
Static and Dynamic Co-Optimizations for Blocks Mapping
in Hybrid Caches

Yu-Ting Chen, Jason Cong, Hui Huang, Chunyue Liu, Raghu Prabhakar, and Glenn Reinman
Computer Science Department, University of California, Los Angeles

Los Angeles, CA 90095, USA
{ytchen, cong, huihuang, liucy, raghu, reinman}@cs.ucla.edu

ABSTRACT
In this paper, a combined static and dynamic scheme is proposed
to optimize the block placement for endurance and energy-
efficiency in a hybrid SRAM and STT-RAM cache. With the
proposed scheme, STT-RAM endurance is maximized while
performance is maintained. We use the compiler to provide static
hints to guide initial data placement, and use the hardware to
correct the hints based on the run-time cache behavior.
Experimental results show that the combined scheme improves
the endurance by 23.9x and 5.9x compared to pure static and pure
dynamic optimizations respectively. Furthermore, the system
energy can be reduced by 17% compared to pure dynamic
optimization through minimizing STT-RAM writes.

Categories and Subject Descriptors
B.3.2 [MEMORY STRUCTURES]: Design Styles – Cache
memories.

General Terms

Algorithm, Design.

Keywords

L2 cache, Hybrid cache, STT-RAM, Endurance, Energy.

1. INTRODUCTION
The traditional SRAM caches suffer from huge leakage power,
which dominates the total energy consumption in the on-chip
memory system. To alleviate this problem, emerging non-volatile
memory technologies such as phase-change RAM (PRAM) and
spin-torque transfer magnetoresistive RAM (STT-RAM) are used
as alternative on-chip memory with the advantages of low leakage
and high density. However, non-volatile memories suffer from the
challenges of limited endurance, higher write latency and energy.
Compared to PRAM, STT-RAM has significantly higher
endurance (109 versus 1012 write cycles) and shorter write latency
[1] and is much more promising in the last-level cache design [2]
[3][4][5][6][7]. Moreover, due to the intensive writes of caches,
hybrid caches consisting of both SRAM and STT-RAM are
investigated [2][3][4][7], where the SRAM can accommodate
write-intensive data and the STT-RAM can accommodate other
data with its dense capacity.

The STT-RAM endurance is an important issue to be considered
in the last-level cache design. Although ITRS predicts the write
cycles of STT-RAM will be 1015 at 2024 [1], the best available
write cycles of STT-RAM are 4 x 1012 at present [5]. Supposed
we execute segmentation [8], a medical imaging application, on a
4GHz CPU with 32 KB L1 cache, 2MB STT-RAM L2 cache
continuously, the lifetime of a STT-RAM cache can last only 2.17
years without any optimizations applied. The endurance problem
becomes even worse in the multi-level cell (MLC) STT-RAM
technology [5]. Block placement optimizations is very important
to shrink the large endurance gap between STT-RAM and SRAM
in a hybrid cache. Recent work considers either static or dynamic
schemes to optimize the block placement to reduce the average
write frequency to STT-RAM cells, while maintaining the overall
performance by making use of higher density of STT-RAM.
Some of the proposed approaches targeted at PRAM, and those
ideas can also be applied to STT-RAM with the same objective.
The first category of the prior work uses static schemes. In [9] the
authors introduce data migration and re-computation to reduce the
write frequency on PRAM main memory. In [10], the partitioning
of the application working set into SRAM and PRAM can reduce
79% of the writes to PRAM.
The second category of the prior work uses dynamic schemes.
Recent work in [5] uses periodically set-remapping to distribute
the writes among sets in a STT-RAM cache. Another set of work
migrates the write-intensive cache blocks to other cache lines in
the same/different cache set or in the SRAM in order to reduce the
average write frequency of the STT-RAM cache lines [4].
However, there exist intrinsic limitations in both approaches,
which cannot be resolved independently – The static optimization
decisions are made at compile time without run-time information,
thus compiler may generate misleading hints to the hardware. On
the other hand, pure dynamic optimization use blocked-based
counter structures to learn the memory reference patterns on-the-
fly. However, the dynamic scheme lacks a global view of the
whole program and has no knowledge to future access pattern.
In this paper, we propose a combined approach in which the static
and dynamic optimizations can compensate to each other. The
compiler tries to provide data placement hints to hardware to
reduce STT-RAM write frequency, while the hardware is
designed to be able to correct compiler hints based on runtime
cache behavior. Experimental results show that the combined
scheme improves the endurance by 23.9x and 5.9x compared to
pure static and pure dynamic optimizations, respectively, while
maintaining similar performance. Furthermore, the system energy
can be reduced by 17% compared to pure dynamic optimization
since STT-RAM writes are reduced through initial placement
from the proposed compiler flow.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’12, July 30–August 1, 2012, Redondo Beach, California, USA.
Copyright 2012 ACM 978-1-4503-1249-3/12/07...$10.00.

2. PROBLEM FORMULATION
In this work, we assume that the L2 cache is a hybrid cache
architecture with 4-way SRAM and 12-way STT-RAM, which is
similar to the setting described in [4][7]. The block-level initial
placement and dynamic migration is allowed to place the data
blocks in either SRAM or STT-RAM. The initial placement is
given by the compiler hints and the runtime cache pressure while
the dynamic migration is designed with hardware mechanisms.
Our assumptions in detail are described in Section 4.1 and Section
4.3 for better illustration of our co-optimization strategy.
The objective of this work is to improve the endurance of the
hybrid cache and reduce system energy while maintaining
performance through the combined scheme. Another meaningful
objective is to co-optimize performance and energy while under
the endurance constraint. A storage-efficient way to monitoring
the endurance of each cache block is required under the second
scenario. The discussion of this formulation is not included in this
work but may be worthwhile for further investigation.

3. MOTIVATIONAL EXAMPLES
In this section, we use real-life examples to illustrate how pure
static optimization and dynamic optimization may produce sub-
optimal block placement decisions in a hybrid cache design.
The deficiency of pure static optimization comes from the fact
that the runtime write frequencies of L2 cache (which is the
hybrid last-level cache in our evaluated system) blocks are input-
dependent, which cannot be fully obtained offline. First, the input
data may change the control flow of the program, and this will
change the write frequency of the data that are affected by the
control flow variation. Second, since part of the writes to the L2
cache come from the write-back operations from the L1 caches,
the compiler cannot accurately capture the L2 cache write
behavior with the existence of the L1 caches. For example, given
the LRU replacement policy, the data which is written fewer
times in the code may be frequently evicted by the L1 cache and
behaves much more write-intensive in the L2 cache than other
data which are written more frequently. Note that life time of the
STT-RAM mainly depends on the peak write count of all the cells
[4][5]. Even static optimizations can reduce the total STT-RAM
writes compared to dynamic optimizations via global optimization,
the potential mis-predictions can still severely degrade the STT-
RAM lifetime, since there is no dynamic scheme to migrate mis-
predicted write-intensive blocks into SRAM. This causes a large
peak write count to this cell. As an example, Table 1 shows the
STT-RAM cell write count distribution of the segmentation
application [8] for both of the pure static [10] and the pure
dynamic [4] scheme. The peak write count of static optimization
is significantly larger than that of the dynamic one.

Table 1: STT-RAM write count distribution

#writes 0-
100

100-
200

200-
300

300-
400

400-
1000

1000-
5000 >=5000 max

static 12262 6 5 0 0 10 5 5470
dynamic 12207 38 16 27 0 0 0 395

The deficiency of dynamic migration comes from the fact that it
lacks the future memory access information and highly relies on
the application to exhibit a bipolar L2 write frequency patterns –
the L2 cache blocks are either rarely written or intensively written.
Then the write-intensive blocks can swap their places with the
rarely written blocks through dynamic migration. However, based
on our observation, not all the applications have such
characteristics, especially in the three medical imaging

applications [8] used in our study. As shown in Figure 1, most of
the blocks are uniformly written 2-3 times. Under this
circumstance, if the migration threshold is set to be higher than 3,
then there will be little migration, both the SRAM and STT-RAM
will be evenly written based on the LRU scheme, which may
impair the endurance. However, even if the migration threshold is
set to be 2 or 3, the migration for most blocks does not save any
write, since most blocks behave similarly. A correct approach is
to place all these streaming accessed blocks into the SRAM,
which can be obtained via static optimization in the compiler.
After that, the expensive writes on STT-RAM can be significantly
reduced and thus dynamic energy can reduced.

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
>=

50

Number of writes in the block lifetime

N
um

be
r o

f b
lo

ck
s

denoise registration segmentation

Figure 1: Write frequency distribution of the L2 cache blocks
To overcome these limitations while taking the advantage of both
static and dynamic schemes, we use a combined strategy: the
compiler tries to guide the hardware in order to rapidly achieve
the desired placement, while the hardware corrects the compiler
hints based on the run-time cache behavior. To the best of our
knowledge, we are the first one taking such a hybrid approach.

4. THE COMBINED APPROACH
4.1 Compiler Support
In this work, we develop an automatic compilation flow to
generate data placement hints for each memory reference. Here,
we assume LRU replacement policy is used and L2 is an inclusive
cache with the same block size of L1, which is widely used in
modern processors because of easy coherence implementation.
Similar to [10], our compiler tends to place write-intensive
references into SRAM and non-write-intensive data into STT-
RAM. Based on our inclusive cache assumption, the write
accesses on L2 STT-RAM cells occur at only two situations: (1)
L1 dirty evictions due to L1 cache replacement and (2) L2 cache
replacement. However, the work in [10] assumes there is no cache
in the memory system, thus does not consider the effect of higher-
level (L1) cache on the memory access behavior. Figure 2 shows
an example code and its corresponding memory access behavior.
We can find that both arrays A and B are written twice. However,
since array A is more frequently accessed and can be kept in the
L1 cache (we assume LRU replacement policy is used here),
neither of the two writes falls into the L2 cache. On the other
hand, since array B is evicted from the L1 cache before its next
access, one write-back operation will be issued into L2.

loop 1: A[i] = …; B[i] = …; (write array A and B in L1)

loop 2: … = A[i] …; (read array A in L1)

loop 3: … = C[i] …; (array B is evicted into L2)

loop 4: A[i] = …; B[i] = B[i]…; (write array A and B in L1)
Figure 2: One sample code and its memory access behavior

To capture this effect, we use the concept of memory reuse
distance (MRD) [11], which equals the total size of unique data
elements accessed between two references to X. A larger memory
reuse distance of X implies that X will not be accessed in the near
future, and thus X is more likely to be evicted from the L1 cache.

Definition 1: For an write operation w of memory instruction X,
assuming the future access sequence of X is w, r1, r2, ..., rn, w’, etc
(r and w corresponds to read and write operation). w is called an
L1-writeback write if one of the following conditions is satisfied:
(1) there exists MRD(ri, ri+1) > distL1 (i = 1, ..., n-1) (2) MRD(rn,
w’) > distL1 (3) MRD(w, r1) > distL1. (distL1 is the average reuse
distance to keep X in L1 cache)
From Definition 1 we can see, if the memory reuse distance
between two accesses into a dirty data X is larger than a threshold
value distL1, the compiler will treat the first write (w) to X as a L1-
writeback, since X will be written back into L2. The other set of
L2 write accesses comes from L2 misses and data are written into
L2 from main memory. Here we use distL2 to indicate the average
reuse distance to keep X in L2 cache. For two adjacent accesses to
X, if the memory reuse distance between them is larger than distL2,
the compiler will treat the second access as a L2 miss, which will
introduce one L2 write operation.
In our flow, we provide a 2-bit compiler hint for each memory
instruction to guide its data placement in L2 cache. For each
access to reference X, we count the total number of future L2
writes to X including both L1-writeback writes and L2 misses. If
there are frequent L2 writes, our compiler will generate hint “01”
for X. On the other hand, hint “00” is generated to indicate that X
will not be written frequently. For those accesses that the
compiler cannot analyze accurately (e.g., due to unknown loop
bound), hint “1x” is generated and the data placement is
controlled by hardware. Note that a memory instruction in a
regular loop is accessed multiple times with repeated access
patterns [12], therefore we can apply the same hint to all the
accesses to it. It should be noted that the compiler just tries its
best to predict the write frequency. The value of distL1 and distL2
can be obtained from profiling on representative input or set to a
fixed value by default. However, it is not feasible to profile all
input sets. In this work, a conservative approach is used to set
distL1 to L1 set associativity. This can ensure that data X will not
be evicted out from L1 between two accesses with reuse distance
less than distL1. Since the compiler cannot make an optimal
decision without knowing the runtime cache behavior, these
generated hints may not be followed in the hardware. We will
discuss our combined scheme in Section 4.3.1.

4.2 Compiler-Hardware Interface
In our implementation, the compiler passes the hints to the
hardware through setting two bits in the 32-bit instruction code.
We assume that there are two extra bits in each memory
instruction that the compiler can use to assist the run-time cache
block replacement. Existing architectures already use these kinds
of extra bits in the instruction, such as the prefetch and evict-next
instruction in the Alpha 21264. We believe that, in most
architectures, the increasing speed gap between memory and
processor will justify the inclusion of additional bits in the
instruction code to facilitate the reduction of this gap. Once a
memory reference instruction is executed, if this is a L1 cache hit,
these 2 bits will be discarded. If this is a L1 miss, then the bits
will be passed to the L2 cache controller, if this is a L2 hit, then
these 2 bits will be discarded; if this is a L2 miss, these 2 bits will
be used as hints for the initial placement of the new block.

4.3 Hardware Support
In this work, we use a 1MB 16-way hybrid cache including a 4-
way SRAM data array and a 12-way STT-RAM data array similar
to the configurations used in [2][4][7]. The asymmetric

configuration is chosen since smaller SRAM contributes less
leakage while the bigger STT-RAM provides the advantage of
higher density. We use separate replacement units on SRAM and
STT-RAM in order to perform block replacement in these two
arrays independently. We also introduce a global replacement unit
for them in order to perform a global replacement among them if
required. All of these replacement units use LRU policy.

4.3.1 Capacity-Pressure and Compile Hints based
Initial Placement
The initial block placement decision is made based on both of the
compiler hint and also the SRAM/STT-RAM capacity pressure
monitored in the hardware.
Before discussing the decision making process, we first show our
capacity pressure assessing hardware. To assess the SRAM/STT-
RAM capacity pressure, we introduce two additional hardware
structures: missing tags (MTs) and MT counters. The proposed
structures are similar to the missing tags [12] and victim tags [14].
MTs and MT counters are integrated with the tag array design, as
shown in Figure 3. In addition to the original 4-way SRAM tag
array and the 12-way STT-RAM tag array, a 4-way SRAM MTs
and a 4-way STT-RAM MTs are introduced. Moreover, for each
cache set, there are a SRAM MT counter and a STT-RAM MT
counter, and these counters indicate the capacity pressure of the
SRAM and STT-RAM portions in that cache set, respectively.
Note that the sizes of MTs are the same for both SRAM and STT-
RAM arrays to provide similar pressure monitoring criterion.
We use the SRAM MT to illustrate the MT and MT counter
functionality, and the STT-RAM MT and MT counter work in the
same way. When a cache miss occurs in the SRAM, the tag of the
victim block will overwrite the LRU tag in the same set in SRAM
MTs and be marked as most recently reused tag. If there is a miss
in the SRAM array and there is a hit in the SRAM MTs, this
indicates that a potential hit will occur if the requested block were
placed in STT-RAM. Then the SRAM MT counter in the
corresponding cache set is incremented by one.

Figure 3: SRAM and STT-RAM missing tag and counter

We use an interval-based assessing approach, i.e., the value of the
MT counters in the current interval will be used to guide the
initial placement in the next interval. Considering the less-
frequent access to the L2 cache, the interval length cannot be too
short, but it can also be too long in terms of timely assessment. In
this work, we set it to be 10K cycles. At the end of each 10K
cycles, the value of all the MT counters will be evaluated to fill
the capacity pressure table (CPT). The number of entries of CPT
equals to the number of sets in the cache and each entry contains
two bits: the SRAM capacity pressure and the STT-RAM capacity
pressure of that cache set. If the value of the SRAM (STT-RAM)
MT counter of a cache set is greater than a threshold, then the
SRAM (STT-RAM) bit for that set in the CPT is set to 1 (high),
otherwise set to 0 (low). Then all the MT counters are reset to 0.
In the next interval, the CPT is accessed together with the
compiler hints to decide the initial block placement.
Given the capacity pressure from the CPT and also the compiler
hints, the L2 cache controller makes the initial placement as

shown in Table 2. If a block is going to be placed in SRAM (STT-
RAM), then the LRU replacement unit of SRAM (STT-RAM)
will be triggered to evict the victim in that cache set of SRAM
(STT-RAM). If a block is going to be placed globally, the global
LRU replacement unit is triggered to evict the LRU block of all
the SRAM and STT-RAM cache lines in that cache set.

Table 2: Initial placement decision based on compiler hints
and SRAM/STT-RAM capacity pressure

Capacity pressure Compiler hint
SRAM STT-RAM infreq write freq write unknown

High Low STT-RAM STT-RAM STT-RAM
Low High SRAM SRAM SRAM
High High STT-RAM SRAM Global
Low Low SRAM SRAM SRAM

4.3.2 Write-Frequency based Dynamic Migration
As pointed out in Section 4.1, the compiler hints are not
absolutely accurate due to the input variation and the L1 cache
impact. Moreover, according to Section 4.3.1, when capacity
pressure unbalance occurs, blocks may be initially placed in the
less-intensive used portion of the hybrid cache, instead of based
on the write-frequency of the block itself, as shown in Table 2.
Thus it is possible that a block is incorrectly initially placed.
We use dynamic migration to correct the initial placement by
migrating the actually write-intensive STT-RAM data blocks to
SRAM. We use the dynamic migration scheme similar to [4],
which is briefly described as follows. Each L2 cache block is
associated with a saturate 2-bit write counter to indicate the
number of writes during its on-chip lifetime. If the write counter
of a STT-RAM block saturates (three writes), the migration unit
will check the write counters of the SRAM blocks in the same
cache set. If there is any counter that is less than 3, then the
corresponding SRAM block is swapped with that STT-RAM
block. After that, all the write counters in this cache set are reset
to 0. If the counters of all the SRAM blocks in a set are saturated,
no migration will be performed. Therefore, the possibility that
another write-intensive block could be swapped from the SRAM
back to STT-RAM is avoided.
In sum, in our combined approach, if the compiler provides
correct hints, the hardware can use them to rapidly achieve correct
block placement. If compiler makes mis-predictions, the hardware
corrects the compiler hints as shown in Table 3. Note that all the
hardware corrections are automatically triggered by our
introduced hardware counters.

Compiler mis-predictions: (a) Mis-predicts some write-intensive
blocks as non-write-intensive. (b) Generates larger percent of
non-write-intensive blocks that it actually is. (c) Generates larger
percent of write-intensive blocks that it actually is.

Hardware corrections: (i) Distributes blocks to STT-RAM. (ii)
Distributes blocks to SRAM. (iii) Migrates write-intensive blocks
from STT-RAM to SRAM.

Table 3: Hardware corrections to the compiler mistakes

Compiler mis-predictions Hardware corrections
a b c i ii iii
X X
 X X
 X X X

X X X X
X X X X

5. EVALUATION METHODOLOGY
5.1 Compilation and Simulation
Infrastructure
The compiler support for hint generation is implemented based on
LLVM compiler infrastructure [15]. Omega library [16] is used in
this flow to perform memory dependency analysis. Given a
source program written in C/C++, we parse it into LLVM IR
using LLVM's frontend. All standard optimizations in O3 are
applied. Our hint-generating flow is invoked as a pass on the
optimized LLVM intermediate representation (IR) code and will
automatically generate data placement hints for each load/store
instruction. We also modify LLVM backend to emit hint-included
load/store instructions in the final assembly code. A potential
issue of this LLVM frontend analysis is that some load/store
instructions cannot be captured in IR level. For example, the
loads/stores in pre-compiled library functions cannot be analyzed
under this framework. Moreover, the loads/stores from operating
system cannot be analyzed during compile time. Therefore, a
hardware support mentioned in Section 4.3 is required to provide
better optimization.

Table 4: Simics/GEMS simulator configurations
Core Sun UltraSPARC-III Cu processor core
L1 Instruction/
Data Cache

32KB, 2-way set-associative, 64-byte block, 2-
cycle access latency, pseudo-LRU

L2 Cache
(Hybrid cache)

1MB, 16-way set-associative (4-way SRAM,
12-way STT-RAM), 64-byte block, access
latency: 10-cycle for SRAM, 11-cycle (read)
and 30-cycle (write) for STT-RAM

Main Memory 4GB, 320-cycle access latency

We extend the full-system cycle-accurate Simics [17] and GEMS
[18] simulation platform to model the proposed hardware support.
The system configurations of SIMICS/GEMS are shown in Table
4. We obtain the energy data of the SRAM array and MTs/MT
counters through Cacti 6.5 [19] with 32nm process technology at
330K. The energy data of the STT-RAM array are obtained from
NVSim [20]. Table 5 shows the energy model we use in our
evaluation. Note that the low leakage cells (itrs-lstp) are used in
SRAM data array and tag array. For peripheral circuitry, we use
high performance cells (itrs-hp) to optimize performance and area.
Note that we also try to implement the peripheral circuitry with
low leakage cells for further leakage minimization. However, we
observed that considerable area overhead may arise since the
width of an itrs-lstp transistor should be large enough to provide
the enough current for STT-RAM write operation.

Table 5: Energy/power data of the evaluated hybrid cache

 Read
energy

Write
energy

Leakage
power

SRAM (4-way) 0.0603nJ 0.0603nJ 15.017mW
STT-RAM (12-way) 0.231nJ 1.306nJ 11.173mW
MTs (8-way) 0.0020nJ 0.0020nJ 2.805mW

5.2 Benchmarks
Our testbenchs consist of eight benchmark applications, which
have been carefully chosen to represent memory intensive
algorithms in the fields of data processing, massive
communication, scientific computation and medical applications.
The benchmark applications include three memory-intensive
applications from SPEC2006 [21] (bzip2, mcf and lbm) and five
applications from the medical imaging domain [8].

5.3 Reference Schemes
To demonstrate the effectiveness of our combined scheme
(combined), we compare to two representative prior approaches:

Pure static optimization (static): The hardware will strictly
follow the compiler-generated block placement hint. The compiler
hints are generated based on the approach proposed in [10], and
we further take the effect of L1 cache into consideration using the
techniques discussed in Section 4.1.

Pure dynamic optimization (dynamic): We use the dynamic
migration scheme proposed in [4]. Our dynamic migration scheme
in Section 4.3 uses this scheme with the same migration threshold
as 3. There is no compiler hint in this scheme.
Note that the energy overhead of MTs and MT counters is only
applied on the combined scheme.

6. RESULTS

6.1 Endurance
In this work, we assume that the maximum write cycles of a STT-
RAM cell is 4 x 1012 [5]. We assume that a workload
continuously runs on the system. To model the endurance in a
more sophisticated way, one can provide a loading factor, which
is the percentage of the overall runtime occupied by the workload.
The lifetime is measured from the start of the simulation until the
first STT-RAM line becomes defective, which is similar to the
estimation methodology proposed in [4] and [5].
Figure 4 demonstrates the lifetime which is normalized to the
static scheme. The static scheme typically performs the worst
among the three schemes (up to 1.2x~148x worse than the
combined scheme). This is because that once a compiler mis-
predicts a write-intensive block as a non-write-intensive one and
places it into the STT-RAM, this block will be intensively written
and there is no dynamic migration to mitigate it. The lifetime of
the STT-RAM mainly depends on the peak write count of the
cells. The exceptions are fft, lbm and denoise where the program
only have negligible input-variation, so that the static scheme can
have longer lifetime than the other two schemes. Note that the
static scheme can only reduce the total writes instead of the peak
write count among all blocks, as shown in Figure 5. Therefore, the
static scheme is the worst in terms of endurance but it can save
STT-RAM write energy, which is discussed in Section 6.2.
With the dynamic migration to average the writes to STT-RAM
blocks, the dynamic scheme achieves up to 14x improvement of
lifetime compared to the static scheme. However, the reduction of
the peak write count of STT-RAM is accompanied with the cost
of much more total STT-RAM writes, since it lacks global
information to reduce the total STT-RAM writes. Figure 5 shows
that dynamic scheme has 1.6x~36.6x more STT-RAM writes than
the static scheme. In cases of fft and lbm, the data blocks are all
uniformly written less than 3 times on either SRAM or STTRAM.
Therefore, there is little migration in the dynamic scheme and it
has a life time which is only 4%~13% of that of the static scheme.
The combined scheme has a 1.6x~14.7x lifetime compared to that
of the dynamic scheme. By following the correct compiler hints,
the combined scheme rapidly achieves the optimal block
placement without additional migrations, especially in the cases
where most of the blocks are uniformly written less than two or
three times, as shown in the motivational examples in Section 2.
This can save both the peak write count and also the total writes
of the STT-RAM. Although the combined scheme has 0.8x~4.1x

more total STT-RAM writes than static, it achieves 1.2x~148x
lifetime due to averaging the writes to the STT-RAM cells (except
fft where static has a 1.8x longer lifetime than combined).

bzip2
mcf

lbm
deblur

denoise
registration

segmentation
fft

0

2

4

6

8

10

12

14

16

18

Static Dynamic Combined

ST
T-

R
AM

 li
fe

tim
e

(n
or

m
al

ize
d

to
 s

ta
tic

)

Figure 4: Comparison results of STT-RAM lifetime

bzip2
mcf

lbm
deblur

denoise
registration

segmentation
fft

0

2

4

6

8

10

12

14

16

Static Dynamic Combined

S
TT

-R
AM

 w
rit

es
 (n

or
m

al
ize

d
to

 s
ta

tic
)

Figure 5: Comparison results of total STT-RAM writes

6.2 Energy
Figure 6 shows the distribution of hybrid cache (L2 cache) energy
that is normalized to the static scheme. The leakage consumption
of three schemes is similar. This is because leakage is
proportional to program runtime and the runtime (as shown in
Figure 7) of the three schemes is similar. Therefore, the key factor
that influences the system energy is the L2 STT-RAM dynamic
energy. The static scheme has the least energy, because the
reduced STT-RAM writes (as shown in Figure 5) bring in
considerable dynamic energy savings. Without the hints of initial
placement, a large number of writes arises in the dynamic scheme,
leading to 9%~80% energy overhead (38% overhead on average)
compared to the static scheme.
The combined scheme achieves similar energy consumption to
that of the static scheme (7%~20% energy overhead, 11%
overhead on average) and outperforms the dynamic scheme
(2%~39% energy reduction, 17% reduction on average). Note that
the energy overhead of the combined scheme comes from both the
leakage of the introduced MTs and the extra dynamic STT-RAM
writes energy compared to the static scheme.

bzip2
mcf

lbm
deblur

denoise
registration

segmentation
fft

0

0.5

1

1.5

2

1st bar: static 2nd bar: dynamic 3rd bar: combined

L2 SRAM Leakage L2 STTRAM Leakage L2 SRAM Dynamic L2 STTRAM DynamicH
yb

rid
 c

ac
he

 e
ne

rg
y
(n

or
m

al
iz
ed

 to
 s

ta
tic

)

Figure 6: Comparison results of hybrid cache energy

6.3 Performance
Performance is measured by the runtime of a workload (in terms
of number of clock cycles obtained from our simulation
infrastructure). Figure 7 shows the comparison results of runtime
that are normalized to the static scheme.
Since the total cache size for the three schemes are the same, the
runtime does not varied significantly. The differences among the
three schemes come from how efficiently they make use of the
aggregate capacity of both SRAM and STT-RAM to reduce the

cache misses. The dynamic scheme typically performs the best
due to the equivalent initial placement to SRAM and STT-RAM,
which best utilizes the STT-RAM capacity. As mentioned in
Section 4.3.1, compiler may generate larger write-intensive data
on SRAM due to the input variation, thus impose high capacity
pressure to the SRAM and result in high cache misses (as shown
in Figure 8). Therefore, the static scheme performs -1%~9%
worse than the dynamic scheme (with a -1% ~30% increase in the
L2 cache misses). The only exception is fft where static
outperforms dynamic due to accurate compiler hints.

bzip2
mcf

lbm
deblur

denoise
registration

segmentation
fft

0.5

0.6

0.7

0.8

0.9

1

1.1

Static Dynamic Combined

R
un

tim
e

(n
or

m
al
iz
ed

 to
 s

ta
tic

)

Figure 7: Comparison results of runtime

bzip2
mcf

lbm
deblur

denoise
registration

segmentation
fft

0.5

0.6

0.7

0.8

0.9

1

1.1

Static Dynamic Combined

H
yb

rid
 c
ac

he
 m

is
se

s
(n

or
m

al
iz
ed

 to
 s
ta
tic

)

Figure 8: Comparison results of hybrid cache misses

In the combined scheme, the hardware can automatically correct
the compiler mis-predictions as discussed in Section 4.3.
Therefore, it achieves similar runtime to that of the dynamic
scheme (within a -5% ~ 5% variation). These analyses are
summarized in Table 6.

Table 6: Comparison summary of the experimental results

 static dynamic combined
Endurance worst fair best

Performance fair best best
Energy best worst ~best

bzip2
mcf

lbm
deblur

denoise
registration

segmentation
fft

0

4

8

12

16

20

148

119

87

52

1-bit 2-bit 3-bit 4-bit 5-bit

Li
fe

tim
e

(n
or

m
al

ize
d

to
 1

-b
it)

Figure 9: STT-RAM lifetime over different bit widths

6.4 Different Bit Widths of Write Counters
We perform the sensitivity analysis on different bit widths of the
write saturation counters in our proposed combined scheme. The
write counters are used for dynamic migration to improve the
endurance. We justify that 2-bit counters are adequate enough for
write counters. Figure 9 shows that the lifetime can be
significantly enhanced in mcf, deblur, registration, and
segmentation when 2-bit counters are applied. The 1-bit counters
are inefficient since the SRAM blocks in the same set may easily
saturate and thus prevent the migration of write-intensive STT-
RAM blocks into SRAM ones. For the rest of workloads, the
lifetime is insensitive to the bit width. According to our
experimental results, the bit widths of write counters are
insensitive to both energy and runtime among all workloads (less
than 1% difference). In terms of energy, the only exception is mcf,

where most of write intensive blocks cannot be migrated into
SRAM when 1-bit counters are used. Therefore, the STT-RAM
energy increases by 15% in the 1-bit counters case compared to
the others (2- to 5-bit). For performance, it is insensitive to the
widths of write counters since performance is maintained through
cache capacity pressure monitoring, as described in Section 4.3.1.

7. CONCLUSIONS
In this paper, a combined static and dynamic scheme is proposed
to optimize the block placement in a hybrid SRAM and STT-
RAM cache, so that endurance and energy are co-maximized. The
compiler tries to guide the hardware to rapidly achieve the desired
placement, while the hardware corrects the compiler hints based
on the runtime cache behavior. Experimental results show that the
combined scheme improves the endurance by 23.9x and 5.9x
compared to pure static and pure dynamic schemes, respectively,
while maintaining similar performance. Meanwhile, the system
energy can be reduced by 17% compared to the pure dynamic
scheme.

8. ACKNOWLEDGEMENTS
This work is partially supported by the SRC Contract 2009-TJ-
1984, and the Center for Domain Specific Computing (NSF
Expedition in Computing Award CCF-0926127).

9. REFERENCES
[1] International Technology Roadmap for Semiconductors. http://www.itrs.net/:

Semiconductor Industries Association, 2011.
[2] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture of the 3D

stacked MRAM L2 cache for CMPs,” In HPCA, 2009, pp. 239-249.
[3] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hybrid cache

architecture with disparate memory technologies,” In ISCA, 2009, pp. 34-45.
[4] A. Jadidi, M. Arjomand, and H. Sarbazi-Azad, “High-endurance and

performance-efficient design of hybrid cache architectures through adaptive
line replacement,” In ISPLED, 2011, pp. 79-84.

[5] Y. Chen, W. Wong, H. Li, and C. Koh, “Processor caches built using multi-
level spin-transfer torque RAM cells,” In ISLPED, 2011, pp. 73-78.

[6] J. Li, C. J. Xue, Y. Xu, “STT-RAM based energy-efficient hybrid cache for
CMPs,” In VLSI-SoC, 2011, pp. 31-36.

[7] Y. Chen, J. Cong, H. Huang, B. Liu, C. Liu, M. Potkonjak, and G. Reinman,
“Dynamically Reconfigurable Hybrid Cache: An Energy-Efficient Last-Level
Cache Design,” In DATE, 2012.

[8] A. Bui, K.Cheng, J. Cong, L. Vese, Y. Wang, B. Yuan, and Y. Zou, “Platform
Characterization for Domain-Specific Computing,” In ASPDAC, 2012.

[9] J. Hu, C. J. Xue, W.-C. Tseng, Y. He, M. Qiu and E. H.-M. Sha, "Reducing
write activities on non-volatile memories in embedded CMPs via data
migration and recomputation," In DAC, 2010, pp.350-355.

[10] T. Liu, Y. Chao, C. J. Xue, and M. Li, “Power-aware partitioning for DSPs
with hybrid PRAM and DRAM main memory,” In DAC, 2011, pp. 405-410.

[11] C. Ding and Y. Zhong, “Predicting whole-program locality through reuse
distance analysis,” In PLDI, 2003, pp. 245-257.

[12] J. Cong, H. Huang, C. Liu and Y. Zou, “A reuse-aware prefetching algorithm
for scratchpad memory,” In DAC 2011, pp. 960-965.

[13] M. Zhang and K. Asanovic, “Fine-grain CAM-tag cache resizing using miss
tags,” In ISLPED, 2002, pp. 130-135.

[14] J. Cong, K. Gururaj, H. Huang, C. Liu, G. Reinman, Y. Zou, “An energy-
efficient adaptive hybrid cache,” In ISLPED, 2011, pp. 67-72.

[15] LLVM compiler. http://llvm.org/
[16] Omega library. http://www.cs.umd.edu/projects/omega/
[17] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J.

Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system
simulation platform,” In IEEE Computer, vol. 35, pp. 50-58, 2002.

[18] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen, K.
Moore, M. Hill, and D. Wood, “Multifacet's general execution-driven
multiprocessor simulator (GEMS) toolset,” In Computer Architecture News,
pp. 92-99, 2005.

[19] HP Cacti, http://quid.hpl.hp.com:9081/cacti/
[20] C. Xu, X. Dong, N.P. Jouppi, and Y. Xie, “Design implication of Memristor-

Based RRAM Cross-Point Structures,” In DATE, 2011
[21] SPEC CPU2006, http://www.spec.org/cpu2006/

