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Abstract 

Error propagation nets have been shown to be able to learn a variety of tasks in 

which a static input pattern is mapped outo a static output pattern. This paper 

presents a generalisation of these nets to deal with time varying, or dynamic 

patterns, and three possible architectures are explored. As an example, dynamic 

nets are applied to tbe problem of speech coding, in which a time sequence of 

speech data are coded by one net and decoded by another. The use of dynamic 

nets gives a better signal to noise ratio than that achieved using static nets. 

1. INTRODUCTION 

This paper is based upon the use of the error propagation algorithm of Rumelbart, Hinton 

and Williams l to train a connectionist net. The net is defined as a set of units, each witb an 

activation, and weights between units which determine the activations. The algorithm uses a 

gradient descent technique to calculate the direction by which each weight should be changed 

in order to minimise the summed squared difference between the desired output and the actual 

output. Using this algorithm it is believed that a net can be trained to make an arbitrary 

non-linear mapping of the input units onto the output units if given enough intermediate 

units. This 'static' net can be used as part of a larger system with more complex behaviour. 

The static net has no memory for past inputs, but many problems require the context of 

the input in order to c.ompute the answer. An extension to the static net is developed, the 

'dynamic' net, which feeds back a section of the output to the input, so creating some internal 

storage for context, and allowing a far greater class of problems to be learned. Previously this 

method of training time dependence into uets has suffered from a computational requirement 

which increases linearly with the time span of the desired context. The three architectures 

for dynamic uets presented here overcome this difficulty. 

To illustrate the power of these networks a general coder is developed and applied to the 

problem of speech coding. The non-liuear solution found by training a dynamic net coder is 

compared with an established linear solution, and found to have an increased performance as 

measured by the signal to noise ratio . 

2. STATIC ERROR PROPAGATION NETS 

A static Ret is defined by a set of units and links between the units. Denoting 0i as the value 

of the ith unit, and wi,l as the weight of the link between Oi and OJ, we may divide up the 

units into input units, hidden units and output units. If we assign 00 to a. constant to form a 
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bias, the input units run from 01 up to on",\., followed by the hidden units to onh • .t and then 

the output units to On.".' The values of the input units are defined by the problem and the 

values of the remaining units are defined by: 

i-I 

neti ~1LJ' '0' ',1 J 
(2.1) 

j=O 

°i !(net;) (2.2) 

where !( x) is any continuous monotonic non-linear function and is known as the activation 

function. The function used the application is: 

!(x) 
2 

----1 
1 + e- z", 

(2 .3) 

These equations define a net which has the maximum number of interconnections. This 

arrangement is commonly restricted to a layered structure in which units are only connected 

to the immediately preceding layer . The architecture of these nets is specified by the number 

of input, output and hidden units. Diagrammatically the static net is transformation of an 

input 'U, onto the output y, as in figure 1. 

static 

net 

figure 1 

The net is trained by using a gradient descent algorithm which mlDlsmises an energy 

term, E, defined as the summed squared error between the actual outputs, ai, and the target 

outputs, t i . The algorithm also defines an error signal, Oi, for each unit: 

1 
"lint 

E ~ (ti -- od 2 (2.4) 
2 

i=nlw l+1 

[Ii !' (netd(t i - 0;) nhid < i ::; nout (2.5 ) 

" lint 

.f' (net;) ~ OiWj,i ninp < i ::; nhid (2 .6) 

j=i+l 

where f' (x) is the derivative of !( x). The error signal and the adivations of the units define 

the change in each weight, D. Wi,j' 

(2.7) 

where '1 is a constant of proportionality which determines the learning rate. The above 

equations define the error signal, 0;, for the input units as well as for the hidden units. Thus 

any number of static nets can be connected together, the values of Oi being passed from input 

units of one net to output units of the preceding net. It is this ability of error propagation 

nets to be 'glued' together in this way that enables the construction of dynamic nets. 

3. DYNAMIC ERROR PROPAGATION NETS 

The essential quality of the dynamic net is is that its behaviour is determined both by the 

external input to the net, and also by its own internal state. This state is represented by the 
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activation of a group of units. These units form part of the output of a st.atic net and also 

part of the input to another copy of the same static net in the next time period. Thus the 

state units link multiple copies of static nets over time to form a dynamk net . 

3.1. DEVELOPMENT FROM LINEAR CONTROL THEORY 

The analogy of a dynamic net in linear systems2 may be stated as: 

(3.1.1) 

(3.1.2) 

where up is the input vector, zp the state vector, and Yp the output vector at the integer time 

p. A, Band C are matrices. 

The structure of the linear systems solution may be implemented as a non-linear dynamic 

net by substituting the matrices A, Band C by statk nets, represented by the non-linear 

functions A[.]' B[.] and C[.]. The summation operation of Azp and Bup could be achieved 

using a net with one node for each element in z and u and with unity weights from the two 

inputs to the identity activation function f( x) = z. Alternatively this net can be incorporated 

into the A[.] net giving the architecture of figure 2. 

B [.] y(p+l) 

dynamic t---of 

A[.] e[.] y(p+l) 

net 

x(p+l) 

Time Time 

Delay Delay 

figure 2 figure 3 

The three networks may be combined into one, as in figure 3. Simplicity of architecture 

is not just an aesthetic consideration. If three nets are used then each one must have enough 

computational power for its part of the task, combining the nets means that only the combined 

power must be sufficient and it allows common computations can be shared. 

The error signal for thf' output Yp+l, can be calculated by comparison with the desired 

output. However, the error signal for thf' state units, x P ' is only given by the net at time p+l, 

which is not known at time p. Thus it is impossible to use a single backward pass to train 

this net . It is this difficulty which introduces the variation in the architectures of dynamic 

nets. 

3.2. THE FINITE INPUT DURATION (FID) DYNAMIC NET 

If the output of a dynamic net, YP' is df'pendf'nt on a finite number of previous inputs, up_p 

to up, or if this assumption is a good approximation, then it is possible to formulate the 
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learning algorithm by expansion of the dynamk net for a finite time, as in figure 4. This 

formulation is simlar to a restricted version of the recurrent net of Rumelhart, Hinton and 

Williams. 1 

dynamic 

net 

(p-2) 

dynamic 

net 

(p-l) 

figure 4 

yep) 

dynamic 

net 

(p) 

x(p+l) 

y(p+l) 

Consider only the component of the error signal in past instantiations of the nets which 

is the result of the error signal at time t. The errot signal for YP is calculated from the target 

output and the ('rror signal for xr is zero. This combined error signal is propagated back 

though the dynamic net at p to yield the error signals for up and xp' Similarly these error 

signals can then be propagated back through the net at t - P, and so on for all relevant inputs. 

The summed error signal is then used to change the weights as for a static net. 

Formalising the FID dynamic net for a general time q, q ~ p: 

n, 

°q,i 

tq,i 

6'1,' 

Wi,j 

~Wq,i,i 

~wi,i 

is the number of state units 

is the output value of unit i at time q 

is the target value of unit i at time q 

is the error value of unit i at time q 

is the weight between 0; and OJ 

is the weight change for this iteration at time q 

is the total weight change for this iteration 

These values are calculated in the same way as in a static net, 

netq,i 

i-1 

L Wi,jOq,j 

j=O 

f(net q,.) 

f' (netq,d( tq,i - 0'1,;) 

nullt 

!'(n('tq ,;) L 6q,jWj,i 

j-=i+l 

nhid + n, < i :S nout 

nhid < i :S nhid + n, 

(3.2.1) 

(3 .2.2) 

(3 .2.3) 

(3.2.4) 

(3 .2.5) 

(3.2.6) 

and the total weight change is given by the summation of the partial weight changes for all 
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previous times. 

p 

L Llu'q,i,j 

q=p-P 

p 

L 7]6q,iOq,j 

q=p-P 

(3.2.7) 

(3.2.8) 

Thus, it is possible to train a dynamic net to incorporate the information from any time 

period of finite length, and so l~arn any function which has a finite impulse response.· 

In some situations the approximation to a finite length may not be valid, or the storage 

and computational requirements of such a net may not be feasible. In such situations another 

approach is possible, the infinite input duration dynamic net . 

3.3. THE INFINITE INPUT DURATION (lID) DYNAMIC NET 

Although the forward pass of the FID net of the previous section is a non-linear process, th .. 

backward pass computes the efred of small variations on the forward pass, and is a linear 

process. Thus the recursive learning procedure described in the previous section may be 

compressed into a single operation. 

Given the target values for the output of the net at time p, equations (3.2.3) and (3.2.4) 

define valu~s of 6p,i at the outputs. If we denote this set of 6p,i by Dp then equation (3.2.5) 

states that any 6p ,i in the net at time p is simply a linear transformation o( Dp. Writing the 

transformation matrix as S: 

(3.3.1) 

In particular the set of 6p ,i which is to be fed back into the network at time p - 1 is also 

a linear transformation of Dp 

(3.3.2) 

or for an arbitrary time q: 

(3.3.3) 

so substituting equations (3.3.1) and (3.3.3) into equation (3.2.8): 

p 

( IT T,) D,o"j LlU'i,j 7]L Sq,i (3.3.4) 

q=-oo 7=q+l 

7]Mp,i,i Dp (3.3.5) 

where: 

p 

( IT T}"j M . , L Sq,i (3.3.6) p,',) 

q=-oo "=q+l 

• This is a restriction on the class of functions which can be learned, the output will always be affected 

in some way by all previous inputs giving an infinite impulse response performance. 
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and note that Mp,i,i can be written in terms of Mp-1,i,i : 

Sp,i ( IT T,.) 0p,i + (I: Sq,i 
,.=p+l q=-oo 

(3.3.7) M ., 
P,- ,J 

Sp,iop,i + Mp-1,i,iTp (3.3 .8) 

Hence we can calculate the weight changes for an infinite recursion using only the finite 

matrix M, 

3.3. THE STATE COMPRESSION DYNAMIC NET 

The previous architectures for dynamic nets rely on the propagation of the error signal hack 

ill time to define the format of the information in the state units. All alternative approach 

is to use another error propagation net to define the format of the state units. The overall 

architecture is given in figure 5. 

1-----\1 Tranlllatort---""'" 

Bncoder x(p+1) 

net 

Decoder 

net 

figure 5 

y(p+1) 

net 

The encoder net is trained to code the current input and current state onto the next state, 

while the decoder net is trained to do the reverse operation. The tran81ator net code8 the 

next state onto the desired output. This encoding/decoding attempts to represent the current 

input and the current state in the next state, and by the recursion, it will try to represent all 

previous inputs. Feeding errors back from the translator directs this coding of past inputs to 

those which are useful in forming the output. 

3.4. COMPARISON OF DYNAMIC NET ARCHITECTURES 

III comparing the three architectures for dynamic nets, it is important to consider the compu­

tational and memory requirements, and how these requirements scale with increasing context. 

To train an FID net the net must store the past activations of the all the units within 

the time span of thel'necessary context, Using this minimal storage, the computational load 

scales proportiona.lly to the time span considered, as for every new input/output pair the 

net must propagate an error signal back though all the past nets. However, if more sets 

of past activations are stored in a buffer, then it is possible to wait until this buffer is full 

before computing the weight changes. As the buffer size increases the computational load in 
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calculating the weight changes tends to that of a single backward pass through the units, and 

so becomes independent of the amount of coutext. 

The largest matrix required to compute the 110 net is M, which requires a factor of the 

number of outputs of the net more storage than the weight matrix. This must be updated 

on each iteration, a computational requirement larger than that of the FlO net for smaJl 

problems3 . However, if this architecture were implemented on a paraJlel machine it would be 

possible to store the matrix M in a distributed form over the processors, and locally calculate 

the weight changes. Thus, whilst the FID net requires the error signal to be propagated back 

in time in a strictly sequential manner, the 110 net may be implemented in paraJld, with 

possible advantages on parallel machines. 

The state compression net has memory and computational requirements independent of 

the amount of context. This is achieved at the expense of storing recent information in the 

state units whether it is required to compute the output or not . This results in an increased 

computational and memory load over the more efficient FID net when implemented with a 

buffer for past outputs. However, the exclusion of external storage during training gives this 

architecture more biological plausibili ty, constrained of course by the plausibility of the error 

propagation algorithm itself. 

With these considerations in mind, the FlO net was chosen to investigate a 'real world' 

problem, that of the coding of the speech waveform. 

4. APPLICATION TO SPEECH CODING 

The problem of speech coding is one of finding a suitable model to remove redundancy and 

hence reduce the data rate of the speech. The Boltzmann machine learning algorithm has 

already been extended to deal to the dynamic case and applied to speech recognition4. How­

ever, previous use of error propagation nets for speech processing has mainly been restricted to 

explicit presentation of the context 5,6 or explicit feeding back the output units to the input 7,8, 

with some work done in usillg units with feedback links to themselves9 . In a similar area, 

static error propagation nets have been used to perform image coding as well as cOllventional 

techniques1o . 

4.1. THE ARCHITECTURE OF A GENERAL CODER 

The coding principle used in this section is not restricted to c.oding speech data. The general 

problem is one of encoding the present input using past input context to form the transmitted 

signal, and decoding this signal using the context ofthe coded signals to regenerate the original 

input. Previous sections have shown that dynamic nets are able to represent context, so two 

dynamic, nets in series form the architecture of the coder, as in figure 6. 

This architecture may be specified by the number of input, state, hidden and transmission 

units. There are as many output units as input units and, in this application, both the 

transmitter and receiver have the same number of state and hidden units. 

The input is combined with the internal state of the transmitter to form the coded signal, 

and then decoded by the receiver using its internal state. Training of the net involves the 

comparison of the input and output to form the error signal, which is thell propagated back 

through past instantiations of the receiver and transmitter in the same way as a for a FID 

dynamic net. 

It is useful to introduce noise into the coded signal during the training to reduce the 

information capacity of the transmission line. This forces the dynamic 11ets to incorporate 

time information, without this constraint both nets can learn a simple transformation without 

any time dependence. The noise can be used to simulate quantisation of the coded signal so 
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quantifying the transmission rate. Unfortunately, a straight implementation of quantisation 

violates tbe requirement of the activation function to be continuous, which is necessary to 

train the net . Instead quantisation to n levels may be simulated by adding a random value 

distributed uniformly in the range + 1/ n to -1 / n to each of the channels in the coded signal. 

4.2. TRAINING OF THE SPEECH CODER 

The chosen problem was to present a sinJZ;le sample of digitised speech to the input, code to 

a single value quantised to fifteen levels, and then to reconstruct tile original speech at the 

output . Fifteen levels was chosen as the point where there is a marked loss in the intelligibility 

of the speech, so implementation of these coding schemes gives an audible improvement. Two 

version of the coder net were implemented, both nets had eight hidden units, with no state 

units for the static time independent case and four state units for the dynamic time dependent 

case. 

The data for this problem was 40 seconds of speech from a single male speaker, digit,ised 

to 12 bits at 10kHz and recorded in a laboratory environment. The speech was divided into 

two halves, the first was used for training and the second for testing. 

The static and the dynamic versions of the architecture were trained on about 20 passes 

through the training data. After training the weights were frozen and the inclusion of random 

noise was replaced by true quantisation of the coded representation. A further pass was then 

made through the test data to yield the performance measurements. 

The adaptive training algorithm of Chan 11 was used to dynamically alter the learning 

rates during training. Previously these machines were trained with fixed learning rates and 

weight update after every sample3 , and the use of the adaptive t.raining algorithm has been 

found to result in a substantially deeper energy minima. Weights were updated after every 

1000 samples, that is about 200 times in one pass of the training data. 

4.3. COMPARISON OF PERFORMANCE 

The performance of a coding schemes can be measured by defining the noise energy as half the 

summed squared difference between the actual output and the desired output. This energy 

is the quantity minimised by the error propagation algorithm. The lower the noise energy in 

relation to the energy of the signal, the higher the performance. 

Three non-connectionist coding schemes were implemented for comparison with the static 
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and dynamic net coders. In the first the signal is linearly quantised within the dynamic range 

of the original signal. In the second the quantiser is restricted to operate over a reduced 

dynamic range, with values outside that range thresholded to the maximuJn and minimum 

outputs of the quantiser. The thresholds of the quantiser were chosen to optimise the signal 

to noise ratio. The third scheme used the technique of Differential Pulse Code Modulation 

(DPCM)12 which involves a linear filter to predict the speech waveform, and the transmitted 

signal is the difference between the real signal and the predicted signal. Another linear filter 

reconstructs the original signal from the difference signal at the receiver. The filter order of 

the DPCM coder was chosen to be the same as the number of state units in the dynamic net 

coder, thus both coders can store the same amount of context enabling a comparison with 

this established technique. 

The resulting noise energy when the signal energy was normalised to unity, and the cor­

responding signal to noise ratio are given in table 1 for the five coding techniques. 

coding method normalised signal to noise 

nOise energy ratio in dB 

linear, original thresholds 0.071 11.5 

linear, optimum thresholds 0.041 13.9 

static net 0.049 13.1 

DPCM, optimum thresholds 0.037 14.3 

dynamic net 0.028 15.5 

table 1 

The static net may be compared with the two forms of the linear quantiser. Firstly note 

that a considerable improvemeut in the signal to noise ratio may be achieved by reducing the 

thresholds of the qllantiser from the extremes of the input. This improvement is achieved 

because the distribution of samples in the input is concentrated around the mean value, with 

very few values near the extremes. Thus many samples are represented with greater accuracy 

at the expense of a few which are thresholded. The static net has a poorer performance than 

the linear quantiser with optimum thresholds. The form of the linear quantiser solution is 

within the class of problems which the static net can represent . It's failure to do so can be 

attributed to finding a local minima, a plateau in weight space, or corruption of the true 

steepest descent direction by noise introduced by updating the weights more than once per 

pass through the training data. 

The dynamic net may be compared with the DPCM coding. The output from both these 

coders is no longer constrained to discrete signal levels and the resulting noise energy is lower 

than all the previous examples. The dynamic net has a significantly lower noise energy than 

any other coding scheme, although, from the static net example, this is unlikely to be an 

optimal solution. The dynamic net achieves a lower noise energy than the DPCM coder by 

virtue of the non-linear processing at each unit, and the flexibility of data storage in the state 

units. 

As expected from the measured noise energies, there is an improvement in signal quality 

and intelligibility from the linear quantised speech through to the DCPM and dynamic net 

quantised speech. 

5. CONCLUSION 

This report has developed three architectures for dynamic nets. Each architecture can be 

formulated in a way where the computational requirement is independent of the degree of 

context necessary to learn the solution. The FID architecture appears most suitable for 
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implementation on a sf'rial processor, t.hf' nn archit.f'd,11fe has possihle a(lvant,ages for im­

plementation on parallel processors, and the state compression net has a higher degree of 

biological plausibility. 

Two FID dynamic nets have been coupled together to form a coder, and this has been 

applied to speech coding. Although the dynamic net coder is unlikely to have learned the 

optimum coding strategy, it does delUonstrate that dynamic nets can be used to 8.Chieve an 

improved performance in a real world task over an estaBlished conventional technique. 
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