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Static and dynamic displacements of foundations on 

heterogeneous multilayered soils 

G. GAZETAS* 

An analytical-numerical formulation is presented for 

dynamic and static analysis of strip foundations on 

an elastic isotropic medium consisting of hetero- 

geneous layers. Each layer is characterized by an 

S-wave velocity that increases or decreases linearly 

with depth, a constant material density, a constant 

Poisson’s ratio equal to l/4 and a constant linearly- 

hysteretic critical damping ratio. The solution, 

based on a transformation that uncouples the wave 

equations in closed-form, is ‘exact’ in that it 

properly accounts for the true boundary conditions 

at the layer interfaces and the surface. Results are 

presented for two characteristic soil profiles (half- 

space and stratum on rigid rock) in the form of 

normalized load-displacement ratios as functions of 

key dimensionless factors that influence the founda- 

tion behaviour during static and dynamic vertical, 

horizontal or moment loading. An interesting 

equivalence is established between a heterogeneous 

and a homogeneous halfspace, both having the 

same moduli at a depth equal to the foundation 

halfwidth (for translational motions) or to l/2 the 

foundation halfwidth (for rotation), i.e. for low 

frequency factors, the two media yield displacements 

of about the same average level, although the 

occurrence of resonance phenomena due to total 

wave reflection in the heterogeneous medium leads 

to fluctuations of the corresponding curves around 

the mean values. 

Cet article pr&.ente une formulation analytique- 
numerique pour l’analyse dynamique et statique de 
fondations continues sur un milieu isotrop tlastique 
form6 de couches hCt&og&es. Chaque couche est 
caracttrisee par une vitesse d’onde en S qui aug- 
mente ou diminue lineairement en fonction de la 
profondeur, une densit de mat&e constante, un 
coefficient de Poisson constant &gal g l/4 et un 
coefficient d’amortissement critique, lineairement 
hyst&tique, constant. La solution, basCe sur une 
transformation qui decouple les Cquations d’onde 
de forme fermte, est exacte en ce qu’elle tient cor- 
rectement compte des conditions de limites r&lles 
aux interfaces des couches et g la surface. Les 
r&ultats se rapportent B deux proas de sol caract&- 
istiques (demi-espace et couche sur roche rigide) et 
sont p&sent& sous la forme de rapports charge- 
d&placement normalists comme fonctions de fac- 
teurs clts sous dimension qui influencent le com- 
portement des fondations lors de charges statiques 
et dynamiques verticales, horizontales ou soumises 
& des moments. Une Cquivalence interessante est 
Btablie entre un demi-espace h&trog&ne et un demi- 
espace homogkne, tous deux de mBme module & une 
profondeur 6gale & la demi-largeur de la fondation 
(pour des mouvements de translation) ou B la 
moitiC de la demi-largeur de la fondation (pour 
rotation), c’est-A-dire que pour des facteurs basse 
frkquence, les deux milieux engendrent des dkplace- 
ments d’un niveau moyen 5 peu p&s similaire, bien 
que les phCnom&nes de rksonance qui se produisent 
par suite de la r6flexion d’onde totale dans le milieu 
h&Crog&ne conduisent & des fluctuations des courbes 
correspondantes de part et d’autre de valeurs 
moyennes. 

The problem of estimating foundation settlements caused by static building loads has received 

considerable attention by civil engineers. The theory of elasticity has been widely applied for 

nearly a century (Boussinesq, 1885) to obtain solutions for a variety of idealized soil models 

(homogeneous halfspace, homogeneous stratum, etc.) and for a number of foundation 

configurations (circular, rectangular, strip, etc.). On the other hand, the response of founda- 

tions to dynamic loads was first studied analytically in the 1930’s (Reissner, 1936; Barkan, 

1938) in connection with the design of foundations for vibrating machinery. But it is the last 

two decades that have witnessed an unprecedented scientific interest in the dynamic problem, 

primarily in relation to the study of soil-structure interaction during earthquakes and the 

safety of off-shore platforms during wave-storms. 

Discussion on this Paper closes 1 September, 1980. For further details see inside back cover. 
* Assistant Professor of Civil Engineering, Case Western Reserve University, Cleveland, Ohio. 
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dimensionless frequency factor 

(= QJB//%,) 
halfwidth of the foundation 

rate of heterogeneity (unit m-l) 

dimensionless rate of heterogeneity 

(= bB) 

foundation compliance (load-dis- 
placement ratio); D = D’+iD” 

normal&d foundation compliance; 
b = d’+ib” 

shear modulus; G = G,,( I+ bz)2 

shear modulus at the top of a layer 

(z = 0) 

layer thickness 

modified Bessel functions of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, 
first and second kind, respectively 

K 

R 

% w 
uo, wo 

a 

B 

%Po 
00 
h 

V 

0 

foundation stiffness (load-displace- 

ment ratio); K = K’+ iK” 

normalized foundation stiffness (equa- 

tion (27)); R = R’+ii?” 

horizontal, vertical displacements 

amplitude of foundation horizontal, 

vertical displacements 

P wave velocity in the soil; 

01= %(l+bz) 

S wave velocity in the soil; 

B = PoSl +bz) 
velocities at the top of a layer (z = 0) 

amplitude of foundation rotation 

linear-hysteretic critical damping ratio 

Poisson’s ratio 

circular frequency (rad/s) 

The majority of the existing solutions to both static and dynamic problems are based on the 

assumption of soil homogeneity. It is true that multi-layered elastic media have been studied 

extensively (e.g. Burmister, 1945, and Verstraeten, 1967, with the static problem; Luco, 1976, 

and Gazetas and Roesset, 1976, with the dynamic problem). Few solutions, however, are 

available to problems involving smooth variation of soil modulus within a particular soil 

layer. Such a variation is of interest not only with soils, whose stiffness depends on the 

effective overburden pressure and the degree of overconsolidation (which are both functions 

of depth within each layer), but also with rocks adjacent to excavations, for which the degree 

of induced loosening decreases with distance below the surface of excavation. 

Stresses and displacements produced by vertical static uniform pressures in a medium whose 

moduli increase linearly with depth, i.e. G = G,+mz where Go, m are constants, have been 

analytically derived by Lekhitskii (1962) and by Gibson and his co-workers (e.g. Gibson, 1967; 

Brown and Gibson, 1972; Awojobi and Gibson, 1973, Gibson, 1974; Awojobi, 1974). It was 

discovered that for an incompressible medium, i.e. when Poisson’s ratio v = l/2, the stress 

distribution in the soil is hardly influenced by the ‘rate’ of heterogeneity and that for the 

particular case of zero surface modulus (Go = 0) this distribution is identical with the distribu- 

tion in a homogeneous halfspace, regardless of the foundation geometry. The surface settle- 

ment, on the other hand, being sensitive to the assumed heterogeneity, becomes directly 

proportional to the applied normal pressure when Go = 0, independent of the size and shape 

of the loaded area. That is, such a medium behaves like a ‘Winkler-Space’ and not as a 

‘Homogeneous Half-Space’. This behaviour is not exactly true under drained conditions 

(i.e. when ~~0.5): the horizontal stresses are very sensitive to v and the surface settlement 

under the load tends to infinity as G,+O. Nevertheless, the pattern of surface settlement is 

only moderately dependent on v and approaches the settlement pattern of the ‘Winkler-Space’ 

for small values of Go. It is thereby concluded that the distribution of stresses under rigid 

foundations, on a heterogeneous medium are more uniform than the simple elastic theory 

(homogeneous halfspace) predicts. 

Essentially the same conclusions were drawn by Carrier and Christian (1973) who employed 

the finite element method to study the settlement of a rigid circular foundation on soil having 

linear variation of modulus with depth (i.e. G = G,+mz). A different type of heterogeneity 
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s wave velocity 

Fig. 1. Problem geometry, coordinate axes and shear-wave velocity profile 

was studied by Ho11 (1949), Rostovtsen and Khranevskaya (1971) and Kassir (1972) who 

considered the modulus increasing as a power function of depth, i.e. G = Gozm, and 

Chuaprasert and Kassir (1974) who studied the more general case of G = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,,[l +(2/c)]” 

whereby GO and c are constants and m = (1 -~Y)/v. (For v = l/3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = 1 and their solution 

corresponds to that of Awojobi and Gibson, 1973). They found that with increasing degree 

of heterogeneity (i.e. m), normal and shear stresses affect soil at greater depth, in agreement 

with intuition that expects stiffer material to attract larger stresses. The importance of this 

conclusion, however, is limited by the fact that Poisson’s ratio also varies with m(v = l/3 for 

m = 1; v = 419 for m = l/4). Thus, it cannot be unveiled how much of the above effect is 

caused by the increase in m and how much by the decrease in v, although both changes seem 

to have some participation. 

Consideration of continuous1 heterogeneity of the soil seems to be even more necessary when 

studying the dynamic response of foundations. Although the use of numerical (e.g. finite 

element) methods which simulate the continuous variation of the modulus by dividing the 

medium into a number of homogeneous layers of increasing stiffness, may be sufficient for 

static problems (Carrier er al., 1973), it can lead to inaccurate results for high frequencies of 

vibration. The reason is a large degree of reflection of waves with small wavelength at surfaces 

of velocity discontinuity, not actually present in the soil. At the other side of the spectrum, 

waves of large wavelengths (low frequencies) will be artificially reflected at the lower boundary 

that the numerical solutions require. 

Awojobi, in a series of publications (1972, 1973, 1974), studied particular aspects of the 

dynamic response of rigid circular or strip foundations on a medium obeying ‘Gibson’s’ 

variation of modulus with depth. By approximately solving the exact dual integral equations 

governing the mixed boundary value problem for special limiting cases (e.g. static case, low 

or high frequency cases, etc.) he reached several conclusions of practical significance, some of 

which are addressed in a later section herein (presentation of results). 

In this Paper a dynamic theory is presented to study the vertical, horizontal and rocking 

displacements of a rigid massless strip foundations resting on a multi-layered elastic isotropic 

halfspace. Each layer is characterized by a shear-wave velocity, /3, that varies linearly with 

l ‘Continuous’ is used here to distinguish from the ‘layered’ heterogeneity. 
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depth; a constant Poisson’s ratio, v = 0.25; and a constant material density, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp (Fig. 1). The 

variation of velocity with depth is expressed as 

fl=/30(1+bz) . . . . . . . . . . (1) 

where the rate of heterogeneity b can be any real number, positive or negative. For such a 

medium, the equations of motion are transformed into two uncoupled equations using a 

technique proposed by Gupta (1966) and are subsequently solved in closed-form. For a 

multi-layered halfspace loaded by a surface strip foundation a semi-analytical formulation is 

then developed similar in form with, although computationally more involved than, the method 

developed for homogeneous layers by the Author and Roesset (1976, 1979). By allowing the 

frequency of vibration to vanish, general solutions for the static deformations can also be 

obtained with the developed formulation. 

Results of the method compare favourably with known analytical or numerical solutions 

and the limiting cases of a uniform stratum on rigid rock and a uniform halfspace are recovered 

as the rate of heterogeneity tends to zero. The key dimensionless factors that intluence the 

foundation behaviour are identified and their importance is demonstrated through a series of 

parametric studies and through extensive comparisons with results pertinent to homogeneous 

multilayered soils. 

FORMULATION OF THE PROBLEM 

Stresses and displacements in a layer 

For conditions of plane strain, appropriate for strip loading, the governing equations 

of motion of a heterogeneous elastic medium with S-wave velocity varying linearly with depth 

(equation (1)) and Poisson’s ratio v = 0.25 are 

(2b) 

in which G(z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,(l + bz)2 is the shear modulus of the soil, with G, = p/Io2; u and w are the 

horizontal and vertical displacements, respectively. 

Gupta (1966) presented a method of uncoupling equations (2) in terms of pseudo-dilatational 

and pseudo-distortional wave potentials, @ and Y, defined by: 

{d} = GV(G-‘0) + G-lV x (GYP) . . . . . . . (3) 

where {d} = {u, w}~ is the displacement vector. 

Substitution of (3) in (2) leads, after some straightforward but lengthy operations, to two 

uncoupled equations : 

avr a2Y i a2Y 
p+p = [8(2)12-p * ’ * * . * . * (44 

a20 as@ i ay 
p+p=-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . . . . . . 

[a(~)12 at2 WI 

where a(z) = {(X + 2G)/p}* is the P wave velocity. For v = 0.25, X = G and 

LX(Z) = 3/I(z) = 3/?s( 1 + bq). 
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By a logical generalization of the terminology used for waves in homogeneous media, @ is 

identified with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP waves and ‘I! with S waves. It should be noted, though, that such P waves are 

not purely irrotational, nor are S waves purely equivoluminal, in heterogeneous media. This 

can be shown easily, by using equation (3) together with the dehnitions of dilation’; and 

rotation3 of the elastic theory. 

To obtain the general harmonic solution of, say, equation (4b), let 

@(x, 2; t) = F(x)Z(z) exp(iwt) . . . . . . . . (5) 

where o = the wave frequency (rad/s). 

Substituting (5) in (4b) leads to 

1 #F(x) 1 @Z(z) 0% 
--=---- 
F(x) dx2 Z(z) dz2 %2(1+bZ)2 * . - * * * 

(6) 

Since the left-side of (6) depends only on x and the right-side only on z, both sides must 

equal a constant value independent of x and z. Calling this constant - k2 leads to: 

F(x) = E’eAk” . . . . . . . . . . (7) 

(E’ is integration constant) 

and 

d2Z w2 

-is+ %2( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + bz)2 
Z=O . . . . . . . . (8) 

Letting Z = y( 1 + bz)*, and 

l+bz 
s=Tk . . . . . . . . . . (9) 

transforms equation (8) into a modified Bessel equation: 

d2y 1 dy 
--&+;-&- I+$ y=o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . . . [ 1 . . . (10) 

with 

f=(&-$-J . . . . . . . . . (loa) 

Equation (10) has a general solution of the form 

y = CJr(s)+C2K,(s) . . . . . . . . . (12) 

in which C,, C, are constants of integration and I,, K, are the modified Bessel functions of 

orderf, first and second kind, respectively (Watson, 1948). 

Finally, combining (5), (7), (9) and (12) yields 

qx,z; t) = (1 +bz)a ~‘I(k~) +B’K(ky)] ei(d-kz) . . . 

A completely analogous procedure for (4a) yields 

Wa) 

WI 

a dilation: 0 = au/ax+aw/&. 
3 rotation: C2 = (af4pz--awjax)iz. 
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with 
1 02 4 

g= 4-m . . . . . . . . . ( 1 
whereby zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA’, B’, A”, B” are integration constants. 

The two components of the displacement can now be determined from (3): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

aa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaY 2b yp 
U=ax+aZ-l+bz . . . . . . . . 

a@ aY 2b Q 
w=-+---  . . . . . . . . 

a2 ax i+bz 

(lib) 

WO 

(14b) 

with Q and Y given by (13). 

The stresses are subsequently obtained from (14) and the stress-displacement relations of 

the elastic theory, for v = 0.25 : 

=w ~+3~+6~-~za,+2~z-l+bz~ 
[ 

aw aw bw 6b a@  a2’3! 2b ayP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 * * * . Wa> 

CT~ET = G(z)($+;) = G(z+~-&~+~-~-&~+~~] Wb) 

Performing the operations indicated by equations (14) and (15), with <D and Y given by (13), 

is a straightforward but quite tedious operation, mainly because the derivatives of a Bessel 

function are related to Bessel functions of higher order, through recurrence relations of the 

form (e.g. Watson, 1948) 

$ [UYN = $ &iy) + I,+Jy) 

The results for the stresses and displacements can be expressed in matrix form: 

{P} = [x](E) . . . . . . . . . . (16) 

in which {P> = {a, T, U, w}~, {E} = (A’, A”, B’,BN}T. The elements Xi3 of the transfer matrix 

[X] are given in Appendix A. 

Boundary conditions at layer interfaces 

Adhering to the physical requirement of continuity of stresses (a, T) and displacements 

(u, w) at the ‘rough’ interface between two layers leads to (n- 1) sets of equations of the form 

{P,(H.)} = {Pi+l(0)}, i = 1,2, . . . . n- 1 . . . . . . (17) 

for the system of coordinate axes displayed in Fig. 1. Equation (17) can be written (using 16b) 

as 

Pi1 vG> = Pi+11 wi+lh i= 1,2 ,..., n-l . . . . . (17a) 

where Bi = X,(&), T,+l = X,+,(O). 

Since (17b) holds for any value of x along the interface, the terms exp (- ikx) and exp (- ihx) 

should be identically equal. This leads to 

k, = /z, = k,,, = h,,, = constant . . . . . . . (17b) 
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which is an alternate expression of Snell’s law of refraction. Because of (17b), the terms 

expressing the variation of {P} in the x direction are omitted in (17a). 

Elimination of the vector {B} from (17a) yields 

s(O) = [R] {P,(O)} . . . . . . . . . (Ha) 

with WI = pa Pil-i) . . . . . . !_ . V-9 

For the n layer (i.e. the halfspace) the coefficients A’, B’ must vanish, since Z,(z)+co as 

z-f co. Such a condition would lead to displacements increasing with depth, which is physically 

impossible with a surface wave source. Thus one can write 

0 

P,(O) = [z-,J ,% . . . . . . . . . 0 B” 

and by combining (18a) and (19) to obtain 

(19) 

{d} = [QJ [Q1z]-l{s} . . . . . . . . . (20) 

where [Q] = [R] [7’,] . . . . . . . . . (20a) 

{d) = (u,(O), ~~(0))~ and {s} = (u,(O), ~~(0))~ . . . . . (20b) 

Equation (20) relates stresses and displacements at the top surface and can be used directly 

if the applied foundation stresses are known. 

Displacement due to a uniform foundation pressure 

This is a simplified version of the true problem. It corresponds to reality only if the founda- 

tion has zero stiffness and thus acts as a membrane, uniformly distributing the pressure 

applied on the foundation. Since many of the existing solutions were developed for this type 

of loading, its consideration here was thought appropriate. 

The surface boundary conditions for a foundation of width 2B are 

u,(x)=q,eiw’ for IxI<B . . . . . . . (Zla) 

ol(x)=O for(xl>B . . . . . . . . . (21b) 

7r(x) = 0 for -co<x<co . . . . . . . (21c) 

if only a vertical pressure qv is applied. In case of simultaneous application of uniform 

horizontal pressure qh (21~) should be substituted by 

Ti(x) =qheei” for IxI<B . . . . . . . . (21d) 

TV = 0 for Ixj>B . . . . . . . . . (21e) 

Equations (21a) to (21b) or (21d) to (21e) can be expressed through a single equation holding 

for all x, from -cc to +co, should the applied pressures, qa (a = u or h), be expanded in a 

series of periodic functions of the form 

qa?,( 6) ei@ . . . . . . . . . . . (22) 

where %(.$) is the Fourier transform of qa(x) 

m &k9 = s qa(x) ei@ dx . . . . . . . . 
--oo 

Pa) 
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Fig. 2. Physical interpretation of j&w) 

Thus for each particular value of the parameter 5, (20) yields 

{&$)}e--ikz = [Qaa] [Q,a]-l{~(~}ei@ . . . . . . (23) 
where 

H(5)) = {cl,(0, 4&!Xr . . . . . . . . . (W 

By setting k = - 5, the Fourier transform d of the displacement vector can be readily 

obtained from (23). The inverse Fourier transform of d yields the displacement vector 

and, thus, the problem is solved. Notice, however, that analytical evaluation of (23b) appears 

impossible even for the simplest case of a halfspace. Instead, a discrete Fast Fourier transform 

algorithm has been implemented and the displacements are determined at a finite number of 

equidistant grid points on the surface. Details on the accuracy of the technique and the 

requirements for obtaining good and inexpensive solutions (minimum number of total grid 

points, number of grid points under the foundation, appropriate distance between the points, 

etc.) can be found in Gazetas and Roesset (1976). 

Mixed boundary conditions for rigid foundations 

The exact boundary conditions in this case are 

z+(x) = se{“” 

I 

. . . . . . (2W 

for Ixl<B 

wl(x) = (we + 0, x) eiof . . . . . . (2W 

al(x) = 0 

71(x) = 0 1 

. . . . . . . . . . (24c) 

for IxI>B 

. . . . . . . . . . (244 

in which U, and we are the horizontal and vertical displacements of the centre of the foundation 

and 0, is the angle of rotation of the foundation with respect to the horizontal (in rads). 

Because of the mixed nature of conditions (22), they cannot be directly used with (20). 

Instead, the vertical and horizontal displacements fM(w), of every point i on the surface due to 

a harmonically varying time with vertical or horizontal line traction of unit amplitude at the 

origin, i.e. at x = 0, are first determined (Fig. 2). The procedure is completely analogous with 

that described previously for a uniform pressure. Letting the foundation-soil interface be 

represented by 2m+ 1 grid points (Fig. 2) and noticing that as the applied traction moves to 

any other point the displacements at all points just shift by the same amount, leads to 

{d} = Lf]{q} . . . . . . . . . . (25) 

where (d} and {q} are the vectors of the displacements and stresses of all the points of the 

contact surface [of dimension 2(2m+ 11) and Lf] is the flexibility matrix. It is then a simple 

problem of matrix algebra to relate displacement amplitudes ue, w,,, 0, with amplitudes of 
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Fig. 3. Approximation of the heterogeneous layer (AH/H = 0) with mu&i-layered homogeneous strata 
(H/H = 1, l/4, l/8) 

external forces H,, V,, M, applied on the rigid foundation. Taking into account (24), (26) and 

the equilibrium of the massless foundation yields 

{d,) = [II]{&,} . . . . . . , . . . (26) 

where {d,} = {u,,, O,, w,,}~, {F,) = {II,, M,, VO}T and [D] is the foundation compliance matrix. 

The expression for obtaining ‘[D] is given in Appendix B. [D] or its inverse, the stiffness 

matrix [K], fully describe the response of the massless foundation to external applied loads, 

static or dynamic. 

NUMERICAL RESULTS 

This section presents characteristic numerical results from a series of extensive parametric 

analyses that have been conducted in order to: check the accuracy of the developed semi- 

analytical method against other numerical or analytical techniques; and to identify the basic 

variables of the problem and study their influence on the static and dynamic displacements of 

rigid strip foundations. 

The results are displayed in the form of normalized foundation stiffnesses (i.e. load- 

displacements ratios) or compliances (i.e. displacement-load ratios) as functions of dimension- 

less groups of the key relevant parameters. Following the technique of dimensional analysis, 

as expressed by Riebouchinski’s theorem (Gibson, 1974), one can state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K K 
40rHor “-=f(;,bH,$,v,h) . . . . . . 
G, G, GOB2 

(27) 

whereby K,, K, and KR are the foundation stiffnesses (per unit length) due to vertical, hori- 

zontal and moment loading; His a characteristic length of the soil profile, herein taken as the 

depth of the soil deposit from surface to bedrock. Restricting Poisson’s ratio to a single value 

v = O-25 (for which the presented method is theoretically correct) and the hysteretic damping 

ratio to X = O-05, allows (27) to be expressed as: 

R =~(H/B, 6, ci> . . . . . . . . . (27a) 

in which: d = bB (dimensionless rate of heterogeneity) and d = COB//~,, (dimensionless 

frequency). Alternatively, for comparison with the results of a homogeneous stratum, K and w 

are normalized with respect to the modulus GH,2 at the middle of the stratum and (27a) is 

transformed to 
X =~,(H/B, 6,~) . . . . . . . . . (28) 

Static stiflnesses 

To illustrate the accuracy of the method, the horizontal, rocking and vertical static stiffnesses 

of a rigid foundation on the surface of a heterogeneous soil stratum are first studied. The 
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results are compared to the stiffnesses obtained by considering the stratum as consisting of a 

number of homogeneous layers, using available analytical (Gazetas and Roesset, 1976) or 

numerical (Chiang-Liang, 1974) techniques. Figure 3 explains how the stratum has been 

divided into an increasing number of layers of decreasing thickness, AH. Each layer has the 

same S wave velocity with the heterogeneous stratum at a depth corresponding to the middle 

of the particular layer. Figure 4 displays the dependence of the dimensionless stiffnesses R on 

the relative thickness of the homogeneous layers AH/Hfor two typical values of the depth ratio 

(H/B = 2 and 4) and a single value of the dimensionless rate of heterogeneity (d = 1.5). 

For both H/B ratios, all three stiffnesses of the multi-layered profiles converge smoothly to 

the stiffnesses of the heterogeneous stratum, as the layer thickness AH tends to zero. In fact 

as soon as AH/H = l/8, the difference of the two types of profiles is negligible, if only with 
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static displacements. The increase of the stiffnesses at larger zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAH/H values just reflects the 

higher modules of the corresponding profiles near the surface. 

Notice also in Fig. 4 the relatively large sensitivity of vertical settlements to stratum depth. 

The deep strata (If/B = 4) experience settlements that are about 60% larger than the settlements 

of the corresponding shallow strata (H/B = 2) when 5 = l-5. Horizontal displacements also 

increase significantly with increasing depth of the deposit (e.g. 4&50x for H/B increasing from 

2 to 4) but rotation due to moment loading is practically independent of H/B. This phenomenon 

has already been established for homogeneous deposits loaded either by circular (Kausel, 1974) 



170 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA G. GAZETAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T 

sl, 

B 
- 

Equivalent 

homogeneous 

\ 

Heterogenous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 8. Definition of equivalent homogeneous medium 

or by strip (Gazetas et al., 1979) foundations. It suggests that moment loading affects the soil 

at a much shallower depth compared to horizontal and, especially, to vertical loading. 

This is further demonstrated in Fig. 5 which shows the dependence of the dimensionless 

oad-displacement ratio R on the depth ratio, B/H, for a heterogeneous deposit having 

d = 1.5. The rocking stiffness remains practically constant while stratum depth increases 

beyond a critical value of about 2B (i.e. B/H = 0.5). It is concluded that, due to moment 

surface loading, strains below a depth equal to foundation width are negligible for horizontal 

and vertical loading. The critical depths are approximately equal to five and seven times the 

foundation width, respectively. 

A convenient way to reveal whether heterogeneity or other factors are responsible for 

confining the strain field to the above-mentioned limits is to compare the dependence of 

foundation displacements on stratum thickness, for a homogeneous (d = 0) and a heterogeneous 

(a: = 1.5) deposit. Such a comparison is displayed in Fig. 6 for vertical and moment loading. 

It is evident that: 

(a) On a homogeneous deposit, as the layer thickness increases the vertical foundation 

settlement becomes progressively larger, tending to infinity as the stratum tends to a 

halfspace. In contrast, on heterogeneous soil the influence of layer depth on foundation 

settlement becomes smaller and smaller as H/B increases. Beyond approximately 

H2: 14B the additional settlement is negligibly small. It consequently appears that 

heterogeneity is the primary cause of the reduced zone of influence of the surface 

loading. 

(b) For both the homogeneous and the heterogeneous soils, layer depth has an insignifi- 

cant effect on the rotation of a foundation due to moment loading, except perhaps for 

very shallow deposits (B/H> 1). Therefore, heterogeneity has only a very small 

contribution to limiting the depth over which significant deformations take place. 

Instead, this is primarily due to the peculiarity of moment loading (zero resultant 

force) which produces stresses decaying exponentially with depth (Saint-Venant 

principle). 

Notice that conclusion (a) qualitatively agrees with the finding of Awojobi (1974) that the 

settlement of a uniformly loaded strip footing on ‘Gibson’ soil is independent of the thickness 

of a stratum underlain by a rigid but smooth base. 

The above conclusions were reached with a particular value of the dimensionless rate of 

heterogeneity, i.e. 8 = 1.5. It is useful to study the sensitivity of foundation displacements or 

stiffnesses to variations of 8. To this end, Fig. 7 depicts the dependence on 8 of the normalized 

vertical, horizontal and rocking stiffnesses of a rigid foundation ou a heterogeneous halfspace. 

As anticipated, increasing 6 leads to higher stiffnesses. Again the vertical stiffness shows the 
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largest increase and the rocking the least. As 6+0, i.e. as the medium tends to a homogeneous 

halfspace, the translational stiffnesses (K, and R,) tend to zero, in agreement with classical 

elastic theory, as discussed previously. Moment loading, on the other hand, yields a finite 

stiffness which, according to Muskhelisvili (1963), is given by 

&,-L(l+ [,,,,-J2) . . . . . . . 

For v = 0.25, (29) yields RR= 2.2. This value is in reasonable agreement with the portrayed 

value of RR= 2.4 for 6 < 05. 

The effect of b on the stiffnesses of a foundation resting on a stratum with a particular depth 

ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH/B is of a similar nature. 

Vibrations on a halfspace 

One way to study the effects of heterogeneity on the dynamic response of a rigid foundation 

resting on a halfspace is to compare with the results for a homogeneous halfspace whose 

shear-wave velocity is the same as that of the heterogeneous space at a depth equal to the 

foundation halfwidth B (Fig. 8). Figures 9 to 11 show the horizontal, rocking and vertical 

displacement-load ratios (compliances), D as functions of the frequency factor, d for the 

homogeneous and the heterogeneous halfspaces sketched in Fig. 8. It is reminded that D is a 

complex number and can be written in the form 

D= D’+iD” (i=J-1) . . . . . . . . (30) 

with the real part D’ representing the recoverable component of deformation while the 

imaginary part D” expresses the dissipation of energy by waves propagating away from the 

foundation (radiation damping) and by hysteresis and friction in the soil (internal damping). 

The main effects of heterogeneity on the foundation compliances, as can be seen in Figs 9 to 

11 are as follows. 

The recoverable parts of the displacements-load ratios (compliances) are not smoothly 

varying functions of cf, as in the case of a homogeneous halfspace, but exhibit peaks and 
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Fig. 11. Vertical dynamic compliances for a heterogeneous (6 = 1.5) and a homogeneous (6; = 0) halfspace 

valleys that are the result of resonance phenomena. It is noted that wave rays in heterogeneous 

media are not straight lines but curves x(z) described by the differential equation 

I 

(1 +-&It 
=pjl’ . . . . . . . . . (31) 

where the prime (‘) indicates derivative with respect to z and p is the ray parameter 

p = sin@,/&, in which 0, is the angle of immergence of the ray into the ground (Fig. 12). 

With linear variation of velocity, equation (3 1) describes a family of circles for each value of p 

[ 
x-“$y]2+(z+;)y-&--$ . . . . . . (32) 

Thus total reflection of waves is in fact possible and does not require a velocity discontinuity. 

The reflecting waves are responsible for more severe foundation response, as is schematically 

illustrated in Fig. 12. This type of resonance phenomena are reminiscent of the dynamic 

behaviour of foundations on a homogeneous soil stratum (e.g. Kausel, 1974; Luco, 1976; 

Gazetas et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal., 1976, 1979). In the latter case, however, total reflection occurs only at specific 

frequency ranges (around the natural frequencies of the stratum) and leads to more 

pronounced peaks. 

For frequencies close to zero, the imaginary parts b” exhibit values smaller than those for a 

homogeneous halfspace, since total reflection phenomena, as described above, restrict the 

amount of energy that is carried away, contrary to what is happening in a homogeneous 

halfspace. As the frequency factor d increases, Rayleigh waves appear, carrying laterally part 

of the input energy and causing B” to increase more than a homogeneous halfspace theory 

would predict. The phenomenon is more distinguishable in the case of lateral vibrations, at 

least for the frequency range shown. 

For the translational modes of vibration, the two media lead to very similar average values 

of the real part of the compliance functions over the frequency range portrayed. For example 

average ijrr2: 0.15; average b,~ 0.12. However, the homogeneous halfspace (having velocity 

p = pB) is significantly stiffer against rocking vibrations than the heterogeneous halfspace. It 

can easily be confirmed that the two media would yield comparable displacement levels if they 
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had the same S wave velocity at a depth equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&B. This further confirms the concept of a 

‘shallow pressure bulb’ for the rocking motion, addressed previously with regard to static 

loading. 

It can, therefore, be concluded that the ‘effective’ depth of the soil medium is approximately 

equal to the foundation halfwidth B for the translational modes of vibration and equal to 

*B for the rotational mode. 

It is worth noting that Awojobi (1972) showed that the resonant frequency factors ((5,) 

of heavy4 circular foundation on a ‘Gibson’ halfspace are nearly the same with those predicted 

by the ‘equivalenV5 homogeneous halfspace, in case of vertical vibrations. The same equiva- 

lence seems to apply in this case. Indeed, if j@ is the mass ratio defined by 

where M = total foundation mass per unit length,- the dimensionless amplitude of vertical 

motion is obtained by 

(Richard et al., 1970). Approximating by straight horizontal lines the compliance functions in 

the frequency range O<dcO*7, i.e. assuming D,‘~0*12 and b,“=0.05, leads to maximum 

displacement at resonant factor(s), &, such that 

from which 
(l-O*12~ti~2)2+(O*05@~~2)2 = minimum . . . . . . (35) 

J 
7.1 

&21 _ . . . 
M 

. . . . . . . (36) 

Thus, as long as i@> 15, Z,,, would lie in the interval (0,0*7) for which the ‘equivalent’ homo- 

geneous halfspace exhibits very similar values of b,’ and b*“. Therefore equation (26) applies 

approximately for this medium as well. 

Vibrations on a soil stratum on rigid rock 

Figures 13(a) and (b) compare the real parts of the foundation stiffnesses as functions of the 

4 That is, with mass ratios M, larger than about 20. 
6 That is, whose shear modulus is the same as that of Gibson soil at a depth equal to the foundation radius. 
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dimensionless frequency, for a heterogeneous (b = l-5) and a homogeneous (6 = 0) stratum 

that have the same modulus as a depth equal to B, for two values of the depth ratio 

(H/B = 2 and H/B = 4). The conclusions can be summarized as follows. 

Although resonance phenomena due to total wave reflection occur in both media, significant 

differences are observed between the two sets of stiffness functions. They can be attributed to 

two factors: the frequency selectivity of the homogeneous stratum; only specific frequencies 

lead to resonance and thus the corresponding stiffness functions exhibit sharper peaks and 

steeper valleys than those of the heterogeneous stratum; and the reflection of waves before 

they reach the rock surface in the heterogeneous medium; this leads to higher resonant 

frequencies, as if the ‘effective’ thickness of the heterogeneous layer is reduced. A similar 

phenomenon has been observed during vibrations of a heterogeneous deposit triggered by 

vertically propagating S waves (Gazetas, 1979). 

CONCLUDING REMARKS 

An analytical-numerical method has been presented to study the static and dynamic behaviour 

of strip foundations on the surface of an elastic isotropic medium consisting of heterogeneous 

layers. As schematically illustrated in Fig. l(b) any soil profile consisting of horizontal layers 

with an arbitrary variation of S wave velocity with depth, can be readily handled with this 

theory. Also foundations that are infinitely stiff or infinitely flexible (‘rigid’ or ‘uniform’ 

applied pressures) and have rough or smooth contact surfaces (‘complete’ or ‘relaxed’ boundary) 

can be treated equally well. Results, however, have been presented only for the most 

interesting case of rigid, rough foundations. 

For the two characteristic types of soil profiles studied in this Paper, namely the halfspace 

and the stratum-on-rigid-base, it has been shown that the main factors influencing the 

normalized displacements of massless foundations are 

(a) the dimensionless rate of heterogeneity, 6 = bB; 

(b) the stratum-depth to foundation-halfwidth ratio, H/B, and 

(c) the frequency factor d = COB/& 

The influence of each of the above factors has been demonstrated through a number of 

parametric plots and through extensive comparisons with pertinent results for homogeneous 

multilayered soils. 

The results of these studies suggest an interesting ‘equivalence’ between a heterogeneous 

and a homogeneous medium that have the same modulus at a depth equal to the foundation 

halfwidth (for vertical and horizontal loading) or equal to l/2 the foundation halfwidth (for 

moment loading); i.e. for low frequency factors the two media yield displacements or rotations 

of about the same average level, although the fluctuations around the mean values can be quite 

different for the two media, because of differences in the occurrence of resonance phenomena. 

The importance of two other factors, namely the Poisson’s ratio v and the critical damping 

ratio A, has not been investigated in the Paper. One can approximately estimate the effects 

of their variation from relevant studies with other types of heterogeneous (e.g. Gibson, 1974) 

or layered homogeneous soils (e.g. Luco, 1976). The effect of high frequency factors also 

remains to be investigated. 

ACKNOWLEDGEMENT 

The author thanks David Kirkner for his stimulating discussions during the early stages of 

the research which culminated in this paper. 



STATIC AND DYNAMIC DISPLACEMENTS OF FOUNDATIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA175 

H/B = 2 

7b=o 

10 

._I::-i__ 
6=1.5 

5 

H/B = 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

01 I I I I 1 L I I 1 I I 

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 

Fig. 13. Swaying and rocking dynamic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstiffness functions (homogeneous or heterogeneous layer on rock: 
left hand side, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH/B = 2; right hand side, H/B = 4. Only real parts shown 

APPENDIX A: THE ELEMENTS OF THE TRANSFER MATRIX (X) IN EQUATION (16) 

Calling: (I = 1 +bz and Z&y) = Z,, where y = ha/b and k = h (equation (17b)), simplifies X,, to 

J&/G = n, Z, + n, Zf +I+ n, Zf+, 

x,,IG = 4% G - 2%/3Z,+J 

with 

with 

4 = 3b* a-1(0*75 - Zf+f*) - h2 ai 

n, = 6bha-tf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n8 = 3hs a* 

n4 = hbu-t-2h2 d 

&JG = i(ns Zf - 2nd3Zf+J 

XAG = n, Z#-a Z,+I-~J~Z,+, 

X,/G = i(ns Kf + 2n,/3Kf,3 

XdG = ns Kg + n, K,, -  n,/3K,+, 

n, = bhd(l-2f) 

n, = b* a-g(1*25-2g-gZ)-_he at 

n, = Zbha+(g+Z) 

X,, = -  ina If 

X,2 = -n# C-n8 G+l 

X, =-in8 Kf 

X, =-n, K,+ns Z,+, 
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with 

Ilg = ba-t(2.5+g) 

&l = %I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf +& 4+1 

X4 , = -ins ZD 

KU = DID Kt-na Kt+s 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X, =-ins Kg 

n10 = l?a-t(1*5 +f) 

APPENDIX B: DETERMINATION OF THE COMPLIANCE MATRIX 

I$] = ra WI 
where 

the displacement matrix 

The compliance matrix is obtained as follows: [D] = [K]-l 

where 

WI = PIT D-1 bT1 

with [f] given in (26), (26a) and 

El = w vi1 ea. . . . hn+111 

1 

[ 0 

0 

V,l = 

xi 

0 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
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Dynamic displacements of offshore structures due to low 
frequency sinusoidal loading 

I. M. SMITH* and F. MOLENKAMPi 

Two of the most important aspects of foundation 

design for cyclic loading conditions are the assess- 

ment of material degradation due to cycling (the 

fatigue problem) and of dynamic amplification of 

the foundation response (the resonance problem). 

The first of these seems hardly amenable to cal- 

culation at all, except in the form of back-analysis 

of laboratory element and model test data or of 

field observations. The second, on the other hand, 

seems ill-suited to laboratory investigation and may 

therefore be estimated by calculation. For this 

purpose a simple bilinear soil mode1 is presented and 

evaluated in comparison with a linearixed equivalent. 

The performance of the model in relation to fatigue 

predictions is also explored. 

L’evaluation de la degradation des materiaux due 
aux charges cycliques (probleme de la fatigue), 
dune part, et T&valuation de l’emplification dyna- 
mique de la response des fondations (probleme de 
la resonance), d’autre part, constituent deux des 
aspects les plus importants de la realisation de 
fondations soumis a des charges cycliques. Dans 
le premier de ces cas, toute forme de calcul semble 
pratiquement impossible, mise a part l’analyse a 
rebours de don&s d’essais de modeles et elements 
en laboratoire ou d’observations in situ. Le second 
cas, par centre, se prete ma1 aux recherches en 
laboratoire et peut done Btre CvaluC par calcul. 
C’est dans ce but quest present6 un modele de sol 
bilin6aire simple, lequel est evalue et compare a 
un equivalent linearise. La performance du modele 
par rapport aux previsions de fatigue fait Qgalement 
l’objet dune etude. 

INTRODUCTION 

In recent years, dynamic analysis of structure-foundation systems has assumed considerable 

importance in two major fields of civil engineering practice, namely in the design of structures 

to withstand earthquakes and/or ocean waves. Massive power stations have had to be sited in 

seismically active regions while oil and gas have had to be extracted from deep sea locations 

using fixed steel or concrete production structures. Some of these sites are also subject to 

seismic disturbance. 

The design problems are characterized by two main difficulties which are not encountered 

under ‘standard’ civil engineering conditions. Firstly, the loading imposed on structures by 

earthquakes or waves is alternating in character, and is applied in the form of many (hundreds 

at least) cycles. It is well known that all civil engineering materials degrade under such cyclic 

loading; metals, concrete, plastics all tend to become softer and weaker, at least for slowly 

applied cycles. However, materials with internal viscosity exhibit particularly complex 

behaviour in that they apparently grow stiffer and stronger with increased rate of loading, so 

that their overall behaviour can be an amalgamation of the two contrary trends. This is the 

case for ‘clays’ and in addition the behaviour of all soils is complicated because the material 

degradation leads to porewater pressure rises which themselves can accelerate the degradation 

process. The foregoing could be termed the ‘fatigue problem ‘. 

The second difficulty could be termed the ‘resonance problem’, and depends on the fre- 

quency of the cyclic disturbing forces. Over a certain range of forcing frequencies relative to 

the natural frequency of the structure-foundation system, inertial amplification of the response 
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