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Abstract

This paper addresses the problem of virtual circuit switch-

ing in bounded degree expander graphs. We study the

static and dynamic versions of this problem. Our so-

lutions are baaed on the rapidly mixing properties of

random walks on expander graphs.

In the static version of the problem an algorithm is

required to route a path between each of K pairs of

vertices so that no edge is used by more than g paths.

A natural approach to this problem is through a multi-

commodity flow reduction. However, we show that the

random walk approach leads to significantly stronger

results than those recently obtained by Leighton and

Rao [10] using the multi-commodity flow setup.

In the dynamic version of the problem connection re-

quests are continuously injected into the network, Once

a connection is established it utilizes a path (a virtual

circuit) for a certain time until the communication ter-

minates and the pat h is deleted. Again each edge in the

network should not be used by more than g paths at

once.

The dynamic version is a better model for the prac-

tical use of communication networks. Our random walk

approach gives a simple and fully distributed solution

for this problem. We show that if the injection to the

network and the duration of connections are both con-

trolled by Poisson processes then our algorithm achieves
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a steady state utilization of the network which is similar

to the utilization achieved in the static case situation.

1 Introduction

Communication protocols for high-speed high bandwidth

networks are based on virtual circuit switching. The

speed of the network does not allow for on-line rout-

ing of individual packets. Instead, upon establishing a

connection, bandwidth is allocated along a path con-

necting the two endpoints for the duration of the con-

nection. These “virtual circuits” are set up on a per-call

basis and are disconnected when the call is terminated.

Efficient utilization of the network depends on the allo-

cation of virtual circuits between pairs of nodes so that

no link is overloaded beyond its capacity.

As in other routing problems we distinguish between

a static and a dynamic version. In the static version all

the requests are given at once and must be simulta-

neously satisfied. In the dynamic version requests are

continuously generated. A connection once established,

continues for a certain amount of time and afterwards

its bandwidth can be re-used for other connections.

The static version of this problem translates into the

following combinatorial question: Given a network G =

(V, E) and a set of K pairs of vertices in V, find for

each pair (~, bi), a path connecting al to bi, such that

no edge is used by more than g paths. For arbitrary

graphs, the related decision problem is in ‘P for fixed K

- Robertson and Seymour [11], but is A/’P-complete if

K is part of the input.

In contrast to the negative results for general graphs

a significant progress has been made in solving this

problem for the interesting class of bounded degree ex-

pander graphs. In particular Leighton and Rao [10] have

recently obtained a number of constructive and existen-

tial results for this problem based on the natural linear

relaxation of the circuit switching problem to a multi-

commodity flow problem. This paper explores a differ-

ent approach: we study solutions for this problem based

on the rapidly mixing properties of random walks on ex-
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pander graphs. The method we explore here builds on

the basic technique developed in [4]. Using the random

walk approach we improve the Leighton-Rao results for

the static case and obtain the first non-trivial results

for the dynamic version of the virtual circuit switching

problem.

Our main result for the static case establishes a trade-

off between the number of pairs K, and the allowed

congestion g.

Theorem 1 There M an explicit polynomial tzme aigo-

?’athm that can connect any set of K = cz(n)n/in n pairs

of vertices on a bounded degree expander so that no edge

is used by more than g paths where

g={ ‘(s+h%%w

fOT CY< 1/2;

\ 0(s + a + loglogn), for a > 1/2,

d = min(~, 1/ log log n), and s is the maximal multi-

plicity of a vertex in the set of paws.

Since the expected distance between two random

vertices on a bounded degree expander is Cl(log n) our

results are always wit hin an additive factor of O(log log n)

from optimal. Our theorem improves the results ob-

tained by Leighton and Rao [10] using the multi-com-

modity flow approach. The case a(n) = l/(ln n)’ im-

proves the bound of Theorem 1 of [1(I], the case a(n) =

0(1) improves the bound of Theorem 2 in [10], and

makes the result constructive.

We also note that Kleinberg and Rubinfeld [7] have

recently used our result in their analysis of a greedy

algorithm for finding short disjoint paths on expanders.

The following non-constructive result (See Section 2

for definitions) improves Theorem 3 in [10]:

Theorem 2 Given a bounded degree (a, ,8, ‘y)-expandeT

graph theTe exists a parameteT c that depends on a, ~,

-y, but not on n, such that any set of less than cn/(ln n)2

disjoint paws of ven?ices can be connected by edge dis-

joint paths.

The advantage of the random walks approach is even

more significant in the solution of the dynamic virtual

circuit switching problems. In practice networks are

rarely used in the “batch mode” modeled by the static

problem. Real-life network performance is better mod-

eled by a dynamic process whereby requests for con-

nection are continuously arriving at the nodes of the

network. A connection has a duration time, and once

the communication has terminated its bandwidth can

be used for another connection. In section 4 we formu-

late a model for studying the dynamic virtual circuit

switching problem under stochastic assumptions about

the injection rate of new requests and the duration of

connections,

Using the random walk approach we develop a sim-

ple and fully distributed protocol for dynamic path se-

lection on bounded degree expander graphs. For the

analysis we adopt the stochastic model assumed in the

design of most long-distance telephone networks (9]. Re-

quests arrives according to a Poisson process, and the

duration of a connection is exponentially distributed.

Our goal is to characterize the relationship between the

load and congestion parameters that guarantees system

stability (i.e., the expected number of requests in queue

is not growing unboundly with time).

Theorem 3 Let E(N) be the ezpected numbeT of re-

quests that aTriue to the n-node expander network at a

given step, let E(D) be the expected duTation of a con-

nection. If E(N) E(D) ~ cr(n)n/in n, where cr(n) ~

1/2, then there ezists a constant c such that for g ~

c (ln in n/ ln( l/ct)l the system running OUTdynamic al-

godhm is stable, and the ezpected time a Tequest waits

m a queue M O(n/E(lV)).

Since E(N) E(D) is the expected number of paths

that must be active in the network at the steady state in

order to keep the system stable, we see that our dynamic

algorithm achieves almost the same edge utilization as

that in our static results.

One should note that out approach differs from the

work on admission control [2, 6, 3] in that we do not

reject requests. All requests are event ually satisfied in

our model, but not immediately. In contrast, in the ad-

mission control model a request is either immediately

satisfied or it is rejected. Our approach better models

computer communication, while the admission control

approach is a better model for human (telephone) com-

munication.

2 Preliminaries

There are various ways to define expander graphs; here

we define them in terms of edge expansion (a weaker

property than vertex expansion).

Let G = (V, E) be a graph. For a set of vertices

S C V let out(S) be the set of edges with one end-point

in S and one end-point in V \ S, that is

out(S) ={{u, v} I {u, v} E E,u E S,v $?S}.

Definition 1 A graph G = (V, E) is a @-expander, if

for every set S c V, ISI < [Vi/2, we have [out(S)l ~

ppl.

For the remainder of this paper, when @ is not explic-

itly mentioned we will assume that it is an arbitrary

constant greater than O. For certain results we need ex-

panders that have the property that the expansion of

small sets is not too small.
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Definition 2 An r-regular graph G = (V, E) M called

an (a, /?, 7)-ezpander #for every set S C V

In particular random regular graphs and the (explic-

itly constructible) Ramanujan graphs of of Lubotsky,

Phillips and Sarnak [8] are (o, P, -y)-expanders. (See dis-

cussion in 14].)

A random walk on an undirected graph G = (V, E)

is a Markov chain {Xt} ~ V associated with a particle

that moves from vertex to vertex according to the fol-

lowing rule: the probability of a transition from vertex

i, of degree 4, to vertex j is I/di if {i, j} E E, and Ooth-

erwise. (In case of a bi-partite graph we need to assume

that we do nothing with probability 1/2 and move off

with probability 1/2 only, This technicality is ignored

for the remainder of the paper. ) Its stationary distribu-

tion, denoted m, (or TG) is given by m(v) = ~/(2 [El).

Obviously, for regular graphs, the stationary distribu-

tion is uniform.

A trajectory W of length T is a sequence of vertices

IWO,Wl, . . . . w,] such that {w,, Wt+l} E E. The Markov

chain {Xt } induces a probability distribution on trajec-

tories, namely the product of the probabilities of the

transitions that define the trajectory.

Let P denote the transition probability matrix of the

random walk on G, and let Pj~~ denote the probability

that the walk is at w at step t given that it started at

v. Let ~ be the second largest eigenvalue of P. (All

eigenvalues of P are real. ) It is known that

P$~ = ?r(w) + o(~’~a). (1)

In particular, for regular graphs

PJt~ = : + O(A’). (2)
n

To ensure rapid convergence we need A ~ 1 – e for some

constant ~ >0. This holds for all expanders (Alon [1]).

In particular if G is an r-regular @expander then Sin-

clair and Jerrum [12] show that

()

~<l_~ p 2
—

2T

It is often useful to consider the separation s of the

distribution P~~? from the limit distribution z given by

n(w) – PJ:L
s(t) = max

v,W 7r(w)

Then we can write

P:t? = (1 – S(t))?r + S(t)a

where u is a probability distribution. We can then imag-
(t)

ine that the distribution PV, M producing by choos-

ing either u with probability s(t) or n with probability

1 – s(t). Hence if t is an event that depends only on

the state of the Markov chain we have

(1-s(t)) Pr(~ under m)+s(t)~ Pr(S under P~~)) (3)

and

Pr(g under P~~)) ~ (1 – s(t)) Pr(S under n). (4)

We use this in the following scenario:

Experiment A: Choose U1 E V uniformly at random

and do a random walk WI of length ~ from U1.

Let VI be the terminal vertex of J-VI.

Experiment B: Choose U2 and V2 uniformly and inde-

pendently from V and do a random walk of length

~ from U2 to V2.

Here ~ = co logn and s(~) ~ IV-3K-2. Since G is

regular, U1 and V1 and U2 and V2 have each the same

(uniform) distribution in the two experiments. However

VI depends on U1 and therefore the dist ribut ions of WI

and W2 differ slightly. What we claim though is that

for any event & depending on walks of length r,

I Pr((u~, v~, W,) ~ ~) - Pr((ua, va, Wa) ● 2)] < s(~).

This follows from the stronger claim that for any u G V

and any event E depending on walks of length T

[Pr((ul,vl,Wl) Et I u, =u)

– Pr((ua, va, Wa) E ~ I U2 = u) I ~ s(7),

which follows from (3) and (4).

The notation J3(m, p) stands for the binomial ran-

dom variable with parameters m = number of trials,

and p = probability y of success.

3 Static routing with bounded

congestion

In this section we present an algorithm for static

routing with bounded congest ion. We first use a flow

algorithm to randomize the endpoints. We then connect

each pair of (new) endpoints by a random path. At this

point, most of the edges have a limited congestion but

some edges are overloaded. We then remove all paths

that use overloaded edges. With high probability the

number of disconnected pairs is sufficiently small that

we can use an algorithm for finding edge-disjoint paths

[4] to reconnect them. More formally our algorithm is:
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Algorithm

Input: An r-regular @expander G = (V, E). A col-

lection of K = a(n)n/ in n pairs of vertices denoted

{(al, b,), ..,, (aK, bK)} such that no vertex in V par-

ticipates in more than s pairs.

Output: A set of K paths, {Pl, . . . PK} such that Pi

connects aj to ba and the maximum congestion g on any

edge is bounded by

,=(‘(s+kxlw for cr < 1/2;

( O(s+a+loglogn), for o ~ 1/2.

where ci = min(a, l/log logn).

Phase 1. Choose independently (with replacement )

uniformly at random, two multisets RA and R~ of 2K

vertices each in V.

Phase 2. Select multisets QA C RA and QB C RB

of K vertices, such that every element in QA U QB has

multiplicity at most max(4K/n, 1). If such sets cannot

be found, then stop. The algorithm has failed.

Phase3. LetSA = {al, .,aK}andS~ = {bl . . ., bK}.

Using a flow algorithm in G twice, connect in an arbi-

trary manner the vertices of SA (resp. SB fort he second

flow) to the vertices of QA (resp. QB ) by K paths as

follows:

● Assume that every edge in G has a capacity equal

to max(s, 4K/n, 1)/~.

. View each vertex in SA (resp, SE) as a source with

The

capacity equal to its NHIltlphcity in SA (reSp. SB )

and similarly every vertex in QA (resp. QB ) as a

sink with capacity equal to its multiplicity in QA

(resp, QB)

expansion properties of G ensure that such flows

always exists.

Phase 4. Let @ (resp. ji) denote the vertex in QA

(resp, QB ) that was connected to the original end-point

al (resp. bi ). Choose Z1, 22, . . . . ~K uniformly at ran-

dom in V and then choose trajectories IVa (resp. -W:)

of Iength ~ = coin n that go from tii to ~i (resp. bi to

~i)according to the distribution on trajectories, condi-

tioned on wi,o = @ and wi,~ = xi. (The constant Co is

discussed in the analysis.)

Let v(e) be the number of trajectories that use the

( ) be a parameter defined inedge e. Let g~aX = g~aX a

the analysis below. For every edge e with v(e) > g~~

delete all the trajectories using it. For all i such that

both Wi and W; survived, connect iii to ii using Wi

followed by W; with loops removed. (This will lead to

congestion at most gmax. )

If the numbers of disconnected pairs is “too large”

(see analysk), then stop. The algorithm has failed.

Otherwise reconnect them using the algorithm in [4] on

G.

The final path from ai to b; is the union of the paths

from ai to iii, and from bi to ii found in Phase 3, and

the path from tii to ~i selected here, with loops removed.

End Algorithm

We will show that the algorithm above succeeds with

probability greater than 1/3 for any given input. Thus

by repeating it O(log n) times we prove

Theorem 1 There is an explicit polynomial time algo-

rithm that with h$gh probability can connect any set of

K = a(n)n/in n pairs of vertices on a bounded degree

expander so that no edge is used by more than g paths

where

g={ ‘(S+K22W

for c1 < 1/2;

1. O(s+a+loglogn), fOT Cr ~ 1/2,

& = min(a, 1/ log log n), and s is the muzimal muh$i-

plicity of a vertex in the set of pairs.

Proof: We leave the discussion of the flow phase to the

full paper.

Assume for a moment that we start random walks

of length ~ = co inn from every element of RA, with-

out any conditioning on their other endpoint. Let v’(e)

be the number of walks that use the edge e in this

case. Then v’(e) < B(2K, 2~/(rn)) in distribution.

(Each walk starts at an independently chosen vertex

and moves to an independently chosen destination. The

steady state of a random walk on G is uniform and so

at each stage of a walk, each edge of G is equally likely

to be crossed.) Thus for any t >0

Pr(v’(e) = t)<

(23 (3’

5(=)’=(’ea::)co
Now let vi(e) (resp. v2(e)) be the number of trajec-

tories Wi (resp. W/) in phase 4 that use e. We choose

co such that the separation between the distribution of

the endpoint of a walk of length ~ and the uniform dis-

tribution is less than (say) l/(n3K2 ). Then in view of

the paragraph above, we have
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where the error term comes from the fact that the end-

point of each trajectory is chosen uniformly at random

rather than according to the distribution of the end-

point of the walk. Note also that we have to consider

VI and U2 separately because we want the endpoints to

be chosen independently.

The results of [4] imply that given any n vertex,

bounded degree, regular ~-expander G and given any

set of q < n/(ln n)’ disjoint pairs of vertices in G, it is

possible to find with high probability a set of paths in

G connecting the q pairs, such that each edge in G par-

ticipates in no more than 1 + I/# paths. The parameter

K depends only on the expansion properties of G. Fix it

to be the value corresponding to the input graph here.

We now consider two cases:

Case 1: a < 1/2

Define

1

36 in in n
to = 4e2c0 +

ln(l/&) 1

9max = 2~0

Observe that

g’(%)’’2’o(2)’0‘ (%3’:6)
tlJ/2

./

()

<~ ~

1

– 4r to
<
– 4r(lnn)fi’

Suppose that we delete all those trajectories Wz or W;

which use an edge with max{vl (e), vz(e)} ~ to. The

number of pairs of vertices which become disconnected

is at most

A = ~ 2tl{e : vi(e)= t}l+ ~ 2tl{e : r+(e) = i!}l.

It follows from (5) and (6) (there are m/2 edges) that

E(A) < n/(2(ln n)”) + l/n and so with probability al-

most 1/2 we find that A < n/(ln n)’. We now re-link

these pairs using the algo~thm of [4] at an additional

congestion cost of 1 + l/fl. Thus the total congestion

on an edge is at most

max(s, 4K/n, 1)

P ‘2’0+(1+;) ‘0(’+ 2:7;)

Case 2: cr ~ 1/2. This time we take

to = [4ae2c~ + 3tc in in nl = O(a + log log n),

9max = ztO

and proceed as before. The congestion now is 0(s + a +

log Iogn). ❑

4 Dynamic Selection of Paths

We define a stochastic model for studying a dynamic

version of the circuit switching problem. In our model

new requests for establishing paths arrive continuously

at nodes according to a discrete Poisson process. Re-

quests wait in the processor’s queue until the requested

path is established. The duration of a path is exponen-

tially distributed.

Our model is characterized by three parameters:

● PI is an upper bound on the probability that a

new request arrives at a given node at a given

step.

● P2 is the probability that a given existing path is

terminated in a given step. A path lzves from the

time it is established until it is terminated.

● g is the maximum congestion allowed on any edge.

We assume that the destinations of path requests are

chosen uniformly at random among all the graph ver-

tices.

Our goal is to characterize the relationship between

these parameters that ensures stability of the system.

(By stability, we mean that the expected length of any

queue does not grow unboundly in time). We also es-

timate the expected delay incurred by a request in the

steady state distribution.

We study a simple and fully distributed algorithm

for this problem. In our algorithm each processor at

each step becomes act ive with probability y P{ > PI (P;

is defined later). An inactive processor does not try to

establish a path even if there are requests in its queue.

One effect of this is to moderate the injection rate for

vertices with large queues. Also, just for the analysis,

we imagine that if a process is active but its queue is

empty, then it tries to construct a ghost path to a ran-

dom vertex. The lifetime of a ghost path is distributed

as that of real paths.

Our algorithm is simply this: Assume that a is active

at step t,and the first request in a’s queue is for b.

Processor a tries to establish a path to b by choosing

a random trajectory of length T = co inn connecting a

to b. If the path does not use any edge with congestion

greater than g – 1, the path is established, otherwise the

request stays in the queue.

Theorem 4 Let

{

1
@=min —

Tg

}ln(grn) ‘ Ag+llig

There exists a constant ~ such that if PI ~ 7clP2, then

the system is stable and the expected wait of a request

in the queue is O(l/P1).
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Before giving the proof let us see the consequence of

this theorem. Let E(N) = nP1 be the expected num-

ber of new requests that arrive at the system at a given

step, and let E(D) = l/P2 be the expected duration of

a connection. For the system to be stable, the expected

number of simultaneously active paths in the steady

state must be at least E(N) E(l)) = nI’1/l’2. Plug-

ging g = in in n/ lnw for some w in the range [1, in n] in

the definition of @ we get

()+=i-1 J----
w log n

Thus the theorem above implies that for such a conges-

tion g, the system remains stable even if we choose PI

and P2 such that

E(N)E(D) = + = -@ = Q (+-) ,

in which case the dynamic algorithm utilizes the edges of

the network almost as efficiently a the static algorithm

analyzed in section 2 (there seems to be an efficiency

gap of maximum order in in in n for w < in in n).

Proof of the theorem: Partition time ~nto intervals of

length T (to be determined). Let Iitt denote the history

of the system during the first t time intervals. Define

the event

{

If the queue of processor v waa not

empty at the beginning of interval t
qv, t) = th

en v served at least one request dur-

ing interval t }

Our goal is to show that for all v and t,

To this end consider the following four events:

● :1 defined as

Processor v was not active in any step

}
S1(v, ‘) = {of interval t.

Then

provided that

(8)

● 82 defined as

{

At the beginning of interval t there is

a path in the network that is still alive

‘2(t) = although it was established before the

beginning of interval t– 1, }

Clearly, at the start of time interval t – 1 there are at

most gnz live paths. So

Pr($2(t) I lit-z) ~ gm(l – P2)T < grne-p’T < ~,

(9)

provided that

TP2 ~ ln(lOgrn). (lo)

● & defined as

{

There are more than 2nP{/P2 live

&s(vIt) =
paths that were created within inter-

vals t— 1 and twhen v makes its first

attempt in interval t I

To evaluate the probability y of this event, we overesti-

mate the number of paths in the network when v makes

its first attempt at establishing a path in time interval

t. We include in the count ghost paths, and paths or

ghost path attempts which could not be established be-

cause of congestion. The life of such failed paths will

also be geometric with parameter P2. In this count we

exclude paths attempts from before the start of period

t – 1. Suppose that period t– 2 finished j. time steps

ago. Then our estimate is

. ?’n

wnljnO

where XW,j is the 0/1 indicator variable for the event

{

j time steps ago, a path attempt was

made from w and this path is still

alive. }

Then Pr(XW,j = 1) = P~(l – P2)J and so

An easy argument shows the concentration

therefore

Pr(&(v, t) \ Ht-z) = o(1)

of X and

(11)

● &4 defined as

{

The first path that processor v tries in

interval t includes an edge used by at

‘4( V”) = least g other paths that were created

within intervals t – 1 and t. I

We break the ensuing analysis into 2 cases:

case1: 2+%)’>1/10

Then

Pr(&(v, t) I 11~-z, X ~ 2nP~/Pz) (12)
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“:(23(Z+A)’
()

4eTP~ g ~ ~
<2T ——

TgPZ – 10’

provided that

()
I/g

rgP2 1
P;<= —

20T
(13)

In the above calculation we have implicitly used the fact

that the X path attempts are a collection of X random

walks between randomly chosen pairs. We include un-

successful path attempts in order to avoid conditioning

problems caused by paths blocking paths. Since

:(v,t) ~ :I(v, t) U&z(t) u&3(v, t) U&A(v, t)

we see that

Pr(Z(v, i) I H~_z) < ~ + o(l),

and we conclude that that in any segment of 2T steps

processor v is serving at least one request with probabil-

ityy at least 1/2. The number of new arrivals in this time

interval has a Binomial distribution with expectation at

most 2TP1 < 1/2, provided that

By standard analysis the queue under these conditions

is stable, and the expected wait in the queue is 0( l/Pl).

It remains to check that if ~ is small then we can

choose T and PI < P; < 1 to satisfy (8), (10), (13),

(14). We take

1
T=—

4YPz+

P( = min
{

TgP2

10007(9+1)/9” ‘ 1
}

This completes the proof for Case 1.

c-e 2: ‘~(*)g <m

Here we take T as above and P( = 1. Here (12) holds

by the case hypothesis. u

5 Existential results regarding

edge-disjoint paths

In this section we show how to use the Lov6sz Local

Lemma [5] to prove the ezistence of edge disjoint paths

in any ~-regular (a, ~, y)-expanders. At the moment

we do not see how to make the argument constructive.

More precisely we have

Theorem 2 Gtven a bounded degree (a, ~, y)-ezpander

graph there exzsts a parameter c that depends on a, ~,

~, but not on n, such that any set of less than cn/(ln n)2

dzs~oint patm of vertices can be connected by edge dis-

~oint paths.

Proof Let

II
K= ~

577T2 ‘

and C2 is a constant discussed below.

Let (al, bl), (ca2, bz),. . . . (a~, b~) be any set of K

disjoint pairs of vertices. We claim that G contains edge

disjoint paths joining a; to bi for i = 1,2,. ... K.

Our proof follows the blueprint used in [4]. We start

by splitting the original graph G = (V, 1?) into two dis-

joint /?’-expanders GR = (V, ER) and GE = (V, EB)

exactly as was done in [4]. The salient facts here are:

(a) ~ > 1; (b) the construction succeeds with proba-

bility 1 – O(1), thus such a split always exists; and (c)

the maximum degree in GB is at most 3r/4 and the

minimum degree is at least T/4.

The disjoint paths are constructed in two stages. In

the first stage we choose a random set

of 2K distinct vertices. We connect the original end-

points to the vertices of Z in an arbitrary fashion via

edge-disjoint paths in GR, such that each Z-vertex is the

endpoint of exactly one path. A simple flow argument

proves constructively the existence of such edge-disjoint

paths on any graph with edge expansion larger than one.

Let & (resp. ba) denote the vertex in Z that was con-

nected to the original end-point aa (resp. bi ) in the first

stage. The core of the proof is to show via the Lovbz

Local Lemma the ~xistence of edge-disjoint paths in GB

connecting Ci to bi, for i = 1, .... K. TO this end we

choose for each i a random path of length 2r from tii to

ii. However the direct application of the Loviisz Local

Lemma is precluded by the fact that we do not have

any control over how the pairing (~, ii) was done, and

thus, although the probability of paths sharing an edge

is small, the dependency graph is complete. To avoid

this calamity, further randomization is necessary, as fol-

lows: assume that we rename the vertices of Z at ran-

dom. Then the pairing induced by the flow becomes a

random pairing.

More formally, let p be a random permutation of

[2K]. Let

The flow algorithm defines a pairing ~ : Z + Z, that is,

a function ~ such that for all ~ E Z we have ~(<) #$

and and ~2(<) = <. This pairing is defined by ~(~) = bi
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and j (ii) = 61. In turn, it induces a pairing 4 on [2K]

via

~((a) = <j * f(zp-l(i)) = ‘p-l(j) ++ 4(~-l(i)) = ~-’(j).

It is easy to verify that after f is fixed, if p is chosen

uniformly at random among the permutations of [2K]

then 4 is uniform over the set @ of all possible pairings

of [2K]

Now suppose that for 1 ~ i ~ K we choose x; with

distribution

dB(v)
Pr(q = v) = 7rB(v) = —

21EBI

(the steady state distribution of a random walk on GE)

and then choose IV( and W;’ randomly from all trajec-

tories of length T which go from Zi to xi and ii to zi

respectively. The distribution used for choosing W; is

that of a random walk of length r starting at ~ condi-

tional on ending at xi. Let Wj denote the walk which

starts at ~j for 1 ~ j < 2K and define the event

fi,j = {Wi fl Wj # 0 and 4(2) # j}.

Our proof reduces to showing that the event

& = n~i,j

i <j

has positive probability.

Now define @o c @to be the pairing {(1, K+ I), (2, K+

2),..., (K, 2K)}. Let Pro denote probabilities condi-

tional on # = #o. We will prove that

PrO(f) >0. (15)

Since Pr(d = 40) >0 this suffices to complete the proof.

Now if 4 = 40 then

$ = n di,j

lj-il#K

where

Ai,j = {Wi n Wj + 0}.

We will apply the local lemma to the events Ai, j, con-

ditional on 4 = #o.

For each pair (itj) with [j – ZI # K we let

Si,j = {Ait,j) : i’, j’ @ {i, j,i+K, j+ K}}.

Fix i, j and let L?denote any event dependent only on

the outcome of events in Si, j. Then

Pro(di,j I B) (16)

= ~ Pro(Wifl Wj#O, zi=., zj=vl B)

~,ycv

= ~ Pr~(Wifl Wj #OIZi ‘.,.Zj =~) (17)

Z,wsv

= Pro(di,j). (18)

Equation (17) follows from the fact that if we fix z,

and z] then the occurrence of Ai,j does not depend on

the paths { W~ : k @ Ii,j}. Thus conditional on 4 =

40, As,j is independent of the events in Si,j. Thus the

dependency graph has maximum degree d where

d ~ 4K. (19)

This justifies the complexity of the previous analysis. If

no care is taken, the dependence graph will be complete.

Still keeping i, j fixed, let @i,j = {4 E @ : q!(i) + j}

and choose an arbitrary 4’ c @i,j. Now

Pro(di,j) = ~ Pro(di,j , ~i = Z, Zj = V)

z,yEv

= ~ pr(Ai,j 1., = Z,zj = !J14 = #o)

Z,U6V

XPr(Zi= ZIZj=&! 14=40)

= ~ pr(Ai,j lzi=Z, zj=y,4 =4’)

Z,ycv

XPr(Zi= Z, Zj=y 14=4’) (20)

= Pr(di,j I 4 = 4’). (21)

To justify (20) observe that

●

●

pr(di,j I zi = X,zj = Y,4 = 40) = Pr(di,j I Zi =

Z,zj = y,q$ = 4’) since given Zi = x and zj = y as

long as ~(i) + j, that is zi is not paired with zj,

we can decide Ai ,j without further reference to 1#1.

Pr(zi ‘Z, Zj =Y l#=#O)=Pr(zi =Z, zj =

y I 4 = 4’) since, conditioning on Z and on the

pairing induced by the flow phase on Z, if {x, y} ~

Z or z is paired with y, then both sides are O;

otherwise, the LHS is proportional to the number

of permutations that induce 40 and make zi = x

and zj = y. This is clearly the same as the number

of permutations that induce 4’ and make zi = z

and zj = y.

It follows from (21) that

= Pr(di,j / 4(0 # ~)

and thus

Pro(Ai,j) ~ Pr(d(;) #j) ~ Pr(di,j I Zi = Z,zj = Y)

X,YCV

xPr(za =Z, Zj =Y) (22)

Since 4 is a random pairing,

Pr(f#(i) + j) = ~. (23)
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The sum in (22) is the probability of the following

event .VI: Choose z, y uniformly at random (without

replacement ). Choose z’, y’ with probability TB. Do

random walks W, W’ of length ~ from z to z’ and y to

y’. The event is {W (1 W’ # 0}.

We now prove that

P,( ~, < (36+ 0(1))~2
. — rn

(24)

Let P~~) be the distribution of a random walk on GE

starting from v after r steps. Consider the event M‘

which differs from M only in that x and y are cho-

sen independently with distribution ~E, and x’ and y’

are chosen with the distribution P:?) and P~~) respec-

tively. (We can now have z = y, but this has prob-

ability 0( I/n) and we will deal with it later. ) Let

W=el, e2, . . ..e~and W’= fl, fz, . . .. f.asedge se-

quences. Then for 1 ~ 1, m < T we have

since the edges of each random walk have the uniform

distribution over E(GB ) and the start points of these

walks are chosen independent ly. Thus,

Let now M“ be the same as M’ except that we choose

z’ and y’ according to ~B. We take C2 such that the

separation s(T) is less than 1/n, and therefore

Pr(M”) < Pr(M’) + :.
n

Finally, given the bounds on the degrees occurring in

GB, when choosing a pair z, y according to XB we find

that no pair occurs with probability more than 9 times

any other pair, Thus

Pr(M) <9 Pr(M” I z #y) ~ 9Pr(M”)/ Pr(z #y)

and (24) follows.

We see from (22), (23) and (24) that

pro(~, j, ~ (36+ 0(1))T2

Tn

Using this and (19) in the local lemma yields the theo-

rem. •1
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