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Abstract

The dynamic response of electro-mechanically actuated

micro structures is governed by nonlinear effects which

directly influence their performance. To date, most work

in the field of micro/nano systems is done experimentally

and documented theoretical research consists of nonlinear

lumped-mass models as well as continuum mechanics ap-

proaches. Existing and codified computational tools for

micro-electromechanical systems (MEMS) more and more

penetrate the market of designers and fabrication of such

devices. The present work is the experimental part of a

bench-mark study of a selected microbeam structure inves-

tigated with aforementioned analytical and computational

techniques and compared to experiments performed with

a Polytec MSA400 analyzer. The emphasis of this bench-

mark study is put on the nonlinear dynamic behavior with

respect to qualitative and quantitative explanations of the

electro-mechanical actuation and damping mechanisms.

1 Introduction

The broad field of research on micro- and nano-

electromechanical systems (MEMS/NEMS) is addressed

by various approaches. Foremost among the methods

used and developed for MEMS/NEMS is the finite-element

method/analysis (FEM/FEA) [2, 17]. Applications of

MEMS can be accelerated by implementation of computer

aided design (CAD) tools, optimization and parametric

studies for which, at least in the static case, finite-element

models are ideally suited since they are able to capture the

complexity of such intentions. Prior to the FEA and also

to reduced-order model analysis in general, is an approxi-

mation technique based on an initial boundary value prob-

lem formulation which codifies experimental observations.

The design of MEMS devices demands a careful and de-

tailed modeling, while special attention must be given to

the coupled fields present in such devices (electric, mag-

netic, elastic, thermal, etc.), like the damping mechanisms

and accompanying boundary conditions of the structure.

Lumped-mass approaches have shown to be insufficient to

describe the observed behavior quantitatively [6]. Thus,

this work focuses on experimental observations of a micro-

cantilever (see Fig. 1) that show the evidence of the non-

linear behavior. The present work serves as systematic

guideline for deriving a mathematical model which is able

to codify the nonlinear behavior and allows for quantita-
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Figure 1: Definition sketch of the micro-cantilever system.

tive and qualitative predictions of the system behavior. At

this point, we would like to refer to another work of our

group which will be published in short. This work will be

the second part of the aforementioned bench-mark study

and evaluates proposed theoretical approaches with respect

to experimental observations shown throughout this work.

The principal aim of the bench-mark study is to be able

to contribute to some of the remaining questions related

to MEMS modeling, including the full understanding of

(squeeze-film) damping and actuation mechanisms in such

systems.

2 Experimental setup

Experimental setups are designed by the third-party con-

tractor Institut d’Electronique Fondamentale (IEF), a re-

search centre in Paris, France, and fabricated by the sub-

contractor of IEF, MEMSCAP, within the framework of

the project “Action de Recherche Concertée”. The Poly-

MUMPS technology has been used for fabricating the

MEMS devices. The design testing and earlier static ex-

periments have been performed by IEF, of which selective

results are presented in this work. The fabrication process

itself can be found in literature [16, 3]. The present work

considers a micro cantilever as shown in Fig. 1. The de-

sign and fabrication of this micro structure has been done

within the framework of the aforementioned project “Ac-

tion de Recherche Concertée”. Details on fabrication for

Figure 2: Magnified view of the micro cantilever

(175µm×30µm×1.9µm).
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this micro cantilever as well as design specifications and

tolerances are documented in [11]. The cantilever’s dimen-

sions are 175µm×30µm×1.9µm (L×B×H). Fig. 2 shows

the micro structure while being placed under the micro-

scope. Note, that the bottom electrode, unlike shown in

the sketch in Fig. 1 is implemented in full length with the

cantilever structure.

The micro structure cantilever is chosen, because of

its structural simplicity, and the absence of mid-plane-

stretching and prestress physics, which significantly mat-

ters when it comes to identifying parameters and tracking

after the origin of mismatching characteristics in the evalu-

ation analysis later on.

2.1 Identification of parameters

The material properties and dimensions of the micro can-

tilever are taken from the specification of the fabrication

[11]. However, the true dimensions of the structure are ob-

tained from a performed profilometry. Fig. 3 shows, rep-

resentatively, the measurements of a cantilever of length

100µm (specification value) which is of the same produc-

tion line as the considered cantilever of length 175µm.

According to the profilometry of this cantilever the real gap
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Figure 3: Profilometry of the cantilever with the specifi-

cation dimensions 100µm×30µm×1.9µm; a) Z −X plane

b) 3D view; stars in a) denote measured points, lines mark

distinct Z-levels.

and thickness are identified as g = 2µm and H = 1.9µm.

Profilometry of six additional cantilevers (of the same fab-

rication charge) confirm such values (by two digits after

the comma). The specification tolerances for the gap and

thickness are ±0.25 µm and ±0.15 µm, respectively [11].

The length and width of the structure fall into similar tol-

erances as the thickness and gap. However, they are less

critical with respect to the influence of the static and dy-

namic behavior.

2.2 Experimental observations

2.2.1 Static investigations

The experimental static analysis consists of quasistatic

measurements of the deflection while the input voltage is

increased. The POLYTEC MSA400 analyzer in our lab-

oratory is equipped with the velocity encoder. Thus, the

static measurements are replaced by corresponding quasi-

static experiments, i.e. the DC voltage is set to zero and the

AC voltage is applied at a much lower frequency (e.g. 2

kHz) than the first natural frequency of the system. In the

linear case (for small deflections) the amplitude response

at twice the excitation frequency and for the root-mean-

square value of the input voltage is then equivalent to the

static measurement. The MSA400 analyzer in our labo-

ratory allows for a maximum total input voltage of 10 V,

i.e. quasistatic measurements up to 10/
√

2 V=7.07 V are

performed. Fig. 4 depicts the measured maximum deflec-
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Figure 4: Measured static equilibrium characteristics of the

cantilever.

tions of the cantilever with increasing DC-voltages. Solid

diamonds represent static measurements performed by IEF

[11]. The quasi-static measurements performed in our lab-

oratory (empty diamonds), however, must be handled with

care. While for the linear range, both characteristics stand

in good agreement, for higher DC voltages (resulting in

larger beam deflections) the curves diverge distinctively.

This difference matters increasingly towards the structure’s

instability, known as pull-in point [18].
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2.2.2 Dynamic investigations

Dynamical investigations of the electromechanically cou-

pled cantilever system include several frequency-response

and phase plots. Fig. 5 portraits three frequency responses

(and corresponding phase plots) of one and the same can-

tilever at room temperature and under atmospheric pres-

sure. The excitation is a white noise signal having applied
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Figure 5: Three frequency responses of one cantilever un-

der similar surrounding and actuation conditions, i.e. at-

mospheric pressure, room temperature, input signal: white

noise (offset voltage 5 V, random p-p input voltage 5 V), a)

magnitude response of the velocity [mm/s], b) phase shift

[◦].

an offset and a random signal of 5 V, respectively. Fig. 6

shows the evenly distributed signal in the frequency domain

over a frequency band of 500 kHz. Note, that the average

value of the distributed input voltage per Hertz is approx-

imately 28 mV. The purpose of the three measurements,

of one and the same experiment in Fig. 5, is to show the

magnitude of divergency within repeating performances.

According to the deviation plot in Fig. 7, the amplitudes

vary the most in and near resonances. Furthermore, we

observe that repetitions of such measurements in air could

definitely show a deviation of amplitudes of ≈ 4 %, while a
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Figure 6: Input signal (white noise) depicted in the fre-

quency domain, offset voltage 5 V, noise p-p signal 5 V,

frequency band 500 kHz.
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Figure 7: Standard deviation obtained from the three mean-

value splines in Fig. 5a

shifting of natural frequencies is not noticed. However, ex-

perimental results for higher frequencies are handled with

care according to the bad coherence function in this region

(see Fig. 8).

In the following we show the dynamical behavior of

the same cantilever in vacuum for several air pressures

and noise input voltages. The nonlinear behavior of such

MEMS, as frequently reported in literature [20, 10], is

also observed in the considered cantilever of this work.

Fig. 9 portraits the frequency responses, and accordingly

the phase plots, for three different noise p-p input voltages,

namely 1 V, 3 V, 5 V. (Notice the commonly used scal-

ing of the vertical axis in order to track nonlinear phenom-

ena.) The hardening behavior of the cantilever becomes

more evident with increasing input voltages. Furthermore,

also the jump phenomena is recognized. Unfortunately, a

sweep-up/down characteristic of this cantilever cannot be

presented alongside. (During one of the dynamic measure-

ments the cantilever pulled into the bottom electrode and

broke.)

The dynamical behavior of the cantilever under various

pressure levels is considered next. Fig. 10 portraits the

frequency responses (and phase plots) for three different
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Figure 8: Coherence of one of the measurements (black

line) shown in Fig. 5

pressures as well as the response in air. According to the

responses shown in Fig. 10a the first and second eigenfre-

quency is identified to be at f1 = 73.1 kHz and f2 = 465.8
kHz, respectively. We observe additional peaks at lower

amplitudes (see zoom-in plot Fig. 10b), which appear to

be integers of the peak of the first frequency. A sim-

ple linear one-degree-of-freedom approach, while having

matched the first natural frequency by tuning the YOUNG’s

modulus to E = 123.8 MPa, suggests the second frequency

to be at f2 = 457.8 kHz (1DOF). Compared to the exper-

imental value of f2 = 465.8 kHz(exp.) the linear estimate

mismatches the experimental value by less than two per-

cent, which needs to be evaluated. Note, that, also in vac-

uum, repeated measurements may show deviations in am-

plitudes while deviations of frequencies are not recognized

(c.f. Fig. 10). The responses at the the first natural fre-

quency (Fig. 10a) shows a fairly sharp peak which could

lead to the wrong conclusion, that the behavior appears to

be linear. Fig. 11 depicts a zoom-in of the response curve

in (Fig. 10a) at the first natural frequency. The nonlinear

behavior, depicted by the tendency of the hardening behav-

ior in Fig. 11, is confirmed by looking at the coherence

function at this frequency range, Fig. 12. While in the lin-

ear and an ideal averaging case of sampling numbers going

to infinity the coherence function is one, the poor coher-

ence function shown here is but another indicator of the

existence of a nonlinear behavior of the micro-cantilever

system. (All considered experiments throughout this man-

uscript have been sampled with N = 50.)

3 Concluding remarks

The presented work shows nonlinear phenomena in all

measurements, static as well as dynamic. Uncertainties,

which relate to repetitions of experiments, are within four

percent for amplitude deviations. No deviations of fre-

quency shifting are noticed, neither in air nor in vacuum.

Based on the experimental observations, presented in this
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Figure 9: Frequency responses of the micro-cantilever at

a pressure of 2.4 · 10−4 mbar and room temperature, input

signal: white noise (offset voltage 5 V), a) magnitude re-

sponses of the velocity [mm/s], b) phase shifts [◦].

work, we propose to derive a consistent nonlinear contin-

uum model in support with a computational finite-element

model (using the in-house made OOFELIE solver), which

is able to predict the dynamic behavior of the considered

cantilever system in quality and quantity within the bounds

of remaining fabrication uncertainties. The resulting sys-

tematic bench-mark study is proposed to serve as a guide-

line for design and the modeling of MEMS in general (but

foremost for micro-structures which are having a similar

geometric complexity).
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Figure 10: Frequency responses of the micro-cantilever at

different pressure levels and room temperature, input sig-

nal: white noise (offset voltage 5 V, noise p-p 5 V), a) mag-

nitude responses of the velocity [mm/s], b) zoom-in of a),

c) phase shifts [◦].
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Figure 11: Zoom-in plot of Fig. 10a.
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Figure 12: Coherence of the response in Fig. 11 for the air

pressure of 2.4 ·10−4 mbar

6


