that

risk in absolute terms, corresponding with a relative increase of

0.2%,44 yielding the natural risk of cancer to be much greater than

the radiation-induced occurrence of malignancies. It is important

to realize, however, that cardiac patients are likely to undergo mul-

tiple imaging thereby increasing their lifetime radiation exposure. As

such, the high radiation exposure during stress CTP acquisitions re-

mains a concern. In particular, dynamic CTP protocols are asso-

ciated with high radiation doses since they require multiple

acquisitions for the generation of TACs. The average radiation

exposure of static CTP varies between 1.9 and 15.7 mSv with an

average value of 5.93 mSv (Figure 4). Effective dose values between

3.8 and 12.8 mSv have been reported for dynamic CTP imaging,

yielding an average radiation dose of 9.23 mSv (Figure 4), which is

comparable with nuclear MPI exams.45 Nevertheless, applications

of radiation dose reducing techniques seem to be promising. For

instance, low-tube-voltage settings enable dynamic CTP imaging in

patients with normal body mass indices with a 40% reduced radi-

ation dose with preserved image quality and MBF assessment.46

Similarly, Kim et al. demonstrated a 36% dose reduction of dynamic

CT protocols with automated tube current modulation.47 In this

study, an additional dose reduction of 32% was achieved by halving

scan acquisition times; however, quantification of MBF was not

possible due to the lack of a pre-contrast scan at the initiation of

contrast injection.47 All in all, despite these promising results,

dynamic myocardial perfusion imaging by CT still requires relatively

high radiation exposure (Figure 4). In this light, tailoring of CTP

imaging protocols is mandatory to avoid unnecessary radiation

exposure and procedure-related risks.

Conclusions

Cardiac CT has extended beyond coronary anatomy due to novel

developments in CT technology that have fulfilled the prerequisites

for the clinical implementation of myocardial CTP imaging. In line

with MRI and PET imaging, CTP may provide qualitative or quantita-

tive perfusion data. However, the technique is still in its infancy, and

substantial work is needed before (dynamic) CTP is clinically

embraced. Notably, promising results are seen with regard to the

diagnostic value of CTP for the detection of myocardial ischaemia

even when compared against a background of FFR. In addition,

CTP provides incremental value over CCTA mainly by reducing

the number of false-positive findings allowing a more accurate

detection of CAD.
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Unusual intravascular leiomyomatosis arising from the pulmonary artery
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A middle-aged women presented with a mass in

the right ventricle revealed by echocardiography

during a routine medical checkup. The patient

had no medical history of gynaecological surgery

or uterine leiomyomatosis. Transthoracic echo-

cardiography showed a floating mass occupying

the pulmonary artery and the right ventricle

(Panel A, see Supplementary data online, Video

S1). The oval end of the mass prolapsed into

the right atrium through the tricuspid orifice dur-

ing diastole and returned to right ventricle during

systole (Panel B, see Supplementary data online,

Video S2). Computed tomographic scan revealed

a hypodense mass emerging from the right pul-

monary artery and retrogradely growing into

the right ventricle (Panel C and D). Surgical pro-

cedure was performed later and confirmed the

aforementioned anatomic morphology. Subse-

quent histopathological examination of the mass

revealed a typical leiomyoma composed of uni-

form and spindle-shaped smooth muscle cells

(Panel E). Immunohistochemically, the tumour

cells were positive for alpha-smooth muscle actin

(Panel F). However, they were negative for estro-

gen receptor and progesterone receptor. Thus, a

pathological diagnosis of intravascular leiomyomatosis arising from the smooth muscle of pulmonary artery was finally established.

An intravascular leiomyoma is a histologically benign tumour, usually arising from the uterine venules (exceptionally from other pelvic

or retroperitoneal veins) and antegradely growing into the inferior vena cava, sometimes reaching the right heart chambers and the pul-

monary artery. This is the first case of intravascular leiomyomatosis originating from the pulmonary artery and retrogradely growing into

the right heart chambers.

Panel RA, right atrium; RV, right ventricle; PA, pulmonary artery; LPA, left pulmonary artery; RPA, right pulmonary artery.

Supplementary data are available at European Heart Journal – Cardiovascular Imaging online.

Published on behalf of the European Society of Cardiology. All rights reserved. & The Author 2016. For permissions please email: journals.permissions@oup.com.
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