
Static and Dynamic Weaving in System Software
with AspectC++

Wolfgang Schröder-Preikschat, Daniel Lohmann, Fabian Scheler, Wasif Gilani, Olaf Spinczyk
Friedrich-Alexander University Erlangen-Nuremberg
{wosch,lohmann,scheler,gilani,spincyk}@cs.fau.de

Abstract— System software strongly relies on the availability
of static as well as dynamic adaptation techniques. With Aspect-
Oriented Programming (AOP) it is now possible to adapt even
policy-like crosscutting concerns in the implementation of system
software. While this is straightforward in the static case, dynamic
adaptation of crosscutting concerns requires an expensive dy-
namic aspect weaving infrastructure. Furthermore, the relation
between static and dynamic aspects is widely unexplored.

In this paper we present our experiences with static and
dynamic adaptation of crosscutting concerns in the embedded
operating system eCos. The work is based on the novel “single
language approach”, which allows us to configure the binding
time of aspects, and a “family-based dynamic weaver infras-
tructure”, which reduces the resource consumption needed for
dynamic AOP by tailoring the run time system. In our prototype
implementation all this has been integrated into an environment,
which allows us to “play” with the binding time of aspects and
supported dynamic weaver features. Thus, we can now answer
questions about the resource consumption of these adaptation
techniques and the relationship of static and dynamic aspects in
general.

I. INTRODUCTION

System software, especially in the domain of resource con-
strained embedded systems, strongly relies on the availability
of static adaptation techniques. An application- and platform-
specific tailoring of the system is usually performed before it
is compiled during a special configuration step. Besides static
adaptation at compile-time, dynamic adaptation of the running
system is often an important requirement too, as stopping and
re-starting system software means that all applications would
have to be stopped as well. Therefore, modern operating sys-
tems in the workstation domain support dynamically loadable
modules.

A. System Software Product Lines

It is simply impossible to build a one-fits-all system that
fulfills the requirements of all potential applications, while
still being thrifty and economical with system resources. The
solution is therefore to tailor down the operating system so that
it provides exactly the functionality required by the intended
application, but nothing more. This leads to a family-based or
product-line approach, where the variability and commonality
among OS family members is expressed by feature models
[8]. Special tools are used to extract and statically configure
the concrete operating system based on an application-specific
feature selection [4]. As an example, the well known eCos
system [1], which we used for the case study presented in

this paper (see section VII), can be regarded as a statically
configurable operating system product line.

The overall quality of an OS product-line depends mostly on
the offered levels of variability and granularity. A crucial point
is the mapping of all selectable and configurable features to
their corresponding, well encapsulated implementation com-
ponents. Fundamental system policies, like synchronization or
activation points for the scheduler, are typically reflected in
many points of the OS component code. This crosscutting
character makes it almost impossible to implement them as
independent encapsulated entities and thereby restricts vari-
ability and granularity. Aspect-oriented programming (AOP)
has proven to be a promising way to deal with crosscutting
concerns in OS code [7], [23], [10]. It allows encapsulating
the implementations of crosscutting concerns in entities called
aspects, which are then woven into the OS component code
(e.g. classes) at build time. A well-directed application of AOP
principles in the development of OS product lines can therefore
lead to a higher variability and granularity of the selectable OS
features, as their implementations can not only be encapsulated
by classes, but also by aspects. This potentially results in very
flexible systems that offer configurability of even fundamental
architectural properties [17], [18].

Static adaptation of system software for a specific ap-
plication profile or specific hardware works well in many
domains. However, in the emerging domain of smart devices
(like mobile phones, personal digital assistants or wearables),
the set of executed applications as well as the non-functional
requirements to the operating systems do vary. Manufacturers
are responding to this challenge by enlarging their devices
by more system resources and large operating systems that
implement many features, but are less reusable and scalable.
This is unsatisfactory, as it noticeably increases production
costs, weight and power consumption of mobile devices. We
therefore advocate adaptable operating systems, which provide
a well-balanced way of adaptability, while still being based on
application-specific tailoring. Static and dynamic aspect weav-
ing are crucial techniques for the design and implementation
of these novel system software product lines.

B. Outline

The outline of this paper is as follows: we start with
a motivation by describing the vision of adaptable aspect-
oriented operating system product lines in the next section.
This is followed by a discussion of related work. The sections

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10-7695-2507-5/06/$20.00 (C) 2006 IEEE

IV and V describe two novel concepts which we consider
crucial for the implementation of the vision, namely the
“Single Language Approach” and the “Family-Based Dynamic
Weaving Infrastructure”. In section VI, implementation issues
of these concepts are discussed. Section VII presents a case
study which was conducted with the embedded operating
system product line eCos. The final section will summarize
our conclusions.

II. MOTIVATION: ADAPTABLE OPERATING SYSTEMS

A. Static Weaving for Static Adaptation

The set of requirements (services and non-functional prop-
erties) that has to be fulfilled by a tailored OS depends on the
requirements defined by the (potentially) executed applications
as well as on the requirements defined by global user policies,
like the energy or security mode. The requirements set leads to
a feature selection, which corresponds to a specific member of
the operating system family. The feature selection is fed into
generators, which configure and build the final product. The
static aspects are superimposed onto the primary functionality
in an additive manner without altering the existing architecture.
These aspects cannot be removed or reconfigured later during
runtime. The result of static adaptation is an application-
specific product, which contains only those features that are
needed by the application.

B. Dynamic Weaving for Dynamic Adaptation

Once the system starts running, it may be subject to the
changing requirements during runtime. Several approaches
have been applied in the past to achieve dynamic adaptation
and reconfiguration of the software systems during runtime.
Some try to provide adaptability by using patterns in several
features [22]. However, the customization resulting from this
approach is still unsatisfactory as it leaves hooks in the
core code and null strategies substitute the excluded features
[12]. This adds to the complexity of code as well as to
the memory footprint. Other approaches suggest the use of
reflection and component frameworks [15], [14]. In some
of these approaches, the system implementation adapts itself
according to the changed environment by means of selecting
different implementation strategies. These approaches mainly
address the customizability and adaptability aspect of the
systems. The drawback of these techniques is that they have
rather large memory requirements and also incur performance
overhead.

Dynamic weaving is a natural choice for implementing
an adaptable system due to the reason that it can apply
code retrospectively to a running application. The dynamic
adaptation of complex software systems is generally dependent
on policies, which all tend to be crosscutting concerns, and,
hence are realized as dynamic aspects.

Reconfiguration of an adaptable operating system takes
place when the set of requirements changes. This happens,
if a new application is about to be executed with some
requirements that are currently not offered by the system, or

if a global policy, such as switching to low-power mode, is
applied.

To our understanding, all of these configurations are still
members of one family of operating systems, where each
configuration (feature selection) leads to one distinct family
member. The process of adaptation can be understood as mor-
phing from one feature selection into another. By adaptation to
the closest set of the demanded features, the system is always
tailored with respect to the actually executed applications.

C. Flexible Feature Binding Times

It should be configurable at compile time whether certain
operating system features may be selected or deselected at
runtime. The general idea behind this is that static features can
be implemented more efficiently than dynamically changeable
features and should always be preferred. If a feature has a
crosscutting nature it will be implemented by an aspect. De-
pending on the system configuration an aspect could be static
or dynamic. Furthermore, static and dynamic aspects have to
coexist in the system. Solutions that only support dynamic
weaving are not acceptable due to their low efficiency.

D. Minimal Overhead

The motivation for our work on dynamic adaptation is
to provide a better, i.e. more resource efficient, OS support
for applications in a dynamically changing environment than
it could be provided by a one-size-fits-all solution. If the
necessary infrastructure for dynamic weaving costs more than
we can save, the approach fails.

A facility for on-demand adaptation needs to be provided
by the OS itself in some way. The main question is, how to
rebind features at runtime (in particular their implementation
classes and/or aspects), if the set of required features changes?

For classes and libraries this task can be done by a dynamic
loader/linker, which loads the component and performs all
necessary steps to bind it, like relocation and component
registration. Such a dynamic library loader is already present
in commodity operating systems such as Windows, Linux or
Solaris.

However, as our product line follows an AOP-based ap-
proach, features may also be implemented by aspects. For
dynamic loading/unloading of aspects, the system has to
provide facilities for dynamic weaving. Besides supporting
flexible binding times, a minimal overhead dynamic aspect
weaver is the second big challenge of the described vision.

III. RELATED WORK

Many different approaches have been proposed by the
AOSD community for dynamic weaving. Most of them target
the Java domain. Much fewer have been suggested for C or
C++. As the performance and memory overhead of Java is not
feasible for the domain of embedded operating systems, we
summarize the Java-based approaches only briefly, but focus
on the C/C++ based approaches.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

2

TABLE I

LANGUAGE FEATURES AVAILABLE IN SEVERAL DYNAMIC WEAVING APPROACHES FOR JAVA (ASPECTWERKZ, STREAMLOOM), JAVABEANS (JASCO), C

(TOSKANA, ARACHNE, TINYC2) AND C++ (DAO C++)

Dynamic Weavers Java-based C/C++ based
category feature AspectWerkz SteamLoom Jasco ... Toskana Arachne TinyC2 DAO C++

join point call
√

-
√

-
√

- -
types execution

√ √ √ √ √ √ √
set/get

√
-

√ √ √
- -

cflow
√ √ √

-
√

- -
advice before

√ √ √ √
-

√ √
types after

√ √ √ √
-

√ √
around

√
-

√ √ √
- -

intro- attributes - - - - - - -
ductions functions

√
- - - - - -

interaction ordering
√

?
√

- - - -
context args, . . .

√
-

√
- - - -

A. Dynamic Weaving Approaches for Java

Several approaches have been suggested for dynamic weav-
ing in Java [19], [20], [3], [6], [5], [21]. These approaches are
based on Java-specific APIs, JVM debugging interface, static
byte code instrumentation, runtime byte code manipulation
and virtual machine extensions. Overall, dynamic weaving in
Java programs seems to induce significant costs. In a recent
paper, HAUPT and MEZINI compared several dynamic weavers
and observed a performance loss factor in the range of 10
to 10,000 [13]. There seems to be a relationship between
overhead and supported AOP features, as the dynamic weaver
which performed best in their study (SteamLoom [5]) provides
the smallest set of AOP features (Table I).

B. Dynamic Weaving Approaches for C/C++

Most approaches to support dynamic weaving in C are based
on runtime binary code manipulation. Arachne [9], TOSKANA
[10] and TinyC2 [26] rewrite the binary code at runtime to
weave and unweave aspects. The actual weaving positions
in the binary code are examined with the help of symbol
and/or debug information, generated by the C compiler during
compilation of the targets.

Due to the principle of binary code manipulation, the
performance overhead of these weavers is significantly lower
than for the Java-based systems [10], [9]. The offered AOP
features are, on the other hand, also limited (Table I). The most
serious limitation is, however, their platform-dependence, as
especially in the domain of embedded systems a broad variety
of CPU and hardware platforms is used. The available dynamic
weaver implementations are not only limited to a specific
processor platform, but also to a specific compiler, as the
weaving process depends on symbol/debug information and
specific code patterns generated by the compiler for potential
joinpoints such as function calls. State-of-the-art optimization
techniques, such as code inlining or stripping of symbol
information, have to be disabled. While this may be considered
acceptable for C, most C++ compilers implicitly perform such
optimizations.

We know only one approach which is platform-independent
and targeting the C++ domain. In DAO C++ [2], aspects

are woven by registering them against a runtime registration
system. The original C++ code has to be instrumented, either
by hand or with the help of tools, to call the runtime system
at each potential joinpoint.

C. Dynamic Weaving in Operating Systems

Most existing work on using AOP in operating systems is
focused on static weaving [7], [23]. So far, only TOSKANA
[10] addresses dynamic weaving of aspects in operating sys-
tems, namely the FreeBSD kernel.

IV. THE SINGLE LANGUAGE APPROACH

In order to support flexible binding times of features that are
crosscutting concerns in the implementation (see section II-C),
we are working on an extension to AspectC++ that allows
the developer to write both static and dynamic aspects in
the same AspectC++ language. Thus, it would be transparent
for the developer whether s/he is describing a static or a
dynamic aspect. Following this “single language approach”,
the decision whether some aspect is static or dynamic can
be postponed to the configuration stage and has no impact
on the implementation stage. This approach supports deriving
systems that offer as much dynamism as necessary while it
still allows resolving as much statically as possible.

The single language approach gives rise to the question,
which of the well-known aspect-oriented language features are
able to be implemented with a dynamic aspect weaver. As
mentioned in section III, only a few dynamic aspect weavers
targeted at the C/C++ domain have been described. Most
of them support only a very limited set of aspect-oriented
language features in comparison to the (normally) statically
woven AspectC++ language [24]. Dynamic aspect weavers in
the Java domain typically support more AOP features than
their counterparts for C/C++, but still a lot of features known
from static weavers are not available (see table I). The most
important missing features in dynamic weaving environments
are:

• all kinds of introductions
• access to join point context information by the advice code
• advice ordering to deal with aspect interaction problems

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

3

For the single language approach we would like to support
the same set of AOP features regardless of the weaving
time. Therefore, we will now discuss the features, which are
typically not available for programmers of dynamic aspects.
The goal is to find out whether (1) there is a fundamental
semantic problem that prohibits this feature in a dynamic
weaver environment, (2) the feature could be implemented,
but is too expensive, or (3) there is no reason for the omission
and a viable implementation is possible.

A. Dynamic Introductions – General Remarks

In AspectC++ (and also in AspectJ) the component code
may reference new elements (functions, attributes, or types)
of a class, which are introduced by an aspect. In this case
the static weaver makes sure that the declaration of the new
element is visible before the referencing code fragments are
compiled. However, this is simply impossible if the introduc-
tion is performed by a dynamic aspect, which is unknown
when the component code is compiled. The elements intro-
duced by a dynamic aspect can only be referenced by code
that knows the aspect. Thus, the referencing code has either
to be loaded together with the dynamic aspect (such as advice
or aspect member functions) or is loaded later, but aware of
the aspect. The result is a “knowledge hierarchy” of aspects,
which introduces elements, and the code which references the
introductions.

On the one hand the hierarchical relationship of modules
means that the runtime system has to make sure that no
dynamic aspect is unloaded as long as other modules, which
are aware of it, are still loaded. On the other hand we
could statically prepare a dynamically loadable module with
respect to the aspects it is aware of. We will later see that
this possibility is important for coping with some of the
problematic feature that will be discussed in the following
paragraphs.

B. Dynamic Introduction of Types

A dynamically introduced type could, for example, be a
type alias (typedef) or a inner class. As inner classes and type
definitions do not affect the object layout in C++, introductions
of types are not problematic. A newly loaded module would
be aware of all the types introduced by its parents in the
knowledge hierarchy, while the root module knows none of
these extensions.

C. Dynamic Introduction of Attributes

Dynamic attribute introduction has the fundamental prob-
lem that either (1) the layout of objects, which are already
instantiated in the running system, would have to be changed
dynamically or that (2) objects with the new and the old layout
have to co-exist. This problem is at least as old as the problem
of schema evolution in databases. As far as we know, no
dynamic weaver supports this feature yet.

Our own dynamic weaver implementation also does not
support this feature, yet, but the following idea might solve
the problem in our context: For compiled languages with their

tight coupling of code and data, changing the object layout
would require too many dynamic changes in the machine code.
Therefore, all objects should contain an additional “introduc-
tion pointer”, which can be used at runtime to add and remove
dynamically introduced attributes. Because all objects contain
this pointer, no relocation or code manipulation will be nec-
essary. Modules, which are aware of an introduced attribute,
are compiled with the introducing aspect. The weaver, which
prepares the modules, could transform any attribute access
operation into a call of an accessor function that looks up
the attribute in a data structure referred by the introduction
pointer.

Objects, which already exist in the running system shall
also be extended. This avoids the need to check, whether
an object contains the introduced attribute, in code, which is
aware of the introduction. The aspect programmer will have to
provide an initialization expression for the introduction. The
same expression can be used in the case of static weaving for
the initialization during object construction.

D. Dynamic Introduction of a Non-Virtual Member Function

The implementation of dynamic introductions of member
functions is in some cases very simple, because a referencing
module knows the introducing aspect and, thus, can be af-
fected by the aspect during compilation. For example, inlined
member functions could be introduced into the target class
during compilation of the referencing modules. All calls to this
function can be resolved and replaced by an inlined version of
the introduced code. The running system is not affected by this
manipulation. The same technique even works for non-inline
functions. In this case the introducing aspect has to provide the
compiled code of the introduced function when it is loaded. It
furthermore should statically affect the definition of the target
class for the modules, which are compiled later. These modules
will find the declaration of the introduced function in their
version of the target class definition and the compiler will
generate a function call with an unresolved reference. This
reference will later be resolved by the dynamic linker when
the module is loaded into the system after the introducing
aspect.

E. Dynamic Introduction of a Virtual Member Function

More problematic are introductions of virtual member func-
tions. Simply inserting a declaration and definition into the
target class while compiling referencing modules would result
in inconsistent versions of virtual function tables or even
inconsistent assumptions about the object layout in different
subsystems. This leads to unpredictable behavior.

Introductions of virtual member functions into a base class
should furthermore be forbidden, if a non-virtual function with
the same name and signature already exists in any derived
class. Doing this would effectively mean to convert a non-
virtual function into a virtual function during runtime. Too
many points in the machine code (all calls) would have to
be manipulated by this operation. Furthermore, this would

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

4

significantly change the behavior of the running system and
its expectations about the targets of calls.

Nevertheless, dynamic introductions of virtual member
functions are possible. As a referencing module has to be
aware of the introducing aspect, all calls to virtual member
functions introduced by the aspect can be manipulated to
use a separate dynamic dispatch mechanism. This can be
implemented, for instance, by using an additional virtual
function table which is maintained by the aspect.

F. Ordering of Advice Invocations

As far as we know current dynamic weavers for C/C++
ignore the problem of ordering the execution of multiple
advice definitions that affect the same join point. However,
if the advice invocation is controlled by a runtime system, it
would be possible to sort the advice by considering arbitrary
policies.

G. Access to Context Information

Providing context information about the current join point
for advice code is a problematic feature in the case of dynamic
weaving in compiled languages. The reason is that some
parts of the context, which we are used to have in static
aspect implementations, are generated “on demand”. The most
prominent example is the string representation of the join point
signature. However, when the component code is compiled
the dynamic advice code is still unknown. Therefore, no
information is available about the actually needed context
information. If we assume that all context information (e.g.
a signature string, argument values, current and target object
pointer) will or might be needed, the overhead could become
tremendous.

The second problem is to access the context information
in a type-safe way from within the dynamic advice code.
Providing a pointer to the current stack frame is not enough.
Therefore, the dynamic weaver environment has to pass this
context information correctly typed as functions parameters to
the advice code. To perform this task additional wrapper code
is necessary, which at best has to be loaded together with the
dynamic aspect, because the runtime system is not aware of
the advice and its demands.

H. Generic and Generative Advice

An additional level of complexity is reached with the
AspectC++ feature of generic and generative advice [16]. This
kind of advice uses the static type information about the target
join points to access the context information in a generic
way or even to instantiate C++ templates or template meta-
programs with these types. This means that join point-specific
advice code instances are created. In the case of a dynamic
aspect, this kind of advice would either have to be compiled
dynamically or the instances have to be created when the
dynamic aspect is compiled. In many cases the instantiation at
compile time would be possible, because the target join points
might already be known.

I. Conclusions: The Combination of Static and Dynamic
Weaving

In the previous sections we discussed the most important
language features, which are usually supported by static aspect
weavers, but not available in most dynamic weavers for
compiled languages like C/C++. The discussion did not go
very much into the details of possible solutions. Nevertheless,
it shows that in many cases these problematic features are im-
plementable and, thus, a single language approach is realistic.

An important lesson learned from the discussion is that
many of the features can only be implemented if dynamically
loaded aspects and other modules can be prepared at com-
pile time. For example, dynamic introductions of non-virtual
member functions become almost trivial with this assumption.
Therefore, we conclude that the combination of static and
dynamic weaving is even more beneficial than pure dynamic
weaving.

V. A FAMILY-BASED DYNAMIC WEAVING

INFRASTRUCTURE

According to the goal of minimal overhead (Section II-D)
the costs of AOP should scale. This means that the costs should
depend only on the actually affected joinpoints, actually woven
aspects, actually given advice, and actually used AOP features.
There should be little to no “ground overhead” induced by the
general facility to use aspects at all.

For static weaving, it is relatively simple to provide such
scalability and thereby fulfill the goal, as the actual set of
affected joinpoints, used AOP features, etc. is fixed and well-
known. Hence, it is possible to automatically tailor down
the woven-in code and data at weave time according to
the specific requirements.1 A dynamic weaver, however, has
to consider potential joinpoints, which may be affected by
potential aspects that potentially use certain AOP features. It is
not possible to automatically tailor this down, as theoretically
any joinpoint and any available feature may be required by an
unforeseen aspect loaded at runtime.

This flexibility, undoubtedly desirable, comes at a high
price: Compared to static weaving, dynamic weaving induces
high overhead ([13]) and/or is limited to a small set of features
only (Table I). Different applications, however, have different
demands regarding both, flexibility and features. In one case,
a specific dynamic weaving technique may not provide a
required feature, while in another case a less demanding
application is forced to pay for functionality and flexibility that
is not required. Such one-size-fits-all approach is especially
not acceptable in the domain of embedded systems. Most em-
bedded devices are special-purpose systems with very specific
requirements, but strictly limited memory resources.

A. Application-specific Weaver Construction

To overcome these disadvantages, we propose a family-
based approach of constructing application-specific dynamic

1AspectC++, for instance, tailors the stored context information for each
joinpoint to the amount which is actually accessed by advice.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

5

Fig. 1. The Family of Dynamic Weavers (extended from [11]). Features actually used/supported by our current prototype implementation are typed in italics.

weavers from a family of weavers. The feature diagram in
Figure 1 describes the commonalities and variabilities of the
different dynamic weavers. An application-specific tailored
weaver is constructed from the weaver family by leaving out as
much as possible and selecting only those features, which are
required to fulfill the applications demands. Besides a fine-
grained selection of the available AOP features (Supported
AOP Features), it is especially possible to exploit a-priori-
knowledge about the system and its execution environment:

• In the domain of embedded devices, for instance, the set
of classes – and thereby the set of potential joinpoints –
is usually known in advance (JoinPoints Known). Hence, it
is possible to match aspects already at their compile-time
to the set of joinpoints they later need to be registered for.
An expensive match engine to retrieve joinpoint shadows at
runtime can be omitted from the dynamic weaver.

• It is often possible to explicitly filter the set of potential
joinpoints even further to get a much smaller subset that
“makes sense” (JoinPoints Filtered), such as the potential
points of interest for system strategies and other crosscutting
concerns. The vast majority of potential joinpoints in a sys-
tem is never used by any aspect, as many joinpoints hardly
contribute to the application semantics. The execution or
control flows of basic library functions, for instance, can be
considered as such “low-semantics joinpoints”.

• If even the set of potential aspects is known in advance
(Aspects Known), it is possible to generate the joinpoint
filter automatically from their pointcut descriptions. Fur-
thermore, the maximum number of registered aspects for
each joinpoint can be pre-calculated in this case, so it is
possible to fix the size of the runtime advice lists associated
with each joinpoint and omit the necessity for using costly
dynamic data structures. One more benefit is that the order

of aspect execution can be defined and resolved statically,
if all aspects are known in advance.

This approach facilitates low-cost dynamic weavers by pro-
viding and exploiting as much knowledge about the system
and its execution environment as possible. This is comparable
to the optimizations performed by an ideal static weaver,
which basically exploits the same information for this purpose:
actually affected joinpoints, actually woven aspects, actually
given advice, and actually used AOP features. The main
difference is that this information is implicitly available to a
static weaver, while it has to be explicitly provided for the
generation of a tailored dynamic weaver.

B. Summary

Overall, a family-based dynamic weaver infrastructure al-
lows a fine-grained adjustment of the trade-off between flex-
ibility and required resources. In conjunction with the single
language approach (Section IV), this perfectly fulfills the
goal of minimal overhead: For any kind of application, it is
now possible to weave as much as possible statically, while
providing as much runtime flexibility as necessary. Static
versus dynamic weaving of aspects becomes a configurable
and tailorable property.

VI. IMPLEMENTATION

The following sections provide a brief overview of our
dynamic weaver family, as appropriate to understand the
integration of the AspectC++ “single language approach” and
“family-based weaver infrastructure” into an operating system
product line. Static weaving with AspectC++ is already used
and approved [25], [16], [23], [24], therefore we do not discuss
the static part. A detailed description about the dynamic
weaver architecture and runtime has already been presented in
[11]. In the following, we give only a brief overview of some

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

6

Fig. 2. Adaptable OS Tool Chain. The process starts with configuration of the OS (1), in which features (and thereby their implementing aspects) are
configured as static or dynamic. For each dynamic aspect a corresponding implementation class is generated (2). The required features and potential joinpoints
are determined and, together with additionally selected features, used to configure the dynamic weaver (3). The configured OS components are woven with
the generated instrumentation aspect prep and all other static aspects (4). Each generated dynamic aspect class is compiled with the configured aspect runtime
into a loadable module (5). The woven operating system sources are compiled with the configured weaver runtime into the final OS image (6).

fundamental concepts, but concentrate on the application of the
“single language approach”, which is the main contribution of
this paper.

A. Basic Structure of the Dynamic Weaver Family

The prototype implementation of our tailorable dynamic
weaving infrastructure uses source code instrumentation by
static weaving to bind the component code to the dynamic
weaver. For this purpose, the component code is instrumented
in all joinpoints of interest by a static preparation aspect
(prep), which activates the runtime monitor (Monitor) if the
control flow passes such joinpoint. The runtime monitor, in
turn, activates the registered advice and passes joinpoint-
specific context information to the advice code. Code advice
is implemented as member functions of (loadable) dynamic
aspect classes, which have to provide a specific interface
(IAspect). Dynamic aspects register and deregister themselves
against the runtime monitor with their pointcuts and advice.
The dynamic aspect code itself can be linked either statically
with the component code, or loaded at runtime by means of
a dynamic aspect loader (Loader).

B. Implemented Dynamic Weaver Features

The feature diagram in Figure 1 shows, which features are
already available in our implementation. The Supported AOP
Features cover before, after and around advice for call as
well as execution joinpoints. Currently not supported are cflow

and get/set joinpoints. While an implementation of the former
should be straightforward2, the latter can be considered as
challenging to impossible in languages that support C-style
pointers.3

The support for Introductions (static crosscutting) covers
non-virtual member functions, static functions and new types.
Introduced elements are afterwards accessible by all modules
in the “knowledge hierarchy” that can be aware of them, as
already discussed in Section IV. Hence, a selection of the
Introductions feature requires to select Extensible System as
well.

Our weaver family supports a very fine-grained selection of
the mentioned features. The induced memory overhead scales
with the amount of selected features [11]. Additionally, it is
possible to exploit the different types of a-priory Knowledge
in our implementation as discussed in Section V-A. This
allows an even further reduction of the overhead for dynamic
weaving. The obtained benefits are demonstrated in the case
study (Section VII).

2It basically requires an extension of the static preparation aspect by some
advice that increments/decrements a cflow-counter at all joinpoints where a
cflow of interest is entered/leaved.

3The support for get/set joinpoints in existing weavers (namely Arachne and
TOSKANA, see Table I) is quite limited, as it is restricted to direct access of
global variables.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

7

C. Build System

Figure 2 demonstrates the envisioned tool chain and con-
figuration process for the adaptable OS product line. Because
of the single language approach, it is possible to use the same
aspect code for both statically and dynamically bound features.
Aspects configured as static are woven with the component
code by our ac++ weaver.4 Aspects configured as dynamic
are transformed into C++ classes and compiled by the C++
compiler into loadable modules. Hence, application-tailored
OS family members with configurable dynamism and minimal
overhead can be generated according to a specific application’s
requirements.

VII. CASE STUDY: STATIC AND DYNAMIC ASPECTS IN

THE ECOS OPERATING SYSTEM

A. System Overview

eCos is a small and highly configurable operating system
developed by Cygnus Solutions and now maintained an dis-
tributed by eCosCentric Limited, targeted for the market of
embedded systems. It is available for a broad variety of 16
and 32 bit microprocessor architectures (PPC, x86, H8/300,
ARM7, ARM9, . . .) and used in many different application
domains. The eCos system itself is provided as a repository
of various components, which are configured statically with
a configuration tool called eCosConfig. The components are
implemented in a mixture of C++, C, C-preprocessor macros
and assembly code. After the user selects an appropriate
eCos configuration within eCosConfig, a configuration-specific
system of headers and makefiles is generated, which is used
to build the eCos-library. Against this library the final appli-
cations will be linked.

B. Analysis

As a larger case study, we analyzed several parts of the
eCos system, namely the kernel, C library, POSIX subsystem,
μITRON subsystem, Memory Management, Wallclock Driver,
and Watchdog Driver. For the following discussion we will
concentrate on the eCos kernel, which is the biggest of these
components.

The first goal was to figure out the positions and the amount
of code that implements highly crosscutting concerns and
locally crosscutting optional features. The analysis revealed
that 23.54% of the kernel source code are needed to implement
four highly crosscutting concerns: Tracing, Assertion, and
Kernel Instrumentation (profiling) for development support
and Interrupt Synchronization. Table II (column “original”)
presents the numbers for each of these concerns individually.

Besides highly crosscutting concerns, the degree of scatter-
ing of local configuration options in the thread management
of the kernel were analyzed. Table III (column “#original”5)
shows that almost all of these configurable features affect
more than one point in the source code. They are crosscutting
concerns in specific subsystems.

4available at http://www.aspectc.org/
5number in brackets will be explained later

TABLE II

AMOUNT OF CCCS IN THE SOURCE CODE OF THE KERNEL BEFORE AND

AFTER REFACTORING

Kernel
original aspectized

LOC 5205 100 % 4527 100 %
Tracing 336 6.46 % 4 < 0.1 %
Assertions 384 7.38 % 286 6.32 %
Kernel Instrumentation 319 6.13 % 0 0 %
Interrupt Synchronization 186 3.57 % 0 0 %
CCC Code 1225 23.54 % 290 6.41 %
Component Code 3980 76.46 % 4237 93.59 %

TABLE III

#IFDEF BLOCKS CAUSED BY CONFIGURABLE THREAD FEATURES.

NUMBERS IN BRACKETS SHOW HOW MANY OF THEM WERE IN C++ CODE.

Option # original # aspectized
THREADS_NAME 14 (3) 12 (1)
THREADS_LIST 9 (4) 5 (0)
THREADS_STACK_LIMIT 8 (7) 1 (0)
THREADS_STACK_CHECKING 6 (6) 1 (1)
THREADS_STACK_MEASUREMENT 9 (2) 7 (0)
THREADS_DATA 7 (3) 4 (0)
THREADS_DESTRUCTORS 5 (3) 2 (0)
THREADS_DESTRUCTORS_PER_THREAD 12 (11) 3 (1)

C. Aspects in eCos

During the case study, we further increased the modular-
ity and configurability of eCos by “aspectizing” the highly
crosscutting concerns and crosscutting configurable features
mentioned in the previous section. Additionally, several new
configurable features have been implemented. Overall, we
have implemented 147 aspects for 17 concerns, which are
woven by the static AspectC++ weaver.

The effort to refactor the implementation was low, because
the affected code was easy to identify. The eCos developers
mostly use macros for the implementation of highly cross-
cutting concerns such as Tracing to avoid code redundancy.
Configurable feature implementations are always encapsulated
in an #ifdef block for conditional compilation.

The results are shown in table II and III (right columns).

TABLE IV

MEMORY OVERHEAD (IN BYTES) INTRODUCED BY THE STATIC AND THE

DYNAMIC VERSION OF THE TRACING ASPECT

Kernel Tracing Aspect Dyn. Weaver Sums
RAM ROM RAM ROM RAM ROM RAM ROM

no tracing 16474 6758 0 0 0 0 0 0

st
at

ic

complete 0 11733 0 212 0 0 0 11945
common 0 4866 0 212 0 0 0 5078
interrupt 0 1252 0 212 0 0 0 1464
scheduler 0 4800 0 212 0 0 0 5012
sync 0 1016 0 212 0 0 0 1228

dy
na

m
ic

complete 0 12078 28 471 756 28 784 12577
common 0 5000 28 471 304 28 332 5499
interrupt 0 1211 28 471 84 28 112 1710
scheduler 0 5058 28 471 184 28 212 5557
sync 0 916 28 471 184 28 212 1415

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

8

TABLE V

RUNTIME OVERHEAD (IN CLOCK CYCLES) INTRODUCED BY THE STATIC AND THE DYNAMIC VERSION OF THE TRACING AND THE COUNTING ASPECT

Tracing Counting
create
thread

resume
thread

change
thread

exit
thread

create
thread

resume
thread

change
thread

exit
thread

base 178 127 236 1219 175 129 236 1219

static

complete 54520 141120 251157 1171898 4 19 58 235
common 34356 29087 37053 215661 0 9 11 -10
interrupt 25 26769 34115 169776 1 3 25 79
scheduler 19635 84379 179388 732644 2 17 31 22
sync 7 6 7 53818 2 13 0 22

dynamic
(prepared)

complete 84 286 484 2294 49 123 309 1137
common 64 62 73 429 30 36 51 197
interrupt -2 52 97 378 1 23 69 196
scheduler 41 133 314 1272 19 60 195 633
sync 1 0 0 115 3 0 4 55

dynamic
(woven)

complete 54749 141783 260619 1216087 264 1317 3941 21928
common 34746 29334 37707 217688 129 176 298 2728
interrupt 51 28753 35999 173309 1 112 232 819
scheduler 20119 84473 187559 765476 76 474 2007 8471
sync 25 23 116 59569 2 1 4 333

Besides a much cleaner and more reusable kernel code, we (al-
most) achieved the desired direct 1:1 relation of configurable
features and implementation artifacts even for crosscutting
concerns. The main problems we encountered were that we
were not able to modularize assertions, due to their individual
semantic, and the technical problem that our weaver was not
able to weave in pure C code. This had a negative impact
on the modularization of the configurable kernel features as
many of their variation points (#ifdef blocks) are located in
the C-API of eCos or other subsystems implemented in C.
However, the numbers in brackets in table III show that almost
all variation points that were addressable by AspectC++ have
been replaced by modular aspect implementations.

D. Dynamic Aspects

Based on the “aspectized” eCos, which was described
in the last section, we conducted several experiments with
our configurable dynamic aspect weaver. In a first scenario
the Tracing aspect was compiled as a dynamic aspect. The
memory consumption of the kernel, the aspect itself, and the
dynamic weaver was compared with a statically woven Tracing
aspect implementation. For this experiment the weaver was
configured to support before and after advice for execution join
points and the join point signature as context information. The
results are shown in table IV. Common, interrupt, scheduler,
and sync are the four main subsystems of the eCos kernel. The
corresponding rows describe the costs of weaving only in these
subsystems and not in the complete kernel. The table shows
that overhead for having a dynamic weaver and a dynamic
aspect instead of a static one is acceptable. Only 756/28 bytes
(RAM/ROM) for the dynamic weaver and additional 28/259
bytes (259 = 471-212) for the dynamic version of the aspects
are needed. This is not much compared to the normal footprint
of a system like eCos6 and no problem for a development
aspect. These are the numbers for complete instrumentation.

6The costs for a dynamic loader and linker are ignored here, because these
are not specific costs of dynamic weaving.

The ability of the dynamic weaver to support only a filtered set
of potential dynamic join points facilitates even further scaling
of costs.

Besides memory consumption, the performance of typical
system calls was analyzed. The results are shown in table
V. The left part contains the results for the Tracing aspect
while the right part shows the results for a new Counting
aspect. The reason for a further aspect, which implements
simple kernel profiling, was the enormous runtime consump-
tion of the Tracing aspect. Counting better represents typical
production aspects. The table shows that the statically woven
Counting aspect costs almost no time while Tracing costs
several thousand clock cycles, which is magnitudes bigger
than the costs of the whole system call. Dynamic (prepared)
means that during the measurements the kernel code was
only prepared for a dynamic aspect, but none was woven
(case dynamic(woven)). In all test cases, the numbers for
dynamic(prepared) for Counting are about 50% of the value
for Tracing. The reason is that the Counting aspect does not
need after advice. We could therefore configure the dynamic
weaver and the preparation aspect to avoid the run-time costs
of this feature. Furthermore, the table shows that also the
runtime significantly benefits if the set of prepared join points
is tailored according to the specific demands.

E. Discussion

In general, the numbers acquired during this case study
show that for many concerns in system software aspect-
oriented implementations and especially dynamically woven
aspects are affordable. Our prototypical dynamic weaver im-
plementation even leaves some space for further improve-
ments, especially with respect to performance.

After the refactoring and the integration of the dynamic
weaver infrastructure into eCos, the system now offers an even
better static configurability as well as dynamic adaptability.
For mobile devices in changing environments we could imag-
ine several applications of this new feature. For example, by

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

9

preparing the system call API for dynamic aspect weaving
various security policies could be woven into the running
system without the need to stop and restart.

VIII. CONCLUSIONS AND FUTURE WORK

Dynamic adaptation of system software and especially dy-
namic aspect weaving are on the one hand very convenient
for the programmers and users. On the other hand dynamic
adaptation and dynamic aspect weaving are always more
expensive than their static counterpart. Therefore, we advocate
for a development tool chain that supports both. With a Single
Language Approach we can even easily switch from static
adaptation to dynamic adaptability of features and vice versa.

The costs of dynamic aspect weaving are crucial in the
domain of system software. These costs are caused by the
runtime system, which, for instance, has to manage aspect
registration and ordering, and the weaver binding, which is
responsible for detecting that a join point has been reached.
Both costs can be significantly reduced if the dynamic weaver
is tailored with respect to the specific demands in a particular
project. Understanding a dynamic weaver as a product line,
i.e. a Family-Based Dynamic Weaver Infrastructure, therefore
helps to avoid monolithic solutions that are eventually satis-
fiable for no one. The main goal is to allow developers to
use as much a priori knowledge as possible in order to avoid
dynamism wherever s/he can.

Currently, our dac++ implementation exists only as a pro-
totype. The transformation from static aspect implementations
into dynamic aspect classes still requires manual corrections
and also our runtime system requires further improvements.
Therefore, we will continuously improve our implementation.
On the conceptual side the single language approach and the
combination of static and dynamic weaving will be further
investigated.

REFERENCES

[1] eCos homepage. http://ecos.sourceware.org/.
[2] S. Almajali and T. Elrad. A Dynamic Aspect-Oriented C++ Using MOP

with Minimal Hook Weaving Approach. In 2004 Dynamic Aspects
Workshop (AOSD-DAW ’04), pages 1–8, March 2004. published as
RIACS Technical Report 04.01.

[3] S. Aussmann and M. Haupt. Axon - Dynamic AOP through Runtime
Inspection and Monitoring. In 2003 Advancing the State-of-the-Art in
Run-Time Inspection Workshop (ECOOP-ASARTI ’03), July 2003.

[4] Danilo Beuche, Abdelaziz Guerrouat, Holger Papajewski, Wolfgang
Schröder-Preikschat, Olaf Spinczyk, and Ute Spinczyk. The PURE fam-
ily of object-oriented operating systems for deeply embedded systems. In
2nd IEEE Int. Symp. on OO Real-Time Distributed Computing (ISORC
’99), pages 45–53, St Malo, France, May 1999.

[5] C. Bockisch, M. Haupt, M. Mezini, K. Ostermannd, and G. Kiczales.
Virtual machine support for dynamic join points. In 3rd Int. Conf.
on Aspect-Oriented Software Development (AOSD ’04), pages 83–92,
Lancaster, UK, March 2004. ACM.

[6] J. Boner. AspectWerkz - Dynamic AOP for Java. In Karl Lieberherr,
editor, 3rd Int. Conf. on Aspect-Oriented Software Development (AOSD
’04), pages 51–62, Lancaster, UK, March 2004. ACM.

[7] Yvonne Coady and Gregor Kiczales. Back to the future: A retroactive
study of aspect evolution in operating system code. In Mehmet Akşit,
editor, 2nd Int. Conf. on Aspect-Oriented Software Development (AOSD
’03), pages 50–59, Boston, MA, USA, March 2003. ACM.

[8] Krysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming.
Methods, Tools and Applications. AW, May 2000.

[9] R. Douence, T. Fritz, N. Loriant, J. M. Menaud, M. S. Devillechaise, and
M. Suedholt. An expressive aspect language for system applications with
Arachne. In Peri Tarr, editor, 4th Int. Conf. on Aspect-Oriented Software
Development (AOSD ’05), pages 27–38, Chicago, Illinois, March 2005.
ACM.

[10] M. Engel and B. Freisleben. Supporting Autonomic Computing Func-
tionality via Dynamic Operating System Kernel Aspects. In Peri Tarr,
editor, 4th Int. Conf. on Aspect-Oriented Software Development (AOSD
’05), pages 51–62, Chicago, Illinois, March 2005. ACM.

[11] Wasif Gilani and Olaf Spinczyk. Dynamic aspect weaver family for
family-based adaptable systems. In NetObjectDays (NODe ’05), Lecture
Notes in Informatics, Erfurt, Germany, September 2005. German Society
of Informatics.

[12] Jeff Gray, Jing Zhang, Yuehua Lin, Suman Roychoudhury, Hui Wu1,
Rajesh Sudarsan, Aniruddha Gokhale, Sandeep Neema, Feng Shi, and
Ted Bapty. Model-driven program transformation of a large avionics
framework. In G. Karsai and E. Visser, editors, 3rd Int. Conf. on
Generative Programming and Component Engineering (GPCE ’04),
volume 3286 of LNCS, pages 361–378. Springer, October 2004.

[13] Michael Haupt and Mira Mezini. Micro-measurements for dynamic
aspect-oriented systems. In NetObjectDays (NODe ’04), volume 3263
of LNCS, pages 81–96, Erfurt, Germany, September 2004. Springer.

[14] Fabio Kon, Manuel Roman, Ping Liu, Jina Mao, Tomonori Yamane,
Luiz Claudio Magalhaes, and Roy H. Campbell. Monitoring, Security,
and Dynamic Configuration with the DynamicTAO Reflective ORB.
In IFIP/ACM Int. Conf. on Distributed Systems Platforms and Open
Distributed Processing (Middleware ’00), New York, USA, April 2000.
ACM.

[15] T. Ledoux, W. Cazzola, and F. Rivard. OpenCorba: A reflective open
broker. In Pierre Cointe, editor, Reflection ’99, volume 1616 of LNCS,
pages 197–214, London, UK, 1999. Springer.

[16] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk. Generic ad-
vice: On the combination of AOP with generative programming in
AspectC++. In G. Karsai and E. Visser, editors, 3rd Int. Conf. on
Generative Programming and Component Engineering (GPCE ’04),
volume 3286 of LNCS, pages 55–74. Springer, October 2004.

[17] Daniel Lohmann and Olaf Spinczyk. Architecture-Neutral Operating
System Components. 23rd ACM Symp. on OS Principles (SOSP ’03),
October 2003. WiP session.

[18] Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schröder-Preikschat.
On the configuration of non-functional properties in operating system
product lines. In 4th AOSD W’shop on Aspects, Components and
Patterns for Infrastructure Software (AOSD-ACP4IS ’05), pages 19–25,
Chicago, IL, USA, March 2005. Northeastern University, Boston (NU-
CCIS-05-03).

[19] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A flexible
framework for AOP in Java. In Akinori Yonezawa amd Satoshi Mat-
suoka, editor, Reflection ’01, volume 2192 of LNCS, pages 1–24, Kyoto,
Japan, 2001. Springer.

[20] A. Popovici, G. Alonso, and T. Gross. Just in Time Aspects: efficient
dynamic weaving for java. In Mehmet Akşit, editor, 2nd Int. Conf.
on Aspect-Oriented Software Development (AOSD ’03), pages 100–109,
Boston, MA, USA, March 2003. ACM.

[21] Y. Sato, S. Chiba, and M. Tatsubori. A selective, just-in-time aspect
weaver. In 2nd Int. Conf. on Generative Programming and Component
Engineering (GPCE ’03), volume 2830 of LNCS, pages 189–208, Erfurt,
Germany, October 2003. Springer.

[22] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-Oriented Software Architecture: Patterns for Con-
current and Networked Objects. Wiley, 2000.

[23] Olaf Spinczyk and Daniel Lohmann. Using AOP to develop architecture-
neutral operating system components. In 11th SIGOPS European
W’shop, pages 188–192, Leuven, Belgium, September 2004. ACM.

[24] Olaf Spinczyk, Daniel Lohmann, and Matthias Urban. Advances in
AOP with AspectC++. In 4th Int. Conf. on Software Methodologies,
Tools and Techniques (SoMeT ’05), Frontiers in Artificial Intelligence
and Applications, Tokyo, Japan, September 2005. IOS Press. (to appear).

[25] A. Tešanović, K. Sheng, and J. Hansson. Application-tailored database
systems: a case of aspects in an embedded database. In 8th Int. Database
Engineering and Applications Symp. (IDEAS ’04), Coimbra, Portugal,
July 2004. IEEE.

[26] C. Zhang and H. A. Jacobson. TinyC: Towards building a dynamic
weaving aspect language for C. In 2003 Foundations of Aspect-Oriented
Languages Workshop (AOSD-FOAL ’03), March 2003.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10

