
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Aug 2004

Static and Quasi-Dynamic Load Balancing in Parallel FDTD Codes Static and Quasi-Dynamic Load Balancing in Parallel FDTD Codes

for Signal Integrity, Power Integrity, and Packaging Applications for Signal Integrity, Power Integrity, and Packaging Applications

Sarah A. Seguin

Michael A. Cracraft

James L. Drewniak
Missouri University of Science and Technology, drewniak@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
S. A. Seguin et al., "Static and Quasi-Dynamic Load Balancing in Parallel FDTD Codes for Signal Integrity,
Power Integrity, and Packaging Applications," Proceedings of the IEEE International Symposium on
Electromagnetic Compatibility (2004, Santa Clara, CA), vol. 1, pp. 107-112, Institute of Electrical and
Electronics Engineers (IEEE), Aug 2004.
The definitive version is available at https://doi.org/10.1109/ISEMC.2004.1350006

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1276&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ISEMC.2004.1350006
mailto:scholarsmine@mst.edu

Static and Quasi-Dynamic Load Balancing in
Parallel FDTD Codes for Signal Integrity, Power

Integrity, and Packaging Applications
Sarah A. Seguin, Michael A. Cracraft, James L. Drewniak

Department of Electrical and
Computer Engineering

University of Missouri-Rolla
Rolla, MO 65409

Abstract- The Finite-Difference Time-Domain (FDTD)
method is a robust technique for calculating electmmagnetic
fields, but praclical problem, involving complex or large
geometries, ean require a long time to calculate on any one
single-processor Computer. One computer mtb many pmcessors
or many single-processor computers can reduce the computation
time. However, some FDTD cell types, e.g., PML cells, require
more computation time than others. Thus, the size and
shape of the individual process allocations can significantly
inhence the computation time. This paper addresses these
I d b a h c i n g issues with slpfic and quasi-dynamic approaches.
The Message-Passing Interface (MPI) library is applied to a
three-dimensional (3D) FDTD code. Timing results including
speedup and efiiency, are presented for trials run on a cluster
of sixteen processing, nodes and one sewer node.

Two examples are shown in this paper, a power bus with
16 decoupling capacitors and a five layer power distribution
network. In such models, the problem size and complexity make
modeling with a serial code impractical and time consuming for
engineering. Models with several million cells take days to run,
but proper implementation, including load balancing, can reduce
this execution time to hours on a sufficiently powerful duster.

I. INTRODUCTION
Execution time is decreased with parallel computer codes

by distributing the problem over many processes. Ideally, the
calculation time for a parallel code is proportional to +, where
N is the number of processes. However, communications
and poor problem distributions increase calculation time. This
increase constitutes a loss of efficiency. For parallel codes the
efficiency [I] is defined as

TI is the time required to calculate the problem, using a serial
code or the parallel code mn on a single process. TN is the
time required to calculate the problem using N processes. A
second measure for parallel codes is speedup [I], defined as

1 1 S (N) = -
TN

Of the two problems decreasing efficiency mentioned above,
communications are an essential part of the message passing
scheme and can be streamlined but not removed. However,

the problem distribution can be improved with proper load
balancing, which can increase the efficiency of the code signif-
icantly. Assume that each process depends on communications
from the other processes during the calculation. Then, the
overall calculation time is dominated by the slowest process.
If the problem is improperly distributed, some processes will
be more stressed than others. These stressed processors hold
up the entire calculation. One approach is found in seeking
a better load balancing scheme. This paper will describe
methods for improving the load balancing for FDTD codes.

The parallel 3D code used in this paper, originally developed
in 121, to simulate the models uses the Message-Passing
Interface (MPI) for the distribution of processes 131. MPI
is a library of functions written for Fortran, C, and C++,
and is not a programming language itself. MPI was designed
with portability as the primary consideration. A program
written using MPI will run on any system with a working
MPI implementation. It provides a medium for programs to
exchange data between processes, i.e., functions to arrange
processes and functions to send and receive data. Through
MPI functions, a process can find out who it is, also known
as its rank, and the total number of processes that are present.
It is possible to write efficient parallel programs with as few
as six MPI functions.

Load balancing concerns how the problem is divided and
distributed and can be split into two general categories: static
load balancing and dynamic load balancing 141. In static load
balancing, prior to the calculation, some criteria are used to
determine how much of the problem each process should be
given. In dynamic load balancing, the problem is broken into
work units that are sent to each process on request during the
calculation.

FDTD is naturally a data-parallel algorithm, and it lends
itself well to a static load balancing scheme. In a data-parallel
algorithm, the model space is divided among the processes. In
this paper, a weighting scheme is used to determine how many
cells each process is given. As an example, calculation times
of perfectly matched layer (PML) cells are compared with the
calculation times of free space cells. The ratio of those times
is defined as the cell weight for a PML cell. PML cells are

&7803-8443-1/04/$20.00 8 IEEE. 107

computationally intensive compared as with free space cells,
and processes spatially located at the edge of the model space
will have more PML cells than the interior processes. Thus,
the edge processes will take longer to calculate than the other
processes, slowing the entire calculation down.

Load balancing attempts to alleviate imbalances, which are
the major impediment to the efficiency of the parallel algo-
rithm. Static load balancing divides the model at the beginning
of the program to minimize differences in the process loads.
Then, processes work on their portion of the model space for
the duration of the program. Any imbalances in the load bal-
ancing will cause delays in the program execution. Dynamic
load balancing attemps to break up a problem into work units
and distributes these work units as processes request them.
This type of load balancing requires more communication
between the Drocesses and, thus, delavs mav be incurred if
the server process is mired in multiple requests at once or
by the communication speed of the network. Though dynamic Fig. I . Top view of lhe power bus with 16 decoupling capaciton.

load balancing remains the most efficienr.
Although FDTD is not suited to a dynamic load balancing

approach, a quasi-dynamic load balancing approach is used
for the models in this paper that may fix the same problems
that a dvnamic aonroach fixes. onlv more conservativelv. ..
The auasi-dvnamic load balancing builds on the static load P O l t 1

I

balancing method with PML weighting, but the code allows
the process boundaries to shift to minimize the time per
time step for all the processes. Basing the process boundaries
on performance during the calculation, can not only fix the
distribution problems but also can adjust for differences in
processes, i.e., processor clock speed or model.

11. TRIALS AND RESULTS
Two examples were simulated using a parallel F?)TD algo-

rithm and compared with a serial algorithm. The results for
both of the examples were compared, and provide an example
of the advantages of the PML weighting..A power bus with 16
decoupling capacitors, shown in Figs. 1 and 2 was simulated
above a pound plane with a dielectric in a parallel 3D FDTD
code.

In addition, a five layer power bus, described in Fig. 3,
shown in Figs. 4 through 8, was also simulated.

Fig. 1 was discussed in [5] , it shows the board configuration.
The lossy board dielectric in the test device is FR-4, 65 mil
thick. The upper and lower planes are both copper, and an
array of sixteen global decoupling capacitors connects to the
power plane by wires passing through square via holes.

Cell weighting in this paper refers to load balancing by
weighting Perfectly-Matched Layer (PML) cells, which take
longer to execute than the cells in the interior of the problem
space. This may be ascertained from the complexity of the
update equarions for rhe PMLs 161. By weighting the PML
cells the problem may be more efficiently divided and dis-
tributed to the processing nodes. Load balancing by weighting
is employed by assigning a numerical weight to each cell
according to its cell type: interior or PML. The weight for
an interior electric field and magnetic field calculation is set

Fig. 2. Side view of the p w e r bus with 16 decoupling capacirm.

P 15
G 12
P 9
P 6
G 3

Layer thickness = 14 mils
Dielectric constant =4.24, loss tangent = 0.022
dx=dy=0.5mrn,dz=O.l1853mm

Fig. 3. T k 5 layer power bus derription.

> ?

t t&k 0 mtipad, m e 6cd!sx 6ctlllr '----.------.--

8 Through holevias

Fig. 4. Firs layer of the 5 layer power bus.

o (133.23) o (243.23)
5 r

Fig. 5. Second layer of the 5 layer power bus.

d
0 (23.83) l3 0 (133.83)

8 I
5

103 263

Fig. 6. Third layer of the 5 layer power h a .

to 1 . The weights for the electric field PML and the magnetic
field PML calculations are then set higher, e.g., 3.5 and 5.3,
respecitvely. The break weight is the ideal weight for each
process. Ideally, the processes would be equally loaded and
there would be no loss in efficiency due to load imbalances.
However. it is unlikely that such a breakup is possible.

The objective of this section is to determine how well the
PML weighting scheme increases the efficiency of the parallel
FDTD program. Two sets of data were computed for both
examples. One case with, and one case without the PML
weighting were run on two meshes with an increasing number
of processors. The two meshes are labeled low density and
high density, and are different only in their cell sizes. The cell
dimensions of the high density mesh are half that of the low
density mesh. Thus, there are eight times the cells in the high
density mesh.

The following sections discuss the data collected for each
example. Each simulated example was compared and checked
against the serial version as well as the measured results. All
examples show the average time step, speedup, and efficiency

5

103 263

Fig. 7. Foml layer of the 5 layer power bus.

* (23.23) 0 (133,231 0 (2 3.23)

Fig. 8. Fifth layer of the 5 layer power bus

that were calculated from the results. The number of processes
indicated on each graph is the number of worker processes.
The total number is the indicated processes plus one, called
the server process. In each example, the execution times, the
speedup and the efficiency behave approximately as expected
when compared with the tehoretical models. Although, the
efficiency graph tends to be rather erratic for both examples.

A. Power Bus with 16 Decoupling Capacirors
The measured results and the simulated FDTD results are

shown in Figs. 9 and IO. The results for the low and high
resolution models are found in Figs. I 1 through 13.

Fig. 12 shows the average time steps for the four sets of
data collected and their ideal (T I I N) for the power bus with
16 decoupling capacitors. In panicular for the high density
model, the unweighted set is asymptotically approaching a
time step larger than the weighted version. The weighted set
is still decreasing with the ideal even at 16 processor limit of
the cluster.

Fig. 13 shows the speedup, which was expressed as the ratio
of the single processor execution time to that of N processors.
In this figure, the asymptotic limit mentioned for the time steps
is even more apparent. With 16 processors the unweighted
sets of the two models are already beginning to plateau while
the weighted sets are falling away from the linear ideal more
gradually.

The efficiency is shown in Fig. 16. As with the speedup,
the efficiency is a numerical gage showing how parallelizable
the algorithm is. In the plot the weighted data set for both
models has the higher efficicency. The efficiency is erratic
in appearance, which can be attributed to the setup of the
individual cluster, including the machines and networking
equipment.

The low density model of the power bus with 16 decoupling
capacitors uses 100 by 50 by 20 in the internal region. The
PML boundary is 8 cells thick, so there are 100,000 cells
in the internal region while there are 175,616 cells in the
PML boundaries. The high density model doubles the number
cells in each dimension, so there are 200 by 100 by 40 cells
in the internal region. Using a 8 cell thick PML boundary,
there are 800,000 cells in the internal region and 1,403,136
cells in the PML boundary. Estimate the overall calculation
time of a PML cell as t P M L = 8.8tFs, where tFS is the
calculation time for a free-space cell and 8.8 is the addition
of the electric and magnetic field weights proposed earlier.
Then, the calculation time per time step for each model can

0-7803-8443-1/04/$20.00 Q IEEE. 109

be estimated. The calculation time for the low density model
is

tL.D =(100000)tFS f (1 7 5 6 1 6) t p ~ ~
=(~ooooo + 1545420.8)t~s
=1645420.8t~s

and the high density model calculation time is

t H D =(800000)t~s + (603136)tpnr~
=(SO0000 + 5307596.8)t~s
=6107596.8t~s

The ratio of the two time estimates yields e = 3.71. In
Fig. 1 I , the times for one processor yields a ratio of around
2.75, which is less than the estimated ratio but still within a
factor of 2 of the estimate.

As more processors are progressively used in the calcula-
tions the average time step becomes dominated by commu-
nication times between processes and other unparallelizable
portions of the program. Therefore, there is a limit to the
reduction of calculation time for a particular algorithm. For
example, in Fig. 14, the low density models average time
step is nearly constant for 12 through 16 processors without
using weights. However, the trace for the weighted vials on
the same model is still decreasing, which is evidence showing
that weighting the PML cells provides for a better balanced
problem distribution.

I -gt I
-10' ' ' ' I

0.5 1 1.5 2 15 3 3.5 4 4.5 5
Frequrncy(GHz)

Fig. 9.
decoupling capacitors

FDTD modeled and measured lSn/ for the power bus with 16

B. Multi-hjer Power Distribution Network
The results for the multi-layer power bus are similar to

that of the power bus with 16 decoupling capacitors, although
they are not identical. The timing results are somewhat model
dependent, or the results of the two models should be more
closely identical. The results for the low and high resolution
models are found in Figs. 16 through 18. Fig. 16 shows the

0

- 5

- 1 0 1

I . I .

0.5 1 1.5 2 2.5 3 3.5 4 4.5
- 5 0 ' '

Frequenry(GHz)

Fig. 10.
decoupling capacitors.

FDTD Modeled and Measured IS21 1 for the power bus with I6

Aver- Time Step
I ,

0.9 -

0.8

0 7 -

0.6-

0.5

0.1

0.1 -

0.2

0 1

r?

/9

00-
promses

Fig. 11.
low resolution models for the power bus with 16 deccupling capaciton.

The average time step for the two sets of dam from the high and

Fig. I?.
power bus with 16 decoupling capacitors.

The speedup far the two sets of dam from the two models for the

0-7803-8443-1/04/$20.00 0 IEEE. 110

2 4 6 8 10 12 I4 16
P-

Fig. 13. The efficiency for the two sets of data from the two models for
power bus with 16 decoupling capacitors.

the

an enlargement of Fig. 16, found in Fig. 19, where only the
last 12 to 16 processes are shown.

Fig. IS.
distribution network.

FDTD and FUI modeled IZ,,, for the multi-layer power Aver- Time Step
0 2

018

0.9

0.8

........... _______ ---------..-__.________________

0.6

0.1

0 3 .. .
U 2.23 U 13.3 14 143 I5 US 16

P-= 0.2

0.1
Fig. 14. An enlargement of the average time step for the two sets of dab
from the high and low resolution models for the power bus with 16 decoupling ‘0 2 4 6 8 IO 12 I4
capacitors. process%

Fig. 16.
low resolution models for the multi-layer power distribution network.

The average time step for the two sets of dab from the high and
average time steps for the four of dara co~~ecte,j and their
ideals (T I I N) for the multi-layer power bus. The difference
in the weighted and unweighted cases in the speedup and
efficiency c w e s for the four cases, found in Fig. 17 and
Fig. 18, respectively, are similarly apparent for the multi-layer
power bus as in that of the 16 layer power bus.

Fig. 18 shows the efficiency for the power bus. Again with
this model, the weighted efficiencies are higher than that of
the unweighted cases. However, there is little difference in the
low and higher resolution models. For a larger model, there
will be more cells to work on for each communication. It may
be that the high resolution model does not have a significantly
larger amount of calculations to make the differences apparent.
Again, it is seen in Figure 18, that it is more profitable to use
the parallel algorithm with weighted versions. The difference
between the cases is more dramatically illustrated by viewing

0-7803-8443-1/04/$20.00 8 EEE. 111

speedup 111. SUMMARY

o,w.-.

0.02

2 1 6 8 10 12 I4 16
prorerrn

--. __. . . ___. _.---... ~ . .
t-.....I

Fig. 17.
multi-layer power distribution network.

The speedup for the two 5ets of data from the two models for the

Fig. 18
multi-layer power distribution network.

The efficiency for the two see of data from the two models for the

Average The Step
02,

Both examples demonstrated that although communications
are a defining part of the MPI, they impede the efficiency of
the parallel algorithm. Load imbalances are the other major
impedance to the efficiency of the parallel algorithm. There
are two causes for these load imbalances. First, the data
is not equally distributed between the processes or that the
data is distributed equally, hut part of the problem requires
more computation time. Second, the processors used have
different capabilities, such as running at different clock speeds
or having different speed random access memory (RAM). The
load balancing in the parallel code for this report attempted to
alleviate these imbalances by implementing a quasi-dynamic
load balancing approach that addresses, in part, both the first
and second issues.

Adding a weighting scheme for PML cells has its benefits.
The weighted versions of the program continually outper-
formed the unweighted versions with various numbers of pro-
cessors. When illustrating the significance of the difference in
execution times, it may be assumed that there are 16 processes
running and, in the high density mesh, the average time steps
for the wighted and unweighted cases are approximately 0.5
to 1.4 seconds, respectively. Over 10,000 time steps amounts
to a difference of approximately 60 minutes more than what
is required for the weighted PML run. The power bus, with 16
decoupling capacitors, and the multi-layer power distribution
network are just small examples in comparison to other
models that might be considered. In addition to much larger
problems, models with vastly different dimensions or mixed
scale problems, for example a thin power bus considering the
skin depth, are well-suited to a parallel scheme. The high
density model only represents mostly simple dielectrics and
PEC sheets for both cases.

REFERENCES

[I] Pacheco. Peter S. Pnrdlel Programming wirh MPI . San Francisco.
Californh Morgan Kaufmann Publishers, Inc.. 1997.

[2] Michael A. Cracraft. Porallelizing r? Finire-Difference 7ime-Domin
Code Using the Message-Pmsing hrerfoce. Master's thesis. University
of Missouri - Rolla, May 2W2.

131 Gropp. W.. E. Lusk. and A. Skjellum. Using M P I . Cambridge, Mas-
whusetls: The MIT press. 1999.

[4] Wibsooo, Barry and Michael Allen. Porollel Programming: Techniques
nrld Apllicotions Using Nenuorked Worksrotions ond Pamllel Con~purers.
Upper Saddle River, New Jersey: Prentice Hall. Inc., 1999.

[5] X. Ye, M. Y. Koledintwa. M. Li. and 1. L. Drewniak. D C power-
bus design using FDTD modeling wirh dispersive media ond mrfnce
mounr rechnology compow~rrs. IEEE Transactions on Electromagnetic
Compatibility, vol. 43. no. 4. pp. 579-587. Nov. 2001.

161 TaRoue. Allen and Susan Hagness. Compsfafionol Ele'crdynamics:
n e Finite-Difluence F m - D o m i n Merhod-2nd Edirion. Boston, Mas-
sachusetts: Anech Houw. 2 W .

	Static and Quasi-Dynamic Load Balancing in Parallel FDTD Codes for Signal Integrity, Power Integrity, and Packaging Applications
	Recommended Citation

	Static and quasi-dynamic load balancing in parallel FDTD codes for signal integrity, power integrity, and packaging applications

