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Static and dynamic lateral deflexion of piles in non-homogeneous 

soil stratum 

R. KRISHNAN*. G. GAZETAS* and A. VELEZ* 

The Paper presents the results of a systematic parametric 

investigation of the static and dynamic response of single 

free-head piles embedded in a soil stratum, the modulus 

of which increases linearly with depth. The study is 

conducted by means of a dynamic finite-element 

formulation which accounts for the three-dimensionality 

of soil deformation while properly reproducing the radia- 

tion damping characteristics of the system. The soil is 

modelled as a linear hysteretic continuum and the excita- 

tion consists of a sinusoidally time-varying horizontal 

force or moment, applied at the pile head. Comprehen- 

sive plots of the results are presented in non-dimensional 

form, for a wide range of the most significant dimension- 

less groups of problem parameters. For the response of 

flexible piles, in particular, simple algebraic expressions 

are developed in terms of the ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,/E,, of the pile and 

soil moduli. These expressions, being valid for several 

values of Poisson’s ratios of the soil, compare favourably 

with results from previous studies and are expected to be 

useful in practical design calculations. 

Cet article donne les rbsultats de recherches para- 

metriques systematiques sur la riponse statique et 

dynamique des pieux libres en t&te encastres dans une 

couche de sol dont le module s’accroit lineairement avec 

la profondeur. L’ttude est basee sur une formulation 

d’eltments finis dynamiques qui tient compte de la nature 

tridimensionelle de la deformation du sol, en meme 

temps qu’elle reproduit de facon correcte les caracteris- 

tiques d’amortissement du systeme. Le sol est modehst 

comme un continuum avec hysttresise lintaire et 

l’excitation consiste en une force horizontale qui varie de 

facon sinusoidale dans le temps appliquie en tete du pieu. 

Les rtsultats sont traces de man&e comprehensive sous 

une forme non-dimensionnelle pour une grande variete 

des groupes les plus importants des paramttres sans 

dimensions caracterisant le probleme. Plus particuliere- 

ment pour la reponse des pieux flexibles des expressions 

simples algtbriques sont present&es en fonction du 

rapport EJE, des modules du pieu et du sol. Ces 

expressions, qui sont valables pour plusieurs valeurs du 

coefficient de Poisson pour le sol sont superieures a celles 

fournies par les etudes precedentes, et on s’attend a ce 

qu’elles soient utiles pour les calculs pratiques des 

projects de fondations. 

Discussion on this Paper closes on 1 December 1983. 

For further details see inside back cover. 

* Rensselaer Polytechnic Institute, Troy, New York. 

INTRODUCTION 

Designing pile foundations to resist lateral loads, 

such as those.arising from wind action, earth or 

water pressures, ocean waves, machines and earth- 

quakes, primarily requires limiting the maximum 

pile deflexion to small values, acceptable for the 

safe operation of the superstructure. By contrast, 

ultimate lateral capacity is rather rarely the basis 

of design criteria for pile foundations. Con- 

sequently, careful engineering analysis of lateral 

pile deformations under the anticipated static or 

dynamic working loads is a crucial step to a 

satisfactory foundation design. 

Some years ago, the design of piles against static 

lateral loads was based exclusively on empirical 

procedure developed from the results of full-scale 

tests. In more recent years, however, great 

engineering interest in the subject has led to the 

development of theoretical and semi-theoretical 

approaches for predicting static lateral deflexions 

of piles. One may broadly classify these 

approaches into three categories 

(a) The ‘beam on Winkler-foundation’ approach 

which ignores the continuous nature of soil 

and simulates its lateral resistance against the 

pile through a set of independent, linear or 

non-linear, distributed ‘springs’ (Matlock & 

Reese, 1960; Matlock, 1970; and many others). 

(b) The elastic continuum-type formulations 

which involve integration (direct or through 

boundary-element type discretizations) of the 

Mindlin (1936) equations for displacements 

due to a subsurface point load acting within a 

halfspace (Poulos, 1971a, 1971b; Banerjee & 

Davies, 1978). 

(c) The finite-element formulations which invari- 

ably discretize both the pile and the surround- 

ing soil into axisymmetric elements and 

rigorously enforce the boundary conditions at 

the pileesoil interface (Wittke, 1974; Randolph, 

1981; Kuhlemeyer, 1979). 

In addition to a number of formulations and 

computer programs which have been developed, 

numerous parametric studies have been published 

and solutions are now available in the form of non- 

dimensional graphs. From these graphs one can 

readily estimate the deflexion of end-bearing or 
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NOTATION 

a, dimensionless frequency factor 

(= wdlv,) 

d 

EP 
E 

frequency factor corresponding 

to the nth natural frequency of 

the soil stratum in vertically 

propagating shear waves 

pile diameter 

&f”(Z), hl&)> 
f-JHM(Z)> hihd4 

Young’s modulus of pile 

Young’s modulus of soil 

(= &z/d) 

ES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f 
Gs, v, 

Young’s modulus of soil at depth 

z=d 

frequency of excitation (Hz) 

shear modulus and shear wave 

velocity of soil at depth z = d; 

v, = J(G,Ip,) 
H 

i 

l"H,lHM 

= h&m 

thickness of the soil stratum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J-1 
w 

imaginary parts of the nor- 

malized displacement factors 

U”tl, Uhl”, U,, 
pile length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPr, 
w 

P, M 

effective length of pile under 

static loading conditions 

effective length of pile under dyn- 

amic loading conditions 

horizontal force and moment 

applied at the pile head 

t 

44 

real parts of the normalized dis- The subscript or superscript zero signifies 

placement factors Unn, Un,, U,, steady-state amplitude of the respective variable. 

time The bar over a symbol indicates a quantity of a 

lateral deflexion of the pile, func- statically equivalent homogeneous deposit. 

tion of depth z 

normalized displacement factors 

relating pile-head motion to 

applied force and moment 

(equation (5)) 

displacement factors relating pile 

motion at a depth z to applied 

force and moment at the top 

depth below the ground surface 

depths used for determining 

moduli of statically equivalent 

homogeneous deposits 

hysteretic damping ratio of soil 

wavelength of shear waves cor- 

responding to a depth z = d 

(4 = Y/f) 

Poisson’s ratio of soil 

rotation of the pile, function of 

depth z (= du(z)/dz) 

mass density of soil and pile 

circular frequency of vibration in 

radjs 

= 27rf, is the fundamental 

natural frequency of the soil de- 

posit subjected to vertically 

propagating shear waves 

phase angle 

floating piles of various flexural rigidities and horizontal plane-strain conditions (Novak, 

lengths, embedded in deep or shallow deposits and Nogami & Aboul-Ella, 1978; Novak & Aboul- 

subjected to various head restraints. Comprehen- Ella, 1978; Liou & Penzien, 1977; Kagawa & 

sive collections of available solutions are given by Kraft, 1980; Dobry, Vicente, O’Rourke & 

Poulos & Davis (1980). Roesset, 1982). 

In the last few years, a significant amount of 

research has focused on understanding the funda- 

mental characteristics of the dynamic lateral load- 

deflexion relationships of piles. The dynamic 

studies have been primarily motivated by the need 

to design pile-supported structures against earth- 

quakes and to safely install offshore oil platforms 

in such areas as the North Sea, the Gulfs of Alaska 

and Mexico, and the sea off southern California. 

The developed dynamic formulations may also 

be categorized in three broad groups which to 

some extent correspond to the aforementioned 

three approaches to the static problem. 

(b) The analytical elastic continuum-type formula- 

tions which enforce the boundary conditions at 

the soil-pile interface by expanding the contact 

pressure distribution into a series, in terms of 

the natural modes of vibration of the deposit 

(Tajimi, 1969; Nogami & Novak, 1977; 

Kagawa & Kraft, 1981; Harada, Kubo & 

Katayama, 1981). 

(a) The ‘dynamic Winkler-foundation’ approach 

which determines the ‘spring’ characteristics by 

considering outward propagating waves under 

(4 The dynamic finite-element formulations 

which use axisymmetric elements and special 

energy-absorbing boundaries to simulate the 

effect of outward spreading waves (Blaney, 

Kausel & Roesset, 1976; Kuhlemeyer, 1979; 

Angelides & Roesset, 198 1). 

Although considerable progress has been made 

in developing methods of analysis and understand- 
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ing the phenomena related to dynamic soil-pile 

interaction, much has still to be learned through 

systematic parametric studies, as well as field 

observations. For instance, the number of pub- 

lished solutions in the form of non-dimensional 

graphs is very limited, compared to the wealth of 

available static solutions (Poulos & Davis, 1980). 

The work presented in this Paper aspires to con- 

tribute in reducing this gap between available static 

and dynamic solutions. 

The problem studied in this Paper is that of an 

end-bearing free-head pile embedded in a non- 

homogeneous soil stratum of modulus increasing 

linearly with depth. The study was conducted 

using an efficient dynamic finite-element formula- 

tion, developed by Blaney et al. (1976). An 

interesting feature of the analysis is that, by allow- 

ing the frequency of vibration to approach zero, 

static solutions are readily recovered which are in 

excellent agreement with the results of the more 

conventional static finite-element analyses. 

A few studies have appeared on the static lateral 

behaviour of piles embedded in a linearly non- 

homogeneous deposit. Poulos (1973) used a simple 

modification of Mindlin’s solution to obtain 

approximate results, assuming the displacement 

induced from a point load on two identical points 

in a non-homogeneous and a homogeneous half- 

space to be inversely proportional to the respective 

Young’s moduli at these points. As shown sub- 

sequently in this Paper, Poulos’s results may over- 

predict the top lateral deflexion of a free-head pile 

subjected to a horizontal force by nearly loo%, but 

are more reasonable for other types of loading. 

A better, although still approximate, formula- 

tion was developed by Banerjee & Davies, 1978, 

within a boundary element algorithm. In this case, 

Mindlin’s solution was extended to a point load 

acting at the interface of a two-layer elastic half- 

space and then empirically extrapolated to a 

linearly inhomogeneous halfspace. The results of 

this method are within 25% of the results of finite- 

element studies. Numerically exact solutions were 

recently presented by Randolph (1981) who 

studied the lateral behaviour of flexible piles in 

linearly non-homogeneous soils and offered alge- 

braic expressions for pile deflexions and moments. 

He utilized an axisymmetric finite-element 

formulation incorporating linear-strain triangular 

elements and resorting to a first-order Fourier 

expansion in the circumferential direction to in- 

expensively treat the asymmetric lateral loading. 

The static results presented in the Paper comple- 

ment those available from these previous studies, 

For flexible piles, our results are in accord with 

those of Randolph (1981). This work, however, is 

not limited to flexible piles alone but covers a wide 

range of the most pertinent problem parameters 

for which, to date, only approximate solutions are 

available (Banerjee & Davies, 1978; Poulos, 1973). 

The presented results of the comprehensive 

dynamic parametric study are new in the geotech- 

nical literature. Particular emphasis is accorded to 

assessing the effects of soil inhomogeneity on pile 

deflexions at and above the resonant frequencies of 

the system. It is shown that the selection of a 

statically equivalent homogeneous deposit not 

only depends on the type of loading (force or 

moment) but also that it does not guarantee an 

equivalent dynamic performance of the pile. It is 

also shown that the static criterion of flexibility is 

inadequate with dynamic loading conditions and a 

new (dynamic) criterion is proposed, appropriate 

for a wide range of frequencies. 

PROBLEM DEFINITION AND METHOD OF 

ANALYSIS 

The system to be studied is given in Fig. 1. A 

circular pile of length L and diameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd is em- 

bedded in a non-homogeneous soil layer of thick- 

ness H = L underlain by a rigid base (bedrock). 

The pile is assumed to be linearly elastic with 

constant Young’s modulus E,, and mass density 

pp. The supporting soil is assumed to be a linear 

hysteretic material with Young’s modulus increas- 

ing linearly with depth, in accordance with 

E(z) = ES; (1) 

in which E, is the modulus at a depth of one pile 

diameter below the surface, and with constant (but 

arbitrary) Poisson’s ratio v, and mass density ps. 

The energy dissipating characteristics of the soil 

when subjected to dynamic deformation are des- 

cribed through a frequency-independent hysteretic 

damping ratio /I(Z), function of depth. A few 

M = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMO&“ ’  

G P = Poelw’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASoil modulus E 

-T77; 

RI’ gid basf 

---Q--f 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-d 

77x777-- 

ck) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 1. End-bearing free-bead pile under harmonic excita- 
tion embedded in a soil stratum with modulus increasing 
linearly with depth 
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Rlgtd link 

C 
b 

So11 modulus E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 2. Finite element model 

comments regarding the choice of a linear varia- 

tion of modulus according to equation (1) are 

warranted. 

Following the work of Gibson (1967, 1974), the 

elastic halfspace with stiffness proportional to 

depth (often called Gibson soil) has been fre- 

quently used in analytical soil mechanics studies in 

place of the traditional homogeneous halfspace. 

The Gibson soil is the simplest possible (one- 

parameter) inhomogeneous model which appears 

capable of representing many actual soil profiles 

with reasonable accuracy. For example, the un- 

drained Young’s modulus in normally consoli- 

dated clays, being proportional to the effective 

mean pressure, does increase linearly with depth. 

Moreover, there is an additional argument in 

favour of the Gibson soil when modelling the 

lateral soil reaction against piles. That is, a stiffness 

proportional to depth may take indirectly into 

account soil non-linearity, as values of the soil 

secant modulus near the head of the pile are likely 

to be reduced because of the developing large shear 

strains associated with the large pile deflexions 

near the top. 

For the same reason, in response to the increas- 

ing soil deformation near the ground surface, 

hysteretic damping ratio in the soil, p(z), should be 

taken as a decreasing function of depth. In this 

study, p(z) was chosen to vary from a maximum 

value of SoA, immediately below the surface, to a 

minimum value of 2% at greater depths; a linear or 

a parabolic interpolation were assumed for inter- 

mediate depths. Sensitivity studies proved that the 

exact distribution of damping with depths has only 

a secondary effect on pile response, as long as the 

average /I’ value remains the same. In fact, it has 

been shown by the Authors (Krishnan, Gazetas & 

Velez, 1982) that even use of a constant (i.e. depth- 

independent) soil damping ratio leads to very good 

predictions of dynamic pile-head deflexions. 

Therefore, for simplicity in the presentation, most 

of the results shown in this Paper were obtained 

for a constant /I(z) = /I = 5%. 

The problem studied, as shown in Fig. 1, in- 

volves a free-head pile subjected to a steady-state 

harmonic horizontal force zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP = P,, exp (iwt) and/or 

a moment M = M, exp(iwt), with a circular fre- 

quency w = 27cJ where f is the frequency in Hz. P,, 

and M, are the amplitudes of the applied force and 

moment, respectively. The pile deforms laterally 

and its steady-state motion at the top may be 

described in terms of the deflexion 

u(O) = u,(O) exp (iot + $,) 

and the rotation 

(24 

O(0) = O,(O) exp (iwt + $J (2b) 

in which rJ1 and I+!I~ are the phase lags between pile 

response and excitation, and u,(O) and O,(O) are the 

amplitudes of the top deflexion and rotation, 

respectively. Alternatively, u(O) and Q(O) may be 

expressed as 

u(0) {uR(0) + it+(O)} exp (iwt) 

O(0) = {Q,(O)+ i&(O)} exp(iwt) 

(3a) 

(3b) 

where us(O), O,(O) are the real (in-phase) com- 

ponents and u,(O), O,(O) are the imaginary (90@-out- 

of-phase) components of u(O), O(O), respectively. 

Equations (2) and (3) are equivalent; the respec- 
tive variables are related as 

n,(O) = {CdQ12 + CUrm2)“2 

ti 1 = arc tan C~,W~R(0)l 

(44 

(W 

The finite-element formulation used in this 

study has been developed by Blaney et al. (1976). 

The geometry is idealized by a finite cylindrical 

region surrounding the pile, joined to a semi- 

infinite far field, as shown in Fig. 2. The cylindrical 

region is discretized by means of toroidal finite 

elements and the pile is considered hinged at the 

base. To overcome the complexity arising from the 

three-dimensionahty of deformation when the pile 

is subjected to lateral (anti-symmetric) loading, 

stresses and displacements are expanded into a 

Fourier series in the circumferential direction, 
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following the technique devised by Wilson (1965). 

In fact, only the first order term of the series is 

needed in this case. Thus, the three-dimensional 

problem is effectively reduced to a two-dimen- 

sional one-a convenient simplification which has 

also been utilized by Kuhlemeyer (1979) and Ran- 

dolph (1981). 

To account properly for the radiation of energy 

due to spreading of waves away from the pile, 

special energy absorbing boundaries have to be 

devised. The standard boundaries employed in 

static finite-element formulations are inadequate 

as they cause an artificial ‘box’ elTect, trapping the 

wave energy and changing the natural characteris- 

tics of the system. In the described programme, 

a ‘consistent’ boundary matrix, derived by Kausel 

(1974), is placed at the outer edge of the central 

discretized region to reproduce the effect of the far 

field. This matrix relates the imposed dynamic 

boundary forces with the resulting displacements 

of the far field; for each layer, it is obtained from 

the solution of the appropriate wave propagation 

problem. A ‘perfect’ absorption of outward spread- 

ing waves is, thus, accomplished. Moreover, the 

boundary can be placed very close to the pile (only 

a few diameters away) and hence a substantial 

economy is achieved. For additional information 

on the employed formulation reference is made to 

the aforementioned publications and to Kausel, 

Roesset & Waas (1975). 

PROBLEM PARAMETERS AND DIMENSIONAL 

ANALYSIS 

The generalized force-deformation relations at 

the (unrestrained) pile head are expressed in non- 

dimensional form as 

where UHHI UHM, U,, and U,, are the dimension- 

less dynamic displacement factors, functions of 

frequency. By the dynamic reciprocity theorem 

(Lamb, 1904) V,, = U,,. Since u(O) and f?(O) are 

complex quantities (equation (3)) the displacement 

factors can also be written as 

U,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,, + il,, (AB = HH, HM, MM) (6) 

where R,, and I,, are the real and imaginary 

components of U,,. Alternatively, the form 

U,, = U,,Oexp (iwt + $J 

(AB = HH, HM, MM) (7) 

which corresponds to equation (2) is also used in 

this Paper. U,,’ and tiAB are, respectively, the 

amplitude and phase-lag of U,,; these are related 

to R,, and I,, as indicated by equations (4a) and 

(4b). 
According to the technique of dimensional 

analysis, the following general functional relation 

can be stated 

(8) 

in which the only independent dimensionless 

material and geometric parameters of the problem 

are 

(a) the ratio E,/E, of the Young’s modulus of the 

pile over the Young’s modulus of the soil at a 

depth of z = d 

(b) the pile length-to-diameter (slenderness) ratio 

Lid 
(c) the Poisson’s ratio of the soil v 

(d) the ratio p,/p, of the mass densities of the pile 

and soil 

(e) the dimensionless frequency factor a, = cod/l/;, 

where V, is the shear wave velocity of the soil at 

a depth z = d, and w is the excitation circular 

frequency 

(f) the hysteretic damping ratio in the soil, b, 

assumed to be either a constant or a decreasing 

function of depth. 

In some earlier studies of the dynamic lateral 

response of piles (Novak & Aboul-Ella, 1978; 

Nogami & Novak, 1977) the ratio of shear wave 

velocities VP/V, was used to represent the contrast 

in stiffness between pile and soil. The moduli ratio 

E,/E, was preferred in this study following the 

suggestions of Blaney et al. (1976) and Dobry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 

(1982), so that the influence of v and pP/ps on the 

results is minimized. This was also confirmed by 

our sensitivity studies (see Krishnan et al., 1982). 

Consequently, although the results to be presented 

were actually derived for v = 0.40 and 

pP/ps = 1.60, they are applicable with good ac- 

curacy to soils with 0.30~ v<O.48* and piles with 

1.40 d pP/ps Q 2.50. These ranges cover most prac- 

tical situations.* 

A similar observation was made by Randolph 

(1981), although he suggested the use of 

C,( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + 3v/4) instead of the E, preferred in this study. 

Preliminary computations showed that both 

choices lead to essentially equally small (practi- 

cally negligible) errors when the v = 0.40 results 

are used for soils with 0.30 < v < 0.48. E, was, thus, 

*Although for saturated soft clays under static 
undrained loading one should use Y = 0.50, with dynamic 
loading v = 0.50 leads to an infinite dilatational wave 
velocity which is not observed in the laboratory (Allen, 

Richarts & Woods, 1980); instead, the BiotGIshihara 

theory for poroelastic media yields a maximum value of v 

somewhat less than 0.50. 



312 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKRISHNAN, GAZETAS AND VELEZ 

0.6 - 

L/d 

T 

1= o.4y 0,2 -;‘ 5 

15,25,40 
10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

01 1 1 

06 

: 
3 

@2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL/d 

OI 
10 lo2 103 1 o4 IO5 106 

EPJES 

Fig. 3. Dependence of displacement factors on EJE, and 

Lld 

selected in this study as a more convenient para- 

meter. 

Frequently, static results are presented in terms 

of the pile-flexibility factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK, = (E,Jp)/(E,L4), 

JP = (n/64) d4, and the slenderness ratio L/d 

(Poulos & Davis, 1980; Banerjee & Davies, 1978). 

Although, of course, these parameters are perfectly 

acceptable from a theoretical viewpoint, they are 

not very suitable when it comes to the clarity and 

conciseness in presenting parametric plots. This is 

because (a) the significance of E,/E, is difficult to 

discern through the K, factor, as the latter is also 

affected by (L/d)4; and (b) the importance of L/d is 

also difficult to readily visualize, since it appears 

twice. This double appearance of L/d may (erron- 

eously) give the impression that slenderness ratio is 

the predominant parameter which controls the 

response. In fact, as it is shown later in this Paper 

(see also Randolph, 1981), most laterally loaded 

piles are flexible; only their upper part undergoes 

substantial deformation and provides lateral 

resistance. Hence L/d may very well be a totally 

insignificant parameter. But to find this out, one 

must read two or three plots of response versus K,, 

each for a different L/d value. 

The results reported here are based on analyses 

using five moduli ratios, namely, Ep/Es = 58, 290, 

1450,29 000 and 145 000. For each of these values 

five slenderness ratios are considered, namely, 

L/d = 5, 10, 15, 25 and 40, and, in every case, the 

frequency factor a, is varied from 0.01 to 1.2, 

encompassing the wide frequency ranges expected 

from machinery, ocean waves and earthquakes. 

STATIC PILE BEHAVIOUR 

The present study was conducted for an end- 

bearing pile, i.e., with length L = H (Fig. 1). How- 

ever, it is subsequently shown that most of the 

results are also valid for floating piles, i.e., with 

length L < H. 

Figure 3 portrays the dependence of the three 

static displacement factors, &,u, Vu, and VMM, on 

the two crucial narameters. E-/E. and L/d. The 

three displacement factors are &tiie insensitive to 

variations in L/d, except for very short and rigid 

piles. In fact, U,, is practically independent of L/d, 

throughout the extreme range of moduli ratio 

examined; and U,, is slightly influenced by the 

pile length only if L/d < 5 and E,/E, > 10 000. Thus, 

the lateral response of a free-head pile embedded in 

a given Gibson stratum and subjected to a static 

moment at its top is practically independent of the 

pile length. By contrast, the effect of the pile 

stiffness is substantial. 

The effect of pile length on ZJ,, depends on both 

the L/d and the E,/E, ratios. For L/d > 15, U,, is 

uniquely related to E,/E, alone. Decreasing L/d to 

a value of 10 leads to a slight increase of Un, in 

case of relatively rigid piles, with EJE, > 5000. On 

the other hand, piles which are extremely short 

(L/d = 5) and rigid (E,/E,>2000) exhibit sub- 

stantially larger U,, values (by a factor of about 2) 

than their longer (L/d > 10) counterparts. 

From the preceding observations it is evident 

that for the majority of piles encountered in 

practice, pile length plays little or no role in their 

static deformation. This suggests that the induced 

deflexions and rotations do not influence the 

whole length of these piles but, instead, they are 

confined to their upper region, immediately below 

the ground surface. Careful examination of the 

distribution of pile deformations with depth for all 

the studied cases confirms that, indeed, in most 

situations, deflexions practically vanish beyond 

five to ten diameters depth from the ground 

surface. 

Effective length of pile 

Adopting the terminology of Kuhlemeyer (1979) 

and Randolph (1981) effective length, IS, of a 

laterally loaded pile is defined as the depth below 

which pile deflexions are less than one-thousandth 

of the top deflexion. Piles with length L> I, are 
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- Equation (9) 

- - -Randolph (1981) 

zo- 1 Range of finite-element results / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 I I I 

10 10’ lo3 1 o4 

ED/ES 

Fig. 4. Variation of the static effective length of pile with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEn/E, 

named flexible* piles. The subscript s is a reminder 

that the present discussion pertains solely to static 

loading conditions. Under dynamic loading, the 

effective pile length, 1,, is generally larger than I,, as 

will be shown later. 

Figure 4 plots the variation of the effective 

slenderness ratio 1,/d with E,/E,. L/d has no in- 

fluence on 1,, as long as the pile is flexible. As an 

example, a pile with E,/E, = 290 has an l,/d N 5, for 

all the five lengths studied (L/d = 5, 10, 15,25 and 

40); obviously, the shortest of these piles (L/d = 5) 

is a borderline case (I, = L). On the other hand, in 

the range of very rigid piles (E&E,> lOOOO), 

/,/d > 10, and hence only the three longest piles 

(L/d = 15, 25 and 40) are flexible. 

It is now clear why most of the presented results 

are applicable to floating as well as end-bearing 

piles. Removing the ‘idle’ portion of a pile below 

the depth z = 1, will have no measurable effect on 

its lateral response. 

The following simple algebraic expression fits 

the data points of Fig. 4 with very good accuracy 

I /I- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\0.21 

(9) 

This expression is only insignificantly different 

from the formula given by Randolph (1981); for 

comparison, the latter is also plotted in Fig. 4 for 

v = 0.40. It is emphasized that the effective length 

of equation (9) corresponds to U,,, i.e., to 

deflexions due to a sole horizontal force. U,, and, 

especially, ci,, decay much faster with depth, as is 

indirectly evident from the plots of Fig. 3. In other 

words, I, of equation (9) is actually the largest (and, 

thus, the critical) effective length, for the static 

loading conditions examined herein. 

*The term long piles is also found in the literature (e.g., 

Dobry et al., 1982). 

Fig. 5. Profile of normalized horizontal pile displacement 

due to a horizontal force 

Behaoiour ofjexible piles 

An interesting observation can be made regard- 

ing the deflected shape of flexible piles subjected to 

a horizontal force. To this end, Fig. 5 portrays the 

distribution of U,,(z), normalized to a unit top 

amplitude, against the normalized depth z/l,. The 

results for all the 19 flexible piles of this study fall 

within a very narrow band. This suggests that the 

deflected shape is a unique function of z/1,, being 

otherwise independent of both E,/E, and L/d, in 

agreement with Randolph (198 1). The simple alge- 

braic expression 

( > 
512 

V,,(Z)/U”, = 1 - 0.95 f (10) 
s 

fits well the data of Fig. 5 [U,, 3 U,,(O) denotes 

the value of the displacement factor at the pile- 

head (equation (3a))J 

Since the response of flexible piles is indepen- 

dent of their length, simple, readily applicable 
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Table 1. Expressions for displacement factors of flexible 

piles embedded in non-homogeneous soil 

Type of Displacement 

pile factor Expression 

t Cl,,* = E,du*(O)/P; u*(O) = horizontal pile-head dis- 
placement with O*(O) = 0 

0.6 - 

0.4 - 

$ 
3 

0.2 - 

: 
3 

0.6- 
-Equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Flmte-element results 

0,4- 

2 
3 

0.2- 

O_ I 

10 lo* 103 lo4 105 lo6 

EPIES 

Fig. 6. Comparison of finite-element results for flexible 

piles with the formulae of Table I and the results of some 

previous solutions 

algebraic formulae have been derived for the dis- 

placement factors from the pertinent results of Fig. 

3. Table 1 displays these expressions which relate 

U,,, U,, and U,, to the stiffness ratio, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,/E,. For 

completeness, the horizontal displacement factor 

U,,* for a fixed-head pile is also presented; U,,* is 

proportional to the horizontal displacement over 

horizontal force ratio, when no rotation is allowed 

at the top. These expressions, as well as the plots of 

Fig. 3, reveal that pile response to moment loading 

exhibits a substantially stronger dependence on 

E,/E, than pile response to a horizontal force. 

Figure 6 shows that the proposed expressions 

and the finite-element results match very well, for 

all practical applications. Randolph’s (1981) 

expressions for v = 040, also plotted in this figure, 

compare favourably with the formulae of Table 1, 

although he predicts a slightly stronger 

dependence of the three free-head displacement 

factors on E,/E, (exponents respectively equal to 

-0.33, -@55 and -0.78 in place of the -0.31, 

- 0.50 and - 0.73 of this work). On the other hand, 

the approximate formulations by Banerjee & 

Davies (1978) and by Poulos (1973) overestimate 

the three displacement factors; the discrepancies 

are substantial for horizontal-force loaded piles of 

E,/E,< 1000, but reduce significantly as E&E, 

increases. Moment loading conditions, however, 

seem to be reasonably well reproduced in these 

two formulations, especially the more rigorous one 

of Banerjee & Davies (1978). 

Statical/y equivalent homogeneous deposits 

Frequently, practising geotechnical engineers 

involved in the design of piles and foundations to 

be embedded in non-homogeneous soil make use 

of published solutions developed for homogeneous 

soils (such as those presented by Poulos & Davis, 

1980, and Gazetas, 1983). To this end, they must 

select an appropriate equivalent modulus, corre- 

sponding to a representative or effective point in 

the actual (non-homogeneous) profile. Equivalence 

between homogeneous and actual profiles is estab- 

lished with respect to a particular response 

quantity. 

For laterally loaded piles embedded in a linearly 

inhomogeneous soil deposit the depth from 

ground surface of the representative point (here- 

after called equivalent depth) depends not only on 

the pile geometry and stiffness but also on the type 

of loading (Fig. 7). Indeed, the equivalent depth ?,, 

which leads to the same horizontal deflexion under 

the sole action of the same horizontal force, differs 

from the equivalent depths Z,, and Z,, which 

establish equality of top rotation and top de- 

flexion, respectively, under the sole action of a 

moment. 

Table 2 displays simple formulae for the equiva- 
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6- 

- Equations ot Table 2 

- - - - Randolph (1981) 
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Fig. 7. Variation of equivalent depths with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,/E, for flexible piles 

1 J 
lo5 lo6 

Table 2. Formulae of statically equivalent depths for 

flexible piles 

Type bf 

pile 

Free-head 

Fixed-head 

Equivalent 

depth 

%,H 

%m 

~,,M 

Z”I,* 

Expression 

0.38d (E,/EJ” I7 

0.16d (J~JE,)~‘~~ 

0~34d,(E~E,)~“” 

0.48d (E,/E,)“‘20 

lent depths Z,,, Z,,, Z,, and Z,,* of flexible piles. 

&* refers to the deflexion of a fixed-head pile. 

These formulae were derived by equating the 

appropriate asymptotic expressions for flexible 

piles in a linearly non-homogeneous (Table 1) and 

in a homogeneous deposit (Kuhlemeyer, 1979; 

Dobry et al., 1982). Use of Randolph’s (1981) 

expressions for v = 0.40 leads to only slightly 

different expressions. 

The expressions of Table 2 are graphically illu- 

strated in Fig. 7. The effective point for the 

majority of flexible piles in a linearly non-homo- 

geneous soil lies only about one to two diameters 

beneath the surface, depending on the loading 

conditions. Moment loading leads to the shallower 

equivalent depths and fixed-head loading to the 

deepest. 

Physical explanation of these features observed 

in Fig. 7 is straightforward: the faster the induced 

pile deformations decay with depth, the shallower 

the effective point is located. In a non-homo- 

geneous stratum, the near-surface soil modulus is 

very small and, hence, flexible piles experience 

large top deflexions which attenuate within a few 

diameters depth. For instance, Fig. 5 suggests that 

U,,(z) reduces to f of its surface value at a depth of 

1,/4; since for most piles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,=4d to 8d (Fig. 4), the 

major pile deflexions seem to be confined within a 

depth of one or two diameters. Naturally, the 

effective point would also be located in this region. 

Moment loading causes deflexions of a free-head 

pile (proportional to U,,(z)) which exhibit an even 

greater concentration near the top (see Fig. 8); 

thus, z,, < z,,. On the other hand, horizontal 

displacements of a fixed-head pile remain sub- 

stantial for relatively large depths-a direct con- 

sequence of the imposed no head-rotation con- 

straint; therefore, Z,,* > I,,. Furthermore, regard- 

less of loading conditions, increasing the relative 

flexural rigidity of a pile would increase the 

deformations experienced at larger depths and 

decrease their concentration near the surface; 

hence, equivalent depths invariably increase 

significantly with E,/E,. 

DYNAMIC PILE BEHAVIOUR 

General characteristics of the dynamic response 

Figure 9 portrays the variation of the three 

(dynamic) displacement factors with frequency 

of excitation, for a pile with L/d = 15, 

E,/E, = 29000 and pP/ps = 1.6. Both the real (in- 

phase) and the imaginary (90”-out-of-phase) com- 

ponents of each displacement factor (see equation 

(6)) are displayed; for completeness, the amplitudes 

and phase angles of the three factors (equation (7)) 

are also plotted in Fig. 9b. The real displacement 

components reflect the stiffness and inertia of the 

soil-pile system; their dependence on frequency is 

attributed solely to the influence which frequency 

exerts on inertia, since soil properties are 

practically frequency-independent. The imaginary 

components, on the other hand, reflect the 

radiation and material damping of the system. 



316 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKRISHNAN. GAZETAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND VELEZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

O- 

5- 

10- 

% 

15- 

20- 

25, 

o- 

5- 

lo- 

2 

15- 

20- 

250 

5- 

10- 

s 

15- 

20- 

25_ 

'0 

5 

10 

s 

15 

1 

20 

25 t 

U,,WR,, 

0 1 0 1 0 1 

! 

i '\ 

i ‘\ 

! 

I 

:_I 

U,,WR,, 

0 1 0 1 0 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i i 
! 

i 
! 
\ 

i .\ 

I:~ r 

i 

0 
U,,WR,, 

1 0 1 0 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

i i ‘ ?  
i 

ITT 

U,&)lR,, 
0 1 0 ’ 0 1 

i 1’  i 

i 

ril'-r 

a, = 0.056 as = 0.238 

___ Real component 

a, = 0,842 

- -. - lmaglnary component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 8. Distribution of dynamic deformations with depth at frequency 
factors a, = @OS, O-238 and 0842 (EJE, = 29 000, L/d = 25) 



STATIC AND DYNAMIC LATERAL DEFLEXION OF PILES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA317 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.1 

3 0 
.-. 
+ 
E 

u 

II 

s 
3 O-C 

001 

,: 0.c ._ 
+ 

: 
cc 

II 

: o.oc 
3 

5_ 

I.1 -_ 

15- 

0: 

5- 

)1- 

)5. 

0. 

-\ 

-.._.., I I 

0.006 

-_ - 

0.02 
. . . 0.05 

3 
%M 

0004 
._ 

z 
3 0.002 c 

I - ‘MM 

a, 

(a) 

IL----- 
// 

: 

%M 
“MM” , -_ _ 

/ 
/ _ 20" 

/ 
/ 

/ *Mu 
-*MM 

/ 
/ 

/ 
/ 

/ 

0" 
” 0.6 1.2 

0 

Fig. 9. Dynamic headdeflexions and rotations of a pile with &,/ES = 29000 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL/d = 15: (a) effect of damping ratio 

(O-02 vs @OS); (b) comparison of the two alternative representations of deformations, equations (6) and (7), for a WO5 

damping ratio 



318 KRISHNAN, GAZETAS AND VELEZ 

Material damping stems mainly from the 

hysteretic cyclic behaviour of soil and is practically 

frequency-independent, while radiation damping 

depends strongly on frequency since it results from 

the spreading of energy by waves generated at the 

pile-soil interface. 

Two sets of results are shown in Fig. 9a, corre- 

sponding to low (0.02) and moderate (0.05) 

material damping in the soil. Several major fea- 

tures of the dynamic response are worthy of note in 

this figure. 

In general, the imaginary components IAB of the 

displacement factors or the phase angles l(l*a show 

a greater sensitivity to variations in the frequency 

factor a, than the real components or the ampli- 

tudes do. A possible exception is the sharp peak 

of Ruu in soils with very small hysteretic damping. 

While all three imaginary components are 

monotonically increasing functions of a,, the real 

components exhibit undulations associated with 

the natural frequencies (in shear and dilatation) of 

the soil stratum. In other words the observed peaks 

are the outcome of resonance phenomena. Waves 

emanating from the oscillating pile-soil interface 

undergo multiple reflections at the bedrock and 

the ground surface, creating standing waves; reson- 

ance occurs when at a specific frequency the 

displacement pattern of these standing waves coin- 

cides with a natural mode of vibration of the soil 

stratum. As a result, the amplitude of pile motion 

may substantially increase, depending on the 

amount of hysteretic damping in the soil. 

The first resonant frequencies of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,, and R,, 

are in remarkably close agreement with the funda- 

mental natural frequency of the soil stratum in 

vertically propagating shear waves. Indeed, for a 

Gibson stratum of thickness H = Z. and modulus 

given by equation (l), Dobry, Whitman & Roesset 

(1971) give the following expression for the natural 

circular frequencies in shear 

x, v, L * 

O”=zH ii 0 n = 1,2,3,... (11) 

where x, is the nth root of J,(x) = 0, in which J, is 

the Bessel function of the first kind and zero order. 

(For example, xi ~2.40, x2 N 5.52, etc.) Hence the 

fundamental natural frequency factor a,, i becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a s, 1 

For L/d = 15 equation (12) gives a,, i 2.0.31 which 

almost coincides with first resonant frequency 

factor of R,, and R,, observed in Fig. 9. This 

coincidence suggests that essentially only shear 

waves propagate in the stratum at this frequency 

(unambiguous or total resonance). 

The second peaks of R,, and R,,, on the other 

1 

z 
u 

0,’ 

0.01 

E,& 

I 50 

1 
1450 

1 145 000 

0.8 1.2 

as 

Fig. 10. Dynamic displacement factor CJ,, = R,, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi&, 

as a function of a$, E,/E, and L/d (/I = O-05) 

hand, are ,barely noticeable, occurring at a fre- 

quency factor of about 0.66. Instead, equation (11) 

yields for the second natural frequency of the 

deposit in shear waves: a,. Z -0.71. Hence, clearly, 

more than one type of wave is present in the 

stratum at these frequencies (pseudo or partial 

resonance). 

Another important phenomenon is revealed 

through the variation of the imaginary displace- 

ment factors with a,. At low frequencies, below the 

first resonant frequency, radiation damping is zero. 

This is because no surface waves can be physically 

created in a soil stratum at such frequencies and, 

since the bedrock prevents waves from propaga- 

ting downward, geometrical spreading of wave 

energy is negligible. The small values of the 

imaginary components 1,, or the phase angles tiAa 

in this range (Fig. 9) just reflect the energy loss 

through hysteretic damping; for a purely elastic 
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Fig. 11. Dynamic displacement factor U,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,, + iIHM Fig. 12. Dynamic displacement factor U,, = R,, + iI,, 

as a function of ar, E&E, and L/d (p = O-05) as a function of a,, E,/E, and L/d (/I = @OS) 

soil I,, and GAB would be zero in this (low) 

frequency range. 

This lack of radiation damping at a, < a,, I ex- 

plains the sharpness of the peak at first resonance. 

On the contrary, radiation damping, being ever 

present at higher frequencies, is primarily respon- 

sible for suppressing the second (pseudo-resonant) 

peak. 

only a small amount of radiation damping arises 

during rocking oscillations-a phenomenon 

reminiscent of the rocking of shallow foundations 

(Gazetas, 1981, 1983). Indeed, constructive inter- 

ference of the shear and dilatational waves 

emanating from the pile-soil interface during rock- 

ing does not favour the generation of surface waves 

which are the main carriers of radiation damping. 

Two main differences are observed between pile 

response in rocking (U,,) and in swaying (Unn). 

First, the real component of rotation R,, is very 

insensitive to variations in a, and its resonant 

peaks are hardly noticeable; therefore, assuming 

R,, to be frequency-independent would be a most 

reasonable simplification. Second, even at fre- 

quencies beyond zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas, ,, the imaginary component of 

rotation IMM and the phase angle $uM attain 

disproportionately small values, in comparison 

with the values of In, and ~J?nn This suggests that 

Finally, the similarity between the in-phase 

(real) component and the amplitude of a displace- 

ment factor, as well as between its 90”-out-of-phase 

(imaginary) component and its phase angle, are 

evident from Fig. 9b. In the low frequency range, in 
particular, due to negligible radiation damping, 

the amplitudes of motion practically coincide with 

its in-phase components, while the phase angles 

reflect the hysteretic damping in the soil. At higher 

frequencies, due to increasing importance of radia- 

tion damping, the amplitudes of motion exceed the 
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Fig. 13. Variation of dynamic effective length with EJE, 

respective real components but the phase angles 

increase with a, more rapidly than the imaginary 

components do. Overall, however, the two alterna- 

tive presentations of the dynamic displacement 

factors, i.e. (RAB,IAB) and (U,.,Bo,$AB). convey the 

same information and reveal in a similar way the 

various trends in the response; thus, only the 

(&,I& decomposition (equation (6)) is used in 

the sequel. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Parameter study: stiffness and slenderness ratios 

The influence of EJE, and Ljd on the dynamic 

pile-head deflexions and rotations is graphically 

illustrated in Figs 10, 11 and 12 for a range of a, 

values between almost 0 and 1.2. The practical 

usefulness of these plots stems from their non- 

dimensional form and the wide range of pertinent 

parameters considered. Several trends are worthy 

of note. 

(4 

@) 

Pile response at a given frequency is mainly a 

function of E,,/E,, being relatively insensitive to 

variations in L/d. Very short and rigid piles are 

the exception (e.g., L/d < 5, EdES > 20 000). 

Their response is nearly independent of E,/E, 

and strongly dependent on L/d. For the sake of 

clarity of the graph the L/d = 5 and 

EdE, = 145000 response curve is not plotted 

in these figures, as it nearly coincides with the 

L/d = 5 and E,/ES = 29000 curve. 

The primary role of L/d is to control the 

frequency and amplitude of first resonance. 

Decreasing L/d increases both the resonant 

frequency, according to equation (12), and the 

resonant amplitude of all three displacement 

factors. On the other hand, at high frequency 

factors (in excess of a,,,), decreasing L/d in- 

creases the radiation damping of the system; 

hence real components (and amplitudes) tend 

to decrease while imaginary components (and 

(4 

(4 

(4 

phase angles) increase. The magnitude of these 

effects depends to a large extent on EJE,: the 

changes are insignificant for very soft piles 

(EJE, = 58) but substantial for very stiff piles 

(E,/E, = 145 000). 

The second (pseudo) resonances are hardly 

noticeable with the logarithmic scales chosen 

for the ordinates of Figs l&12, except in the 

case of very stiff and short piles. 

For the range of parameters appropriate for 

the majority of piles in practice, R,, and R,, 

are essentially frequency-independent and one 

needs only to predict correctly their static 

values (e.g. Fig. 3). 

Finally, it is evident that many piles which 

exhibit a flexible (length-independent) static 

behaviour cannot be considered flexible under 

dynamic loads, at frequencies near resonance. 

An example: a pile of L/d = 15 and 

E,/E, = 29 000 is statically flexible (L > I, 1: 13d 

from Fig. 4); at resonance, however, its R,, is 

about 15% higher than the corresponding 

value of a pile with L/d = 40 and the same 

stiffness ratio. Although this is a rather modest 

difference, it is worth exploring the causes of 

such an effect. 

Flexible behaviour under dynamic loads 

Figure 8 portrays a typical set of distributions 

of dynamic deformations with depth, experienced 

by a pile of EpjEs = 29000 and L/d = 25 at three 

different frequencies of excitation (a, = 0.056,0.238 

and 0.842). Under static loading this pile deforms 

appreciably only at its uppermost 13d, according 

to Fig. &a clearly flexible behaviour which does 

not change to any measurable degree during oscil- 

lation at low frequency factors, as evidenced by the 

deformation distributions at a, = 0.056 (Fig. 8). 

As the excitation frequency increases, however, 
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Fig. 15. Upward reflection of waves generated in the 

non-homogeneous stratum may increase the motion at the 

pile head 

pile deformations extend to greater depths. In 

particular, at the fundamental frequency of the 

system (n, ~~0.238 according to equation (12) or 

Fig. 10) deflexions are sustained by a pile length of 

about 17d. The deformed shape of the pile, on the 

other hand, undergoes only minor changes in the 

frequency range 0 C a, < a,, , Thus, if, for instance, 

Un,“(z)/Uu,o or R,,(z)/R,, at a particular fre- 

quency is plotted against the normalized depth 

z/l,, where ld = the effective length at that fre- 

quency, the static variation of equation (10) or Fig. 

5 is recovered with reasonable accuracy. And since, 

in this frequency range, I, is maximum at the 

fundamental frequency of the system, this length, 

at w = w,, is defined as the (critical) effective 

dynamic length, Id, of the pile. The dependence of Id 

on d and E&Y, is displayed graphically in Fig. 13 

with the simple expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.135 

(13) 

being offered for direct practical use. 

The deformation patterns at higher frequencies 

also reveal some interesting response char- 

acteristics. Beyond the fundamental frequency w1 

the shape of the deforming pile can no longer be 

described through equation (10) or Fig. 5. Instead, 

the variations with depth of both real and 

imaginary deformation components display a 

wavy character, with the upper and lower parts of 

the pile moving in opposite directions. At the same 

time the contribution of the imaginary com- 

ponents substantially increases. But although pile 

deformations at very high frequencies may extend 

all the way to the bottom of the pile, top detlexions 

and rotations indicate a flexible, i.e. length- 

independent, behaviour (Figs l&12). 

In conclusion, pile response at resonance is 

crttical for judging its dynamic flexibility, defined 

as length-independency of top motion. Piles with 

L> I, as given by equation (13) will behave as 

flexible in all but a few frequencies at and near 

resonance; but even at these frequencies, their 

response will be within merely 6% above the 

response of the clearly flexible (very long) piles. 

This is a minor difference in view of the uncer- 

tainties in determining soil properties and loads. 

Thereby, equation (13) can be recommended for 

practical use (especially in preliminary design com- 

putations) in deciding on the nature of the dynamic 

pile behaviour. It is emphasized, however, that top 

deformations (alone) form the basis of the flexi- 

bility criterion. Requiring length-independency of 

another response quantity, such as the maximum 

bending moment in the pile, would undoubtedly 

impose a different (more stringent) effective length 

criterion. 

Importance of soil non-homogeneity 

A convenient way to study the effects of non- 

homogeneity on the dynamic lateral response of 

piles is to compare them with the results for a 

statically equivalent homogeneous stratum. Such a 

comparison is shown in Fig. 14 for a free-head pile 

with L/d = 15 and E,/E, = 29 000. The response of 

such a pile embedded in a linearly inhomogeneous 

stratum has already been described (Figs 9-12). 

For each of the three modes of deformation, HH, 

HM and MM, a statically equivalent homo- 

geneous deposit, yielding identical static response, 

can be readily determined using the formulae 

presented in Table 2, in conjunction with equation 

(1). The respective dynamic response of the pile in 

each of the three equivalent deposits (obtained 

using the aforementioned finite-element formula- 

tion) is compared in Fig. 14 with its response in the 

non-homogeneous stratum. 

It is evident from this figure that static equiva- 

lence does not guarantee identical behaviour 

under dynamic loads. The two main differences 

between homogeneous and inhomogeneous 

behaviour may be summarized and explained as 

follows. 

The first difference is that their resonant fre- 

quencies differ by a factor of about 2. To under- 

stand the cause of such a potentially serious 

discrepancy recall that the representative or effec- 

tive point which controls the static response in the 

non-homogeneous deposit lies only one or two 

diameters below the surface (Table 2, Fig. 7). Thus, 

the statically equivalent homogeneous deposit has 

an S-wave velocity quite smaller than the velocity 

at mid-depth of the inhomogeneous stratum (see 

insert in Fig. 14a). However, the representative 

point which controls the fundamental frequency of 
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the stratum is located slightly below its mid-depth; 

hence, for vertical shear wave propagation the 

homogeneous deposit is much softer and leads to a 

smaller resonant frequency. As an example: for a 

pile of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,/E, = 29 000 and L/d = 15 the equivalent 

depth for the HH mode is ZuH =2.17d (Table 2) 

leading to a fundamental natural frequency for the 

homogeneous deposit (see e.g., Dobry et al., 1971) 

1/z 
2231; (14) 

and a resonant frequency factor a,, I = 2.31 

(d/L)=0,15&in agreement with Fig. 14a. On the 

other hand, equation (12) yields for the resonant 

frequency of the inhomogeneous deposit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 5,, -0.3 1, which is twice 6,. ,. 

The second difference in behaviour between 

homogeneous and inhomogeneous strata is that 

they have different responses at high frequencies. 

The inhomogeneous profile leads invariably to the 

larger in-phase and the faster growing (with a,) 

90”-out-of-phase components of head-deforma- 

tion. The complicated system of dilatational, shear 

and surface waves that are present at such fre- 

quencies precludes a clear-cut explanation of the 

observed differences. It seems, nonetheless, that 

one of the possible causes of stronger inhomo- 

geneous motion is the continuous upward reflec- 

tion of waves originating at the pile-soil interface. 

The phenomenon is reminiscent of the total reflec- 

tion of waves emanating from a surface foundation 

into an inhomogeneous halfspace (Gazetas, 1980). 

As shown in Fig. 15, a wave ray in a non- 

homogeneous medium is not a straight line but a 

curve. Therefore, waves emanating from a point on 

the pile surface (Huygen’s principle) in an upward 

direction may very well be deflected towards the 

pile head; this is impossible in a homogeneous 

medium. 

CONCLUSION 

A systematic parametric study has been pre- 

sented of the static and dynamic deformation of 

laterally loaded free-head piles embedded in a soil 

deposit, the modulus of which increases linearly 

with depth. It has been shown that the ratio of pile 

Young’s modulus to soil modulus at a one-dia- 

meter depth is the most significant parameter 

which controls the response. The slenderness ratio 

is of secondary importance, except in cases of stiff 

piles embedded in soft soils. Non-dimensional 

graphs are presented from which one can readily 

estimate both static and dynamic deflexions of 

piles in practice. 

Quite frequently piles exhibit a flexible (i.e. 

length-independent) behaviour under static load- 

ing. In most cases, the effective pile length that is 

needed to transfer static lateral loads into the 

ground and below which insignificant pile de- 

formations occur, extends only 5 to 10 diameters 

from the surface. However, under dynamic loading 

the effective pile length increases by an amount 

that depends mainly on the frequency of excitation. 

The concept of a representative point in the soil 

deposit has been introduced to obtain the pro- 

perties of a statically equivalent homogeneous 

deposit. It has been demonstrated that the depth of 

such a point below the surface depends on the type 

of pile loading considered. Furthermore, sub- 

stantial differences are observed in the dynamic 

response of a pile embedded in the actual non- 

homogeneous and the equivalent homogeneous 

stratum. Valuable insight to the mechanics of the 

problem has been gained by trying to explain these 

discrepancies at resonance and at high frequency 

factors. 

APPENDIX I. ILLUSTRATIVE EXAMPLE 

The dynamic response of a laterally loaded free-head 

pile embedded in a clay stratum is estimated below using 

the graphs and formulae presented in the Paper. 

Pile geometry und properties: 

(1) circular concrete pile 

(-) diameter d = 0.35 m 

(-) length L = 20m 

(-) Young’s modulus E, = 2.5 x 1O’kPa 

(-) mass density pp = 25 10 kg/m3 

Soil pro@ 

(-) stratum of normally consolidated saturated clay 

(-) undrained Young’s modulus divided by elTective 

overburden pressure E/u,’  = 250 

(-) mass density p. = 1680 kg/m3 

(-) Poisson’s ratio Y = 0.49 

(-) estimated hysteretic damping ratio fl = 0.05 

Excitation 

A horizontal force P = lOOexp(iwt) kN and a moment 

M = lOOexp(iwt)kNm are acting simultaneously (in 

phase) on the pile head at ground-surface level. The 

frequency of excitation o = 8~ rad/s. 

Computations 

(-) 

t-1 

i-1 

t-1 
(-1 

i-1 

C-1 

unit weight of clay p, = 
1680 x 9.81 

1000 
N 16.5 kN/m’ 

Young’s modulus of clay 

E = 250~~ ‘i = (250)(16,5- 10)s = 16252 

Young’s modulus at z = d: 

E, = 1625xO,35=569kPa 

stiffness ratio E,/E, = 2.5 x 10’1569 -43937 

slenderness ratio L/d = 20/0.35 L 57.1 

mass density ratio p&p, = 2510/16802: 1.5 

S-wave velocity at depth z = d 

rrequency factor a, = 87c(O~35)/107 ~0.82 
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(p) effective pile length (equation (13)): I,-4.47 (0.35) 

(43937)0”35 16.6m, which is substantially smaller 

than the total pile length, L = 20m; i.e. the pile is 

flexible, and the exact value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL/d is of little interest. 

The normalized displacement factors, FHH, FHM and 

FMM, may now be estimated from the pertinent plots of an 

L/d = 40 pile shown in Figs 10-12. By linearly interpola- 

ting between the ‘E&E, = 29000’ and ‘E,/E, = 145000 

curves one obtains 

F,,,, Z 0.084 + i( - 0.05) 

FHM = FM” 1 O-014 + i( -0.0045) 

FhlM 2 0.003 + i( - 0.0005) 

The deflexion and rotation at the pile-head can now be 

computed using equation (5) 

P M 
u(0) = ~ F”” + ~ F,,, 

E,d E,d’ 

= &(0.084-io-05) 

100 
+ 569 x o,35L (o~o14-ioQO45) 

2 (0.062 - iO.032) m 

where the time-variation term exp(iwt) has been omitted, 

as it is understood. The amplitude of pile-head displace- 

ment is 

u,(O) = [(0.062)’ + (0.032)‘] ‘I2 Y 70 mm 

and the phase lag between pile-head deflexion and 

excitation is 

$. = arc tan 

For the pile-head rotation 

8(O) = 569Ly.352 (0.014-iOGO45) 

+ 569 ky,353 (0.003 -i@ oOOS) 

r0.032-i0.0085 

The amplitude of rotation is 

8,(O) = [(0.032)* +(OQ085)2]1’2 

= 0.033 rad r 1.9” 

and its phase lag from the excitation 

tiO = arc tan 
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