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ABSTRACT 
In this paper, a combined static and dynamic scheme is proposed 
to optimize the block placement for endurance and energy-
efficiency in a hybrid SRAM and STT-RAM cache. With the 
proposed scheme, STT-RAM endurance is maximized while 
performance is maintained. We use the compiler to provide static 
hints to guide initial data placement, and use the hardware to 
correct the hints based on the run-time cache behavior. 
Experimental results show that the combined scheme improves 
the endurance by 23.9x and 5.9x compared to pure static and pure 
dynamic optimizations respectively. Furthermore, the system 
energy can be reduced by 17% compared to pure dynamic 
optimization through minimizing STT-RAM writes. 

Categories and Subject Descriptors 
B.3.2 [MEMORY STRUCTURES]: Design Styles – Cache 
memories.  

General Terms 

Algorithm, Design. 

Keywords 

L2 cache, Hybrid cache, STT-RAM, Endurance, Energy. 

1. INTRODUCTION 
The traditional SRAM caches suffer from huge leakage power, 
which dominates the total energy consumption in the on-chip 
memory system. To alleviate this problem, emerging non-volatile 
memory technologies such as phase-change RAM (PRAM) and 
spin-torque transfer magnetoresistive RAM (STT-RAM) are used 
as alternative on-chip memory with the advantages of low leakage 
and high density. However, non-volatile memories suffer from the 
challenges of limited endurance, higher write latency and energy. 
Compared to PRAM, STT-RAM has significantly higher 
endurance (109 versus 1012 write cycles) and shorter write latency 
[1] and is much more promising in the last-level cache design [2] 
[3][4][5][6][7]. Moreover, due to the intensive writes of caches, 
hybrid caches consisting of both SRAM and STT-RAM are 
investigated [2][3][4][7], where the SRAM can accommodate 
write-intensive data and the STT-RAM can accommodate other 
data with its dense capacity. 

The STT-RAM endurance is an important issue to be considered 
in the last-level cache design. Although ITRS predicts the write 
cycles of STT-RAM will be 1015 at 2024 [1], the best available 
write cycles of STT-RAM are 4 x 1012 at present [5]. Supposed 
we execute segmentation [8], a medical imaging application, on a 
4GHz CPU with 32 KB L1 cache, 2MB STT-RAM L2 cache 
continuously, the lifetime of a STT-RAM cache can last only 2.17 
years without any optimizations applied. The endurance problem 
becomes even worse in the multi-level cell (MLC) STT-RAM 
technology [5]. Block placement optimizations is very important 
to shrink the large endurance gap between STT-RAM and SRAM 
in a hybrid cache. Recent work considers either static or dynamic 
schemes to optimize the block placement to reduce the average 
write frequency to STT-RAM cells, while maintaining the overall 
performance by making use of higher density of STT-RAM. 
Some of the proposed approaches targeted at PRAM, and those 
ideas can also be applied to STT-RAM with the same objective.  
The first category of the prior work uses static schemes. In [9] the 
authors introduce data migration and re-computation to reduce the 
write frequency on PRAM main memory. In [10], the partitioning 
of the application working set into SRAM and PRAM can reduce 
79% of the writes to PRAM.  
The second category of the prior work uses dynamic schemes. 
Recent work in [5] uses periodically set-remapping to distribute 
the writes among sets in a STT-RAM cache. Another set of work 
migrates the write-intensive cache blocks to other cache lines in 
the same/different cache set or in the SRAM in order to reduce the 
average write frequency of the STT-RAM cache lines [4].  
However, there exist intrinsic limitations in both approaches, 
which cannot be resolved independently – The static optimization 
decisions are made at compile time without run-time information, 
thus compiler may generate misleading hints to the hardware. On 
the other hand, pure dynamic optimization use blocked-based 
counter structures to learn the memory reference patterns on-the-
fly. However, the dynamic scheme lacks a global view of the 
whole program and has no knowledge to future access pattern. 
In this paper, we propose a combined approach in which the static 
and dynamic optimizations can compensate to each other. The 
compiler tries to provide data placement hints to hardware to 
reduce STT-RAM write frequency, while the hardware is 
designed to be able to correct compiler hints based on runtime 
cache behavior. Experimental results show that the combined 
scheme improves the endurance by 23.9x and 5.9x compared to 
pure static and pure dynamic optimizations, respectively, while 
maintaining similar performance. Furthermore, the system energy 
can be reduced by 17% compared to pure dynamic optimization 
since STT-RAM writes are reduced through initial placement 
from the proposed compiler flow. 
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2. PROBLEM FORMULATION 
In this work, we assume that the L2 cache is a hybrid cache 
architecture with 4-way SRAM and 12-way STT-RAM, which is 
similar to the setting described in [4][7]. The block-level initial 
placement and dynamic migration is allowed to place the data 
blocks in either SRAM or STT-RAM. The initial placement is 
given by the compiler hints and the runtime cache pressure while 
the dynamic migration is designed with hardware mechanisms. 
Our assumptions in detail are described in Section 4.1 and Section 
4.3 for better illustration of our co-optimization strategy. 
The objective of this work is to improve the endurance of the 
hybrid cache and reduce system energy while maintaining 
performance through the combined scheme. Another meaningful 
objective is to co-optimize performance and energy while under 
the endurance constraint. A storage-efficient way to monitoring 
the endurance of each cache block is required under the second 
scenario. The discussion of this formulation is not included in this 
work but may be worthwhile for further investigation. 

3. MOTIVATIONAL EXAMPLES 
In this section, we use real-life examples to illustrate how pure 
static optimization and dynamic optimization may produce sub-
optimal block placement decisions in a hybrid cache design.  
The deficiency of pure static optimization comes from the fact 
that the runtime write frequencies of L2 cache (which is the 
hybrid last-level cache in our evaluated system) blocks are input-
dependent, which cannot be fully obtained offline. First, the input 
data may change the control flow of the program, and this will 
change the write frequency of the data that are affected by the 
control flow variation. Second, since part of the writes to the L2 
cache come from the write-back operations from the L1 caches, 
the compiler cannot accurately capture the L2 cache write 
behavior with the existence of the L1 caches. For example, given 
the LRU replacement policy, the data which is written fewer 
times in the code may be frequently evicted by the L1 cache and 
behaves much more write-intensive in the L2 cache than other 
data which are written more frequently. Note that life time of the 
STT-RAM mainly depends on the peak write count of all the cells 
[4][5]. Even static optimizations can reduce the total STT-RAM 
writes compared to dynamic optimizations via global optimization, 
the potential mis-predictions can still severely degrade the STT-
RAM lifetime, since there is no dynamic scheme to migrate mis-
predicted write-intensive blocks into SRAM. This causes a large 
peak write count to this cell. As an example, Table 1 shows the 
STT-RAM cell write count distribution of the segmentation 
application [8] for both of the pure static [10] and the pure 
dynamic [4] scheme. The peak write count of static optimization 
is significantly larger than that of the dynamic one. 

Table 1: STT-RAM write count distribution 

#writes 0- 
100 

100-
200 

200-
300 

300-
400 

400-
1000 

1000-
5000 >=5000 max

static 12262 6 5 0 0 10 5 5470
dynamic 12207 38 16 27 0 0 0 395

The deficiency of dynamic migration comes from the fact that it 
lacks the future memory access information and highly relies on 
the application to exhibit a bipolar L2 write frequency patterns – 
the L2 cache blocks are either rarely written or intensively written. 
Then the write-intensive blocks can swap their places with the 
rarely written blocks through dynamic migration. However, based 
on our observation, not all the applications have such 
characteristics, especially in the three medical imaging 

applications [8] used in our study. As shown in Figure 1, most of 
the blocks are uniformly written 2-3 times. Under this 
circumstance, if the migration threshold is set to be higher than 3, 
then there will be little migration, both the SRAM and STT-RAM 
will be evenly written based on the LRU scheme, which may 
impair the endurance. However, even if the migration threshold is 
set to be 2 or 3, the migration for most blocks does not save any 
write, since most blocks behave similarly. A correct approach is 
to place all these streaming accessed blocks into the SRAM, 
which can be obtained via static optimization in the compiler. 
After that, the expensive writes on STT-RAM can be significantly 
reduced and thus dynamic energy can reduced. 
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Figure 1: Write frequency distribution of the L2 cache blocks 
To overcome these limitations while taking the advantage of both 
static and dynamic schemes, we use a combined strategy: the 
compiler tries to guide the hardware in order to rapidly achieve 
the desired placement, while the hardware corrects the compiler 
hints based on the run-time cache behavior. To the best of our 
knowledge, we are the first one taking such a hybrid approach. 

4. THE COMBINED APPROACH 
4.1 Compiler Support 
In this work, we develop an automatic compilation flow to 
generate data placement hints for each memory reference. Here, 
we assume LRU replacement policy is used and L2 is an inclusive 
cache with the same block size of L1, which is widely used in 
modern processors because of easy coherence implementation.  
Similar to [10], our compiler tends to place write-intensive 
references into SRAM and non-write-intensive data into STT-
RAM. Based on our inclusive cache assumption, the write 
accesses on L2 STT-RAM cells occur at only two situations: (1) 
L1 dirty evictions due to L1 cache replacement and (2) L2 cache 
replacement. However, the work in [10] assumes there is no cache 
in the memory system, thus does not consider the effect of higher-
level (L1) cache on the memory access behavior. Figure 2 shows 
an example code and its corresponding memory access behavior. 
We can find that both arrays A and B are written twice. However, 
since array A is more frequently accessed and can be kept in the 
L1 cache (we assume LRU replacement policy is used here), 
neither of the two writes falls into the L2 cache. On the other 
hand, since array B is evicted from the L1 cache before its next 
access, one write-back operation will be issued into L2.  

loop 1: A[i] = …; B[i] = …;       (write array A and B in L1)

loop 2: … = A[i] …;                   (read array A in L1)

loop 3: … = C[i] …; (array B is evicted into L2)

loop 4: A[i] = …; B[i] = B[i]…; (write array A and B in L1)  
Figure 2: One sample code and its memory access behavior 

To capture this effect, we use the concept of memory reuse 
distance (MRD) [11], which equals the total size of unique data 
elements accessed between two references to X. A larger memory 
reuse distance of X implies that X will not be accessed in the near 
future, and thus X is more likely to be evicted from the L1 cache.  



Definition 1: For an write operation w of memory instruction X, 
assuming the future access sequence of X is w, r1, r2, ..., rn, w’, etc 
(r and w corresponds to read and write operation).  w is called an 
L1-writeback write if one of the following conditions is satisfied: 
(1) there exists MRD(ri, ri+1) > distL1 (i = 1, ..., n-1) (2) MRD(rn, 
w’) > distL1 (3) MRD(w, r1) > distL1. (distL1 is the average reuse 
distance to keep X in L1 cache) 
From Definition 1 we can see, if the memory reuse distance 
between two accesses into a dirty data X is larger than a threshold 
value distL1, the compiler will treat the first write (w) to X as a L1-
writeback, since X will be written back into L2. The other set of 
L2 write accesses comes from L2 misses and data are written into 
L2 from main memory. Here we use distL2 to indicate the average 
reuse distance to keep X in L2 cache. For two adjacent accesses to 
X, if the memory reuse distance between them is larger than distL2, 
the compiler will treat the second access as a L2 miss, which will 
introduce one L2 write operation. 
In our flow, we provide a 2-bit compiler hint for each memory 
instruction to guide its data placement in L2 cache. For each 
access to reference X, we count the total number of future L2 
writes to X including both L1-writeback writes and L2 misses. If 
there are frequent L2 writes, our compiler will generate hint “01” 
for X. On the other hand, hint “00” is generated to indicate that X 
will not be written frequently. For those accesses that the 
compiler cannot analyze accurately (e.g., due to unknown loop 
bound), hint “1x” is generated and the data placement is 
controlled by hardware. Note that a memory instruction in a 
regular loop is accessed multiple times with repeated access 
patterns [12], therefore we can apply the same hint to all the 
accesses to it. It should be noted that the compiler just tries its 
best to predict the write frequency. The value of distL1 and distL2 
can be obtained from profiling on representative input or set to a 
fixed value by default. However, it is not feasible to profile all 
input sets. In this work, a conservative approach is used to set 
distL1 to L1 set associativity. This can ensure that data X will not 
be evicted out from L1 between two accesses with reuse distance 
less than distL1. Since the compiler cannot make an optimal 
decision without knowing the runtime cache behavior, these 
generated hints may not be followed in the hardware. We will 
discuss our combined scheme in Section 4.3.1.  

4.2 Compiler-Hardware Interface 
In our implementation, the compiler passes the hints to the 
hardware through setting two bits in the 32-bit instruction code. 
We assume that there are two extra bits in each memory 
instruction that the compiler can use to assist the run-time cache 
block replacement. Existing architectures already use these kinds 
of extra bits in the instruction, such as the prefetch and evict-next 
instruction in the Alpha 21264. We believe that, in most 
architectures, the increasing speed gap between memory and 
processor will justify the inclusion of additional bits in the 
instruction code to facilitate the reduction of this gap. Once a 
memory reference instruction is executed, if this is a L1 cache hit, 
these 2 bits will be discarded. If this is a L1 miss, then the bits 
will be passed to the L2 cache controller, if this is a L2 hit, then 
these 2 bits will be discarded; if this is a L2 miss, these 2 bits will 
be used as hints for the initial placement of the new block.  

4.3 Hardware Support 
In this work, we use a 1MB 16-way hybrid cache including a 4-
way SRAM data array and a 12-way STT-RAM data array similar 
to the configurations used in [2][4][7]. The asymmetric 

configuration is chosen since smaller SRAM contributes less 
leakage while the bigger STT-RAM provides the advantage of 
higher density. We use separate replacement units on SRAM and 
STT-RAM in order to perform block replacement in these two 
arrays independently. We also introduce a global replacement unit 
for them in order to perform a global replacement among them if 
required. All of these replacement units use LRU policy.  

4.3.1 Capacity-Pressure and Compile Hints based 
Initial Placement 
The initial block placement decision is made based on both of the 
compiler hint and also the SRAM/STT-RAM capacity pressure 
monitored in the hardware.  
Before discussing the decision making process, we first show our 
capacity pressure assessing hardware. To assess the SRAM/STT-
RAM capacity pressure, we introduce two additional hardware 
structures: missing tags (MTs) and MT counters. The proposed 
structures are similar to the missing tags [12] and victim tags [14]. 
MTs and MT counters are integrated with the tag array design, as 
shown in Figure 3. In addition to the original 4-way SRAM tag 
array and the 12-way STT-RAM tag array, a 4-way SRAM MTs 
and a 4-way STT-RAM MTs are introduced. Moreover, for each 
cache set, there are a SRAM MT counter and a STT-RAM MT 
counter, and these counters indicate the capacity pressure of the 
SRAM and STT-RAM portions in that cache set, respectively. 
Note that the sizes of MTs are the same for both SRAM and STT-
RAM arrays to provide similar pressure monitoring criterion. 
We use the SRAM MT to illustrate the MT and MT counter 
functionality, and the STT-RAM MT and MT counter work in the 
same way. When a cache miss occurs in the SRAM, the tag of the 
victim block will overwrite the LRU tag in the same set in SRAM 
MTs and be marked as most recently reused tag. If there is a miss 
in the SRAM array and there is a hit in the SRAM MTs, this 
indicates that a potential hit will occur if the requested block were 
placed in STT-RAM. Then the SRAM MT counter in the 
corresponding cache set is incremented by one. 

 
Figure 3: SRAM and STT-RAM missing tag and counter 

We use an interval-based assessing approach, i.e., the value of the 
MT counters in the current interval will be used to guide the 
initial placement in the next interval. Considering the less-
frequent access to the L2 cache, the interval length cannot be too 
short, but it can also be too long in terms of timely assessment. In 
this work, we set it to be 10K cycles. At the end of each 10K 
cycles, the value of all the MT counters will be evaluated to fill 
the capacity pressure table (CPT). The number of entries of CPT 
equals to the number of sets in the cache and each entry contains 
two bits: the SRAM capacity pressure and the STT-RAM capacity 
pressure of that cache set. If the value of the SRAM (STT-RAM) 
MT counter of a cache set is greater than a threshold, then the 
SRAM (STT-RAM) bit for that set in the CPT is set to 1 (high), 
otherwise set to 0 (low). Then all the MT counters are reset to 0. 
In the next interval, the CPT is accessed together with the 
compiler hints to decide the initial block placement. 
Given the capacity pressure from the CPT and also the compiler 
hints, the L2 cache controller makes the initial placement as 



shown in Table 2. If a block is going to be placed in SRAM (STT-
RAM), then the LRU replacement unit of SRAM (STT-RAM) 
will be triggered to evict the victim in that cache set of SRAM 
(STT-RAM). If a block is going to be placed globally, the global 
LRU replacement unit is triggered to evict the LRU block of all 
the SRAM and STT-RAM cache lines in that cache set.  

Table 2: Initial placement decision based on compiler hints 
and SRAM/STT-RAM capacity pressure 

Capacity pressure Compiler hint 
SRAM STT-RAM infreq write freq write unknown 

High Low STT-RAM STT-RAM STT-RAM 
Low High SRAM SRAM SRAM 
High High STT-RAM SRAM Global 
Low Low SRAM SRAM SRAM 

4.3.2 Write-Frequency based Dynamic Migration 
As pointed out in Section 4.1, the compiler hints are not 
absolutely accurate due to the input variation and the L1 cache 
impact. Moreover, according to Section 4.3.1, when capacity 
pressure unbalance occurs, blocks may be initially placed in the 
less-intensive used portion of the hybrid cache, instead of based 
on the write-frequency of the block itself, as shown in Table 2. 
Thus it is possible that a block is incorrectly initially placed. 
We use dynamic migration to correct the initial placement by 
migrating the actually write-intensive STT-RAM data blocks to 
SRAM. We use the dynamic migration scheme similar to [4], 
which is briefly described as follows. Each L2 cache block is 
associated with a saturate 2-bit write counter to indicate the 
number of writes during its on-chip lifetime. If the write counter 
of a STT-RAM block saturates (three writes), the migration unit 
will check the write counters of the SRAM blocks in the same 
cache set. If there is any counter that is less than 3, then the 
corresponding SRAM block is swapped with that STT-RAM 
block. After that, all the write counters in this cache set are reset 
to 0. If the counters of all the SRAM blocks in a set are saturated, 
no migration will be performed. Therefore, the possibility that 
another write-intensive block could be swapped from the SRAM 
back to STT-RAM is avoided.  
In sum, in our combined approach, if the compiler provides 
correct hints, the hardware can use them to rapidly achieve correct 
block placement. If compiler makes mis-predictions, the hardware 
corrects the compiler hints as shown in Table 3. Note that all the 
hardware corrections are automatically triggered by our 
introduced hardware counters. 

Compiler mis-predictions: (a) Mis-predicts some write-intensive 
blocks as non-write-intensive. (b) Generates larger percent of 
non-write-intensive blocks that it actually is. (c) Generates larger 
percent of write-intensive blocks that it actually is. 

Hardware corrections: (i) Distributes blocks to STT-RAM. (ii) 
Distributes blocks to SRAM. (iii) Migrates write-intensive blocks 
from STT-RAM to SRAM. 

Table 3: Hardware corrections to the compiler mistakes 

Compiler mis-predictions Hardware corrections
a b c i ii iii 
X     X 
 X   X  
  X X  X 

X  X X  X 
X X   X X 

5. EVALUATION METHODOLOGY 
5.1 Compilation and Simulation 
Infrastructure 
The compiler support for hint generation is implemented based on 
LLVM compiler infrastructure [15]. Omega library [16] is used in 
this flow to perform memory dependency analysis. Given a 
source program written in C/C++, we parse it into LLVM IR 
using LLVM's frontend. All standard optimizations in O3 are 
applied. Our hint-generating flow is invoked as a pass on the 
optimized LLVM intermediate representation (IR) code and will 
automatically generate data placement hints for each load/store 
instruction. We also modify LLVM backend to emit hint-included 
load/store instructions in the final assembly code. A potential 
issue of this LLVM frontend analysis is that some load/store 
instructions cannot be captured in IR level. For example, the 
loads/stores in pre-compiled library functions cannot be analyzed 
under this framework. Moreover, the loads/stores from operating 
system cannot be analyzed during compile time. Therefore, a 
hardware support mentioned in Section 4.3 is required to provide 
better optimization. 

Table 4: Simics/GEMS simulator configurations 
Core Sun UltraSPARC-III Cu processor core 
L1 Instruction/ 
Data Cache 

32KB, 2-way set-associative, 64-byte block, 2-
cycle access latency, pseudo-LRU 

L2 Cache 
(Hybrid cache)

1MB, 16-way set-associative (4-way SRAM, 
12-way STT-RAM), 64-byte block, access 
latency: 10-cycle for SRAM, 11-cycle (read) 
and 30-cycle (write) for STT-RAM 

Main Memory 4GB, 320-cycle access latency 

We extend the full-system cycle-accurate Simics [17] and GEMS 
[18] simulation platform to model the proposed hardware support. 
The system configurations of SIMICS/GEMS are shown in Table 
4. We obtain the energy data of the SRAM array and MTs/MT 
counters through Cacti 6.5 [19] with 32nm process technology at 
330K. The energy data of the STT-RAM array are obtained from 
NVSim [20]. Table 5 shows the energy model we use in our 
evaluation. Note that the low leakage cells (itrs-lstp) are used in 
SRAM data array and tag array. For peripheral circuitry, we use 
high performance cells (itrs-hp) to optimize performance and area. 
Note that we also try to implement the peripheral circuitry with 
low leakage cells for further leakage minimization. However, we 
observed that considerable area overhead may arise since the 
width of an itrs-lstp transistor should be large enough to provide 
the enough current for STT-RAM write operation. 

Table 5: Energy/power data of the evaluated hybrid cache 

 Read 
energy 

Write 
energy 

Leakage 
power 

SRAM (4-way) 0.0603nJ 0.0603nJ 15.017mW
STT-RAM (12-way) 0.231nJ 1.306nJ 11.173mW
MTs (8-way) 0.0020nJ 0.0020nJ 2.805mW 

5.2 Benchmarks 
Our testbenchs consist of eight benchmark applications, which 
have been carefully chosen to represent memory intensive 
algorithms in the fields of data processing, massive 
communication, scientific computation and medical applications. 
The benchmark applications include three memory-intensive 
applications from SPEC2006 [21] (bzip2, mcf and lbm) and five 
applications from the medical imaging domain [8].  



5.3 Reference Schemes 
To demonstrate the effectiveness of our combined scheme 
(combined), we compare to two representative prior approaches: 

Pure static optimization (static): The hardware will strictly 
follow the compiler-generated block placement hint. The compiler 
hints are generated based on the approach proposed in [10], and 
we further take the effect of L1 cache into consideration using the 
techniques discussed in Section 4.1.   

Pure dynamic optimization (dynamic): We use the dynamic 
migration scheme proposed in [4]. Our dynamic migration scheme 
in Section 4.3 uses this scheme with the same migration threshold 
as 3. There is no compiler hint in this scheme. 
Note that the energy overhead of MTs and MT counters is only 
applied on the combined scheme. 

6. RESULTS 

6.1 Endurance 
In this work, we assume that the maximum write cycles of a STT-
RAM cell is 4 x 1012 [5]. We assume that a workload 
continuously runs on the system. To model the endurance in a 
more sophisticated way, one can provide a loading factor, which 
is the percentage of the overall runtime occupied by the workload. 
The lifetime is measured from the start of the simulation until the 
first STT-RAM line becomes defective, which is similar to the 
estimation methodology proposed in [4] and [5].  
Figure 4 demonstrates the lifetime which is normalized to the 
static scheme. The static scheme typically performs the worst 
among the three schemes (up to 1.2x~148x worse than the 
combined scheme). This is because that once a compiler mis-
predicts a write-intensive block as a non-write-intensive one and 
places it into the STT-RAM, this block will be intensively written 
and there is no dynamic migration to mitigate it. The lifetime of 
the STT-RAM mainly depends on the peak write count of the 
cells. The exceptions are fft, lbm and denoise where the program 
only have negligible input-variation, so that the static scheme can 
have longer lifetime than the other two schemes. Note that the 
static scheme can only reduce the total writes instead of the peak 
write count among all blocks, as shown in Figure 5. Therefore, the 
static scheme is the worst in terms of endurance but it can save 
STT-RAM write energy, which is discussed in Section 6.2. 
With the dynamic migration to average the writes to STT-RAM 
blocks, the dynamic scheme achieves up to 14x improvement of 
lifetime compared to the static scheme. However, the reduction of 
the peak write count of STT-RAM is accompanied with the cost 
of much more total STT-RAM writes, since it lacks global 
information to reduce the total STT-RAM writes. Figure 5 shows 
that dynamic scheme has 1.6x~36.6x more STT-RAM writes than 
the static scheme. In cases of fft and lbm, the data blocks are all 
uniformly written less than 3 times on either SRAM or STTRAM. 
Therefore, there is little migration in the dynamic scheme and it 
has a life time which is only 4%~13% of that of the static scheme. 
The combined scheme has a 1.6x~14.7x lifetime compared to that 
of the dynamic scheme. By following the correct compiler hints, 
the combined scheme rapidly achieves the optimal block 
placement without additional migrations, especially in the cases 
where most of the blocks are uniformly written less than two or 
three times, as shown in the motivational examples in Section 2. 
This can save both the peak write count and also the total writes 
of the STT-RAM. Although the combined scheme has 0.8x~4.1x 

more total STT-RAM writes than static, it achieves 1.2x~148x 
lifetime due to averaging the writes to the STT-RAM cells (except 
fft where static has a 1.8x longer lifetime than combined). 
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Figure 4: Comparison results of STT-RAM lifetime 
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Figure 5: Comparison results of total STT-RAM writes 

6.2 Energy 
Figure 6 shows the distribution of hybrid cache (L2 cache) energy 
that is normalized to the static scheme. The leakage consumption 
of three schemes is similar. This is because leakage is 
proportional to program runtime and the runtime (as shown in 
Figure 7) of the three schemes is similar. Therefore, the key factor 
that influences the system energy is the L2 STT-RAM dynamic 
energy. The static scheme has the least energy, because the 
reduced STT-RAM writes (as shown in Figure 5) bring in 
considerable dynamic energy savings. Without the hints of initial 
placement, a large number of writes arises in the dynamic scheme, 
leading to 9%~80% energy overhead (38% overhead on average) 
compared to the static scheme.  
The combined scheme achieves similar energy consumption to 
that of the static scheme (7%~20% energy overhead, 11% 
overhead on average) and outperforms the dynamic scheme 
(2%~39% energy reduction, 17% reduction on average). Note that 
the energy overhead of the combined scheme comes from both the 
leakage of the introduced MTs and the extra dynamic STT-RAM 
writes energy compared to the static scheme.  
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Figure 6: Comparison results of hybrid cache energy 

6.3 Performance 
Performance is measured by the runtime of a workload (in terms 
of number of clock cycles obtained from our simulation 
infrastructure). Figure 7 shows the comparison results of runtime 
that are normalized to the static scheme.  
Since the total cache size for the three schemes are the same, the 
runtime does not varied significantly. The differences among the 
three schemes come from how efficiently they make use of the 
aggregate capacity of both SRAM and STT-RAM to reduce the 



cache misses. The dynamic scheme typically performs the best 
due to the equivalent initial placement to SRAM and STT-RAM, 
which best utilizes the STT-RAM capacity. As mentioned in 
Section 4.3.1, compiler may generate larger write-intensive data 
on SRAM due to the input variation, thus impose high capacity 
pressure to the SRAM and result in high cache misses (as shown 
in Figure 8). Therefore, the static scheme performs -1%~9% 
worse than the dynamic scheme (with a -1% ~30% increase in the 
L2 cache misses). The only exception is fft where static 
outperforms dynamic due to accurate compiler hints.  
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Figure 7: Comparison results of runtime 

bzip2
mcf

lbm
deblur

denoise
registration

segmentation
fft

0.5

0.6

0.7

0.8

0.9

1

1.1

Static Dynamic Combined

H
yb

rid
 c
ac

he
 m

is
se

s 
(n

or
m

al
iz
ed

 to
 s
ta
tic

)

 
Figure 8: Comparison results of hybrid cache misses 

In the combined scheme, the hardware can automatically correct 
the compiler mis-predictions as discussed in Section 4.3. 
Therefore, it achieves similar runtime to that of the dynamic 
scheme (within a -5% ~ 5% variation). These analyses are 
summarized in Table 6. 

Table 6: Comparison summary of the experimental results 

 static dynamic combined
Endurance worst fair best 

Performance fair best best 
Energy best worst ~best 

bzip2
mcf

lbm
deblur

denoise
registration

segmentation
fft

0

4

8

12

16

20

148

119

87

52

1-bit 2-bit 3-bit 4-bit 5-bit

Li
fe

tim
e 

(n
or

m
al

ize
d 

to
 1

-b
it)

 
Figure 9: STT-RAM lifetime over different bit widths 

6.4 Different Bit Widths of Write Counters 
We perform the sensitivity analysis on different bit widths of the 
write saturation counters in our proposed combined scheme. The 
write counters are used for dynamic migration to improve the 
endurance. We justify that 2-bit counters are adequate enough for 
write counters. Figure 9 shows that the lifetime can be 
significantly enhanced in mcf, deblur, registration, and 
segmentation when 2-bit counters are applied. The 1-bit counters 
are inefficient since the SRAM blocks in the same set may easily 
saturate and thus prevent the migration of write-intensive STT-
RAM blocks into SRAM ones. For the rest of workloads, the 
lifetime is insensitive to the bit width. According to our 
experimental results, the bit widths of write counters are 
insensitive to both energy and runtime among all workloads (less 
than 1% difference). In terms of energy, the only exception is mcf, 

where most of write intensive blocks cannot be migrated into 
SRAM when 1-bit counters are used. Therefore, the STT-RAM 
energy increases by 15% in the 1-bit counters case compared to 
the others (2- to 5-bit). For performance, it is insensitive to the 
widths of write counters since performance is maintained through 
cache capacity pressure monitoring, as described in Section 4.3.1. 

7. CONCLUSIONS 
In this paper, a combined static and dynamic scheme is proposed 
to optimize the block placement in a hybrid SRAM and STT-
RAM cache, so that endurance and energy are co-maximized. The 
compiler tries to guide the hardware to rapidly achieve the desired 
placement, while the hardware corrects the compiler hints based 
on the runtime cache behavior. Experimental results show that the 
combined scheme improves the endurance by 23.9x and 5.9x 
compared to pure static and pure dynamic schemes, respectively, 
while maintaining similar performance. Meanwhile, the system 
energy can be reduced by 17% compared to the pure dynamic 
scheme. 
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