
Eur. Phys. J. C (2019) 79:400
https://doi.org/10.1140/epjc/s10052-019-6910-5

Regular Article - Theoretical Physics

Static and rotating black strings in dynamical Chern–Simons
modified gravity

Adolfo Cisterna1,a, Cristóbal Corral2,3,b , Simón del Pino4,c

1 Universidad Central de Chile, Vicerrectoría académica, Toesca 1783, Santiago, Chile
2 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 Mexico, Mexico
3 Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Sazié 2212, Santiago 8370136, Chile
4 Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile

Received: 19 November 2018 / Accepted: 1 May 2019 / Published online: 11 May 2019
© The Author(s) 2019

Abstract Four-dimensional homogeneous static and rotat-
ing black strings in dynamical Chern–Simons modified grav-
ity, with and without torsion, are presented. Each solution
is supported by a scalar field that depends linearly on the
coordinate that span the string. The solutions are locally
AdS3×R and they represent the continuation of the Bañados–
Teitelboim–Zanelli black hole. Moreover, they belong to the
so-called Chern–Simons sector of the space of solutions of
the theory, since the Cotton tensor contributes nontrivially
to the field equations. The case with nonvanishing torsion is
studied within the first-order formalism of gravity, and it con-
siders nonminimal couplings of the scalar fields to three topo-
logical invariants: Nieh–Yan, Pontryagin and Gauss–Bonnet
terms, which are studied separately. These nonminimal cou-
plings generate torsion in vacuum, in contrast to Einstein–
Cartan theory. In all cases, torsion contributes to an effective
cosmological constant that, in particular cases, can be set to
zero by a proper choice of the parameters.

1 Introduction

Chern–Simons modified gravity (CSMG) is a well-known
effective extension of general relativity (GR) that considers
nonminimal coupling between a gravitational scalar degree
of freedom and the topological Pontryagin density in four
dimensions [1]. This theory is motivated by anomaly cance-
lation in curved spacetimes, string theory and particle physics
[2]. Its nonminimal coupling might explain flat galaxy rota-
tion curves without introducing dark matter [3] and future
gravitational wave detections might be sensitive to such a
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modification through frame dragging, gyroscopic precession,
and amplitude birefringence in propagation of gravitational
waves [4–6]. Although it has been stablished that GW170817
falsifies some classes of modified gravity theories which dis-
pense with the need of dark matter [7], recently, it has been
shown that CSMG is compatible with such experimental data
[8]. When the scalar field is nondynamical, all spherically
symmetric solutions of GR are solutions of CSMG, since the
Pontryagin density and its associated Cotton tensor vanish
identically,1 in contrast to axially-symmetric configurations
[10–12]. In the dynamical case, on the other hand, CSMG
should be considered as an effective theory, since there seems
to be evidence that its Cauchy initial-value problem is ill-
posed [13]. This, of course, is not an issue when stationary
configurations are considered and it may be overcome within
the first-order formulation of CSMG with nontrivial torsion.

In the realm of the first-order formalism of gravity, where
the vierbein and Lorentz connection are regarded as indepen-
dent fields, Chern–Simons modified gravity has been stud-
ied in different scenarios. In this framework, the nonmini-
mal couplings of gravitational scalar degrees of freedom to
topological densities generate torsion in vacuum, in contrast
to Einstein–Cartan theory. Torsional invariants such as the
Nieh–Yan, Pontryagin, and Euler densities, have been dis-
cussed in [14]. The scalar-Pontryagin coupling exhibits mod-
ifications to the standard four-fermion interaction appear-
ing in Einstein–Cartan theory, whose physical consequences
have been discussed in [15]. On the other hand, the Nieh–

1 In this context, the name Cotton tensor has been used to denote the
contribution of the scalar-Pontryagin coupling to the Einstein’s field
equations, in analogy to Chern–Simons theory in three dimensions [1]
(see also [9]).
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Yan2 density [19] contributes to the fermionic axial anomaly
in Riemann–Cartan spacetimes and it diverges once the reg-
ulator is removed [20]. This divergence has been debated
in Refs. [21,22] and, later, a regularization procedure based
on the scalar-Nieh–Yan coupling was formulated [23,24].
When torsion is integrated out, this model resembles the sce-
narios of Refs. [25,26], and it might offer a solution to the
strong CP problem [27–29]. Finally, cosmological scenarios
have been studied in the first-order formulation of scalar-
Gauss–Bonnet gravity [30–33], motivated by dimensional
reductions of Lovelock gravity, which appears as low-energy
corrections of string theory [34].

In this work it is shown that the spectrum of solutions of
CSMG can be enlarged by the existence of black string con-
figurations, with and without torsion. Black strings are, in
principle, higher-dimensional asymptotically flat black hole
solutions with an extended horizon of topology S2 × Rn , or
(S1)n when compactifying the extra dimensions [35]. They
are easily constructed by considering flat extra directions
on the spacetime metric and they represent the most sim-
ple counterexample to the uniqueness theorems for higher
dimensional GR [36–38]. Even more, they pave the way
to construct asymptotically flat solutions with nonspheri-
cal topology, demonstrating that topological restrictions [39]
lose their strength in higher dimensions. In spite of the evi-
dent simplicity involved in the addition of extra flat direc-
tions for constructing the black string, there are setups in
which such a process is not evident. The most illustrative
case is when the cosmological constant is included. It is
direct to see that, if a D = d + p dimensional spacetime
is considered with p flat directions, the field equations force
the cosmological constant to vanish. This implies that there
is no simple black string extension of the Schwarzschild–
(A)dS black hole.3 Similar obstructions are encountered for
the black string extension of the Reissner–Nordstrom black
hole.

Here, the approach of [44] is generalized to show that
exact four-dimensional black string vacuum solutions, with
and without torsion, can be obtained in CSMG. In order to
do so, the scalar fields are assumed to depend only on the
extended coordinate that span the string, in contrast to Refs.
[45,46]. This assumption allows us to find solutions to the
field equations that belong to the so-called Chern–Simons
sector of the space of solutions of the theory [10], since the

2 Although the name Nieh–Yan density is used throughout this work,
it is worth mentioning that the pseudoscalar curvature in presence of
torsion has been already discussed in Refs. [16,17] (see also [18]).
3 Nonhomogeneous AdS black strings have been constructed in Ref.
[40] by considering warped spacetimes. This result was generalized for
Lovelock theories possessing a unique constant curvature vacua [41]
and for more general Lovelock theories by generalizing the concept
of Einstein spaces [42]. AdS black strings and black rings have been
constructed only numerically for nonhomogeneous geometries [35,43].

nonminimal coupling between the scalar field and the Pon-
tryagin density contributes nontrivially to the field equations.
Then, the first-order formulation of CSMG is studied by con-
sidering the nonminimal couplings of the scalar fields to the
Nieh–Yan, Pontryagin and Gauss–Bonnet terms, and black
strings with nonvanishing torsion are found in each case.

The article is organized as follows: in Sect. 2, the method
for constructing black strings in GR in arbitrary dimensions
is reviewed, the Riemannian (torsion-free) dynamical CSMG
theory is presented, and the Bañados–Teitelboim–Zanelli
(BTZ) black string solution is obtained. In Sect. 3, we obtain
the black string solutions with nontrivial torsion by taking
separately the nonminimal couplings of scalar fields to Nieh–
Yan, Pontryagin and Gauss–Bonnet terms. Conclusions and
comments are presented in Sect. 4 and two Appendices have
been included for details. Henceforth, greek and latin char-
acters represent spacetime and Lorentz indices, respectively,
and the metric signature is (−,+,+,+).

2 Black strings in dynamical Chern–Simons modified
gravity

In this section, static and rotating BTZ black strings in CSMG
with a dynamical scalar field are presented. Configurations
of this class have been studied in the nondynamical case in
[46], by assuming that the scalar field depends on the radial
coordinate of the 3-dimensional section of the spacetime. In
such a case, the scalar field remains arbitrary and it acts as
a Lagrange multiplier that imposes the Pontryagin density
to vanish. Even though this constraint is trivially fulfilled by
virtue of the isometry group, the radial dependence of the
scalar field implies that the Cotton tensor does not contribute
to the Einstein’s field Eq. [46]. In the present work, unlike
[46], the scalar field is dynamical and it can be solved exactly
from the field equations. These configurations belong to the
so-called Chern–Simons sector of the space of solutions [10]
and they present the main goal of this section.

2.1 Homogeneous AdS black strings in GR

Before presenting the BTZ black strings in CSMG, we briefly
review the procedure of [44] to obtain homogenous anti-de
Sitter black strings in GR.

Let us consider a spacetime metric of dimension D =
d + p, where p flat extended coordinates have been added
to a d-dimensional metric according to

ds2 = ds̄2 + δi jdz
idz j , (1)

where ds̄2 stands for the d-dimensional metric, δi j is p-
dimensional Euclidean metric, and i = 1, . . . , p. In order to
obtain homogenous configurations, it is demanded that ds̄2
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does not depend on the extra coordinates zi . No further con-
ditions are required, nonetheless, for simplicity we consider

ds̄2 = − f (r)dt2 + dr2

f (r)
+ r2dΩ2

d−2,γ , (2)

where dΩ2
d−2,γ represents a (d − 2)-dimensional base man-

ifold of constant curvature γ = 0,±1, representing flat,
spherical, and hyperbolic geometries respectively.

In order to circumvent the unavoidable vanishing of the
cosmological constant imposed by the field equations, the
authors of [44] have dressed each of the p extended coordi-
nates zi with a minimally coupled scalar field ϕi , with i =
1...p, depending only on those coordinates, i.e., ϕi = ϕi (zi ).
The field equations are then written as

Rμν − 1

2
gμνR + Λgμν = κτ (ϕ)

μν , (3)

�ϕi = 0. (4)

The Klein–Gordon equation associated to each ϕi is easily
integrated providing scalar fields with a linear dependence on
the zi coordinates. By using the remaining rotational sym-
metry, they can be cast into the form

ϕi = λzi , (5)

where λ is an integration constant which is usually called
the axionic charge. This kind of scalar fields have been used
to construct planar hairy black holes that exhibit momentum
relaxation in their dual representations. Due to the explicit
breaking of translational symmetry, it is possible to obtain
well behaved holographic conductivities in the dual field the-
ory [47].

The Einstein field equations projected along the d-
dimensional manifold and the flat coordinates take the form

R̄μ̄ν̄ − 1

2
ḡμ̄ν̄ R̄ = −

(
Λ + κpλ2

2

)
ḡμ̄ν̄ , (6)

R̄ = 2Λ − 2κ
(

1 − p

2

)
λ2, (7)

respectively, where bar objects represent quantities defined
on the d-dimensional section. Compatibility of the field
Eqs. (6) and (7) requires the following relation to hold

λ2 = − 2Λ

κ(d + p − 2)
. (8)

From here it is direct to see that, in absence of the scalar
fields, the cosmological constant would have vanish.

Replacing (8) in (6), the metric function is found to be

f (r) = γ − M

rd−3 − 2Λr2

(d − 1)(d + p − 2)
, (9)

where M is an integration constant related to the mass.
Observe that Λ must be negative and that the AdS radius gets
a modification given by the number of extra flat directions
p. This result imply that black strings, which are originally
thought to be higher dimensional objects, also exist in four
dimensions. In fact, the BTZ black string metric reads

ds2 = −
(

−M − Λr2

2

)
dt2 + dr2(

−M − Λr2

2

)

+ r2dφ2 + dz2, (10)

which is supported by a single scalar field ϕ = λz, with
λ2 = −Λ/κ . In what follows, these ingredients are used
to construct homogenous BTZ black strings in dynamical
CSMG by considering d = 3 and p = 1.

2.2 Chern–Simons modified gravity

Chern–Simons modified gravity considers two independent
gravitational fields: the metric gμν and the scalar field ϕ. The
action principle for the dynamical CSMG is given by [2]4

S
[
gμν, ϕ

] = 1

2κ

∫
d4x

√−g
(
R − 2Λ + α

4
ϕ ∗RR

)

− 1

2

∫
d4x

√−g gμν∇μϕ∇νϕ, (11)

where κ = 8πGN is the gravitational constant, α is a dimen-
sionful coupling constant, and the Pontryagin term is

∗RR ≡ 1

2
εγ δτσ Rμ

νγ δR
ν
μτσ , (12)

with εμνλρ being the Levi-Civita tensor. The field equations
for this theory are obtained by performing stationary vari-
ations of the action (11) with respect to the metric and the
scalar field, respectively giving

Rμν − 1

2
gμνR + Λgμν + α Cμν = κτ (ϕ)

μν , (13)

�ϕ + α

8κ

∗RR = 0, (14)

where

τ (ϕ)
μν = ∇μϕ∇νϕ − 1

2
gμν∇λϕ∇λϕ, (15)

Cμν = ∇ρϕ ερσλ(μ∇λR
ν)

σ + ∇ρ∇σ ϕ ∗Rσ(μν)ρ, (16)

and ∗Rμνλρ = 1
2ελρστ Rμν

στ . Notice that the contribution
of the Cotton tensor Cμν in the Einstein’s field equations

4 In Appendix B the theory is presented in the language of differential
forms to connect with the Sect. 3 of the manuscript.
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involves covariant derivatives of the Riemann tensor, giv-
ing, in general, third order field equations for the metric.
Importantly, since the field equations of CSMG involve only
derivatives of the scalar field, they are invariant under the shift
δφ = φ0, where φ0 is a constant, while the metric remains
invariant. This is a key feature of CSGM that will be useful
to construct black string configurations supported by scalar
fields with a non-trivial linear dependence along the string
extended coordinate.

2.3 Static BTZ black string

In order to look for static BTZ black string solutions to the
field Eqs. (13) and (14), the following metric ansatz is con-
sidered

ds2 = − f (r)dt2 + dr2

f (r)
+ r2dφ2 + dz2. (17)

Importantly, the Pontryagin density vanishes identically for
this metric ansatz, i.e., ∗RR = 0. The latter implies a free
Klein–Gordon equation for ϕ, that can be easily integrated
as ϕ = λz.

Due to the staticity of the metric and the form of the scalar
field, the Cotton tensor (16) has only one nonvanishing com-
ponent, that is

Ctφ = λr f

4
f ′′′, (18)

where prime denote derivative with respect to the coordinate
r and all diagonal components of the Cotton tensor vanish.
This implies that the rest of the field equations are given by (6)
and (7) for d = 3 and p = 1, which will be compatible only
if

λ2 = −Λ/κ. (19)

Then, by solving the non-diagonal components of the field
equations, namely Ctφ = 0, and using (19), the static BTZ
black string solution that solves the full system of field equa-
tions is found to be

ds2 = −
(
r2

l2
− M

)
dt2 + dr2(

r2

l2
− M

) + r2dφ2 + dz2, (20)

where l−2 = −Λ/2. This is the first example of a BTZ black
string for dynamical CSMG with a nontrivial contribution of
the Cotton tensor and it exists due to the linear dependence
of the scalar field on the extended coordinate as it can be
seen from (18). This solution is locally AdS3 × R, and it
represents the cylindrical extension of the BTZ black hole
[48]. It must be noticed that for a scalar field depending on

the radial coordinate only, i.e. ϕ = ϕ(r), the Cotton tensor
vanishes identically, and the scalar field cannot be determined
from the field Eq. [46].

2.4 Rotating BTZ black string

It is observed that the machinery described in the previous
section can be also used to construct rotating BTZ black
strings in dynamical CSMG. To accomplish this, the follow-
ing metric ansatz is considered

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(N (r)dt + dφ)2 + dz2, (21)

where the addition of an extended flat coordinate has been
applied to a rotating 3-dimensional metric ansatz. Since the
Pontryagin density vanishes identically for this ansatz, i.e.
∗RR = 0, and under the assumption that the scalar field
depends only on the extended coordinate, the Klein–Gordon
equation reduces to a free scalar field that can be solved as
ϕ = λz. Nevertheless, rotation has a highly nontrivial effect
in the rest of the field equations of dynamical CSMG, since
the Cotton tensor contributes to all diagonal field equations
for the metric along the 3-dimensional black hole spacetime.

In order to obtain rotating BTZ black strings for (13), it is
noticed that the nontrivial components of the Cotton are

Ctt = λ f

4r

(
f ′′N ′r2 − f ′N ′′r2 − 4 f ′N ′r

− 2N ′′′ f r2 − 10N ′′ f r

− 2(N ′)3r4 − 6N ′ f ′
)

, (22)

Crr = λ

4r f

(
− f ′′N ′r2 + f ′N ′′r2

+ 4 f ′N ′r − 2N ′′ f r

+ 2(N ′)3r4 − 6N ′ f
)

, (23)

Ctφ = λr f

4

(
f ′′′ − 6N ′′N ′r2 − 12(N ′)2r

)
, (24)

Cφφ = λr2

2

(
f ′′N ′r − f ′N ′′r − 4 f ′N ′

− N ′′′ f r − 4N ′′ f − 2(N ′)3r3
)

, (25)

where, as before, prime denotes derivative with respect to the
coordinate r . In order to integrate the field equations, first,
the condition Cμν = 0 is solved and one finds

N (r) = j1 + j2
r

+ J

r2 , (26)

f (r) = f1r
2 + f2 ( j2r + J ) + ( j2r + J )2

r2 , (27)
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where j1, j2, J , f1 and f2 are integration constants. Then,
the field equations are given again by (6) and (7) with d =
3 and p = 1. Replacing ϕ = λz with the compatibility
condition (19) along with (26) and (27) in Eq. (13), we obtain
that j2 = 0 and f1 = −Λ/2; moreover, the integration
constant j1 can be set to zero without loss of generality [49].
Thus, the rotating BTZ black string is given by Eq. (21) with

f (r) = −M + r2

l2
+ J 2

r2 and N (r) = J

r2 , (28)

where we have defined M ≡ −J f2 and J such that they
represent the integration constants related to mass and the
angular momentum, respectively, and l−2 = −Λ/2. This
solution represents a full rotating exact black string solution
to dynamical CSMG. Notice that there is no continuous limit
to the static case by taking J → 0, since the mass vanishes
and it yields to a naked singularity. As well as in the static
case, rotating BTZ black strings were previously found only
for the non-dynamical case, where ϕ = ϕ(r) acts merely as
a Lagrangian multiplier and it remains undetermined from
the field equations [46].

The horizon structure of the rotating BTZ black string is
governed by f (r±) = 0, with

r± = �

[
M ± √

M2 − 4J 2/�2

2

] 1
2

. (29)

For a horizon to exist, the condition M2 − 4J 2/�2 ≥ 0 must
be met, with J 	= 0. The curvature invariants constructed
out of (17) remain constants, however, a singularity at r = 0
arises from the identification of points of anti-de Sitter space
by a discrete subgroup of SO(2, 2) [49].

This solution is also supported if the scalar-Gauss–Bonnet
coupling is added to the CSMG action (11). Since the Gauss–
Bonnet term

G = R2 − 4RμνR
μν + RμνλρR

μνλρ, (30)

vanishes identically for the metric ansatz (21), the field equa-
tion for the scalar field reduces to the free Klein–Gordon
equation, which can be solved as ϕ = λz. With this solu-
tion, the contribution of the scalar-Gauss–Bonnet coupling
to the Einstein equations vanishes and the system reduces
to (6) and (7) with d = 3 and p = 1, whose solution is given
in (28). The addition of the scalar-Gauss–Bonnet coupling,
however, is nontrivial in the case with nonvanishing torsion
as it is shown in the next section.

3 Black strings in torsional Chern–Simons modified
gravity

In order to deal with spacetimes with torsion, we will work
within the first-order formalism of gravity that considers
two independent gravitational fields: the vierbein 1-form
ea = eaμdxμ, that encodes the spacetime metric through
gμν = ηabeaμebν , where ηab = diag(−,+,+,+); and the
Lorentz connection 1-form ωab = ωab

μdxμ, encoding its
affine structure. These fields transform as 1-forms under dif-
feomorphisms and as a vector and gauge connection under
local Lorentz transformations, respectively. The Lorentz cur-
vature and torsion 2-forms are defined by the Cartan’s struc-
ture equations

Rab = dωab + ωa
c ∧ ωcb, (31)

T a = dea + ωa
b ∧ eb ≡ Dea, (32)

where d is the exterior derivative, ∧ is the wedge product
of differential forms, and D is the exterior Lorentz-covariant
derivative. Curvature and torsion satisfy the Bianchi identi-
ties DRab = 0 and DT a = Ra

b ∧ eb.

3.1 First-order Chern–Simons modified gravity

The first-order formulation of CSMG is considered by includ-
ing extra scalar fields nonminimally coupled to the Nieh–
Yan, Pontryagin, and Gauss–Bonnet terms. It is described by
the action principle

S[ea, ωab, ϕi ] = 1

4κ

∫ [
εabcd

(
Rab

−Λ

6
ea ∧ eb

)
∧ ec ∧ ed +

3∑
i=1

αiϕiIi
]

− 1

2

∫ 3∑
i=1

dϕi ∧ �dϕi , (33)

where κ = 8πGN , Λ is the cosmological constant, � is the
Hodge dual, and

I1 = Ta ∧ T a − Rab ∧ ea ∧ eb = d
(
ea ∧ T a) , (34a)

I2 = Ra
b ∧ Rb

a

= d

[
ωa

b ∧
(
Rb

a − 1

3
ωb

c ∧ ωc
a

)]
, (34b)

I3 = εabcd R
ab ∧ Rcd

= d

[
εabcd ωab ∧

(
Rcd − 1

3
ωc

f ∧ ω f d
)]

, (34c)

denote the Nieh–Yan, Pontryagin, and Gauss–Bonnet densi-
ties, respectively. Here, the index i denote different nonmin-
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imal couplings to topological invariants rather than extended
coordinates as in Sect. 2.1, and αi are dimensionful cou-
pling constants. These models have been considered in cos-
mological scenarios presenting interesting phenomenology
[30,31,33].

The field equations are obtained by performing station-
ary variations of (33) with respect to the vierbein, Lorentz
connection, and scalar fields giving

Ea ≡ εabcd

(
Rbc − Λ

3
eb ∧ ec

)
∧ ed

+ α1dϕ1 ∧ Ta − 2κ

3∑
i=1

τ (φi )
a = 0, (35a)

Eab ≡ εabcdT
c ∧ ed

− α1

2
dϕ1 ∧ ea ∧ eb − α2dϕ2 ∧ Rab

+ α3εabcddϕ3 ∧ Rcd = 0, (35b)

E (ϕi ) ≡ d � dϕi + αi

4κ
Ii = 0, (35c)

respectively, where no sum over i is assumed unless stated
otherwise. From Eq. (35b) it can be seen that torsion is
sourced by the exterior derivative of the scalar fields. The
energy-momentum 3-form of each scalar field is defined as

τ (ϕi )
a = −1

2

(
dϕi ∧ � (dϕi ∧ ea) + (iadϕi ) � dϕi

)
, (36)

where ia is the inner contraction along the vector basis Ea =
Eμ

a∂μ, such that eaμEμ
b = δab and eaμEν

a = δ
μ
ν .

Diffeomorphism invariance imply the on-shell conserva-
tion law for each scalar field as

Dτ (ϕi )
a =

(
iaT

b
)

∧ τ
(ϕi )
b + αi

4κ
iadϕi Ii , (37)

where i = 1, 2, 3. Invariance under local Lorentz transfor-
mations, on the other hand, imply a condition that is triv-
ially satisfied for the energy-momentum 3-form of the scalar
fields. Moreover, the action (33) is quasi-invariant under
the global shift symmetry δϕi = ϕ

(i)
0 , where ϕ

(i)
0 are con-

stants. The Noether current associated to this symmetry,
Ji = �dϕi + αi

4κ
Ci , is conserved on shell by virtue of the

field equation (35c), where the Ci ’s have been defined as
Ii = dCi according to Eq. (34).

3.2 BTZ black strings with nonvanishing torsion

The vierbein compatible with the metric structure (1) can be
written as

ea =
{
eā = ēā(x̄),

e3 = dz,
(38)

where barred quantities denote projection on the 3-
dimensional spacetime.5 The Lorentz connection, on the
other hand, contains torsional degrees of freedom beyond
the metric ones, and it accepts a decomposition compatible
with (38) given by

ωab =
{

ωāb̄ = ω̄āb̄ + αāb̄e3,

ωā3 = β ā + γ āe3,
(39)

where the fields ωāb̄, αāb̄, β ā and γ ā depend only on {x̄}.
The piece ω̄āb̄ is recognized as the Lorentz connection of the
3-dimensional spacetime, αāb̄ = −αb̄ā and γ ā are Lorentz-
valued 0-forms, while β ā = β ā

b̄e
b̄ is a Lorentz-valued 1-

form. It is worth noticing that, even though the topological
invariants constructed out of the Levi-Civita connection van-
ish by virtue of the isometries of (17), this is not the case
when a torsionful connection compatible with such isome-
tries is considered.

The curvature and torsion, as well as the equations of
motion, are decomposed in terms of the transverse section
and the extended direction. The details of such a decomposi-
tion is given in Appendix A and, from hereon, we adopt such
a notation. The distinctive parts of the field equations (35),
namely, Aā , Bā , C, D, Wāb̄, Xāb̄, Yā , and Zā , must vanish
independently on shell.

In this work, the following metric ansatz for the 3-
dimensional manifold is considered

ē0 = f (r)dt, ē1 = h(r)dr, ē2 = r (N (r)dt + dφ) .

(40)

When the isometry group of (40) is demanded to the torsional
degrees of freedom, it is found that 24 nonvanishing indepen-
dent components of ωab appear through the fields ω̄āb̄, αāb̄,
β ā , and γ ā .

We are interested in solutions possessing scalar fields that
depend only on the extended flat direction, namely, ϕi =
ϕi (z). According to the notation of Appendix A, this condi-
tion implies that τ̄

(i)
ā = 0, ν(i) = 0, and χ

(i)
ā ∧ eā = 3μ(i).

From Wāb̄ = 0 and Yā = 0 one has

βā ∧ eā = 0, (41)

εāb̄c̄ T̄
b̄ ∧ ec̄ = 0, (42)

where εāb̄c̄ ≡ εabc3. This, in turn, gives εāb̄c̄ L
b̄ ∧ ec̄ = 0 and

εāb̄c̄ N
āb̄ ∧ ec̄ = 0, as a consequence of Aā = 0 and D = 0.

These equations can be used to integrate β ā as

β ā = β0ē
ā, (43)

5 For instance, ā = 0, 1, 2 denote 3-dimensional Lorentz indices, x̄
their local coordinates, and ēā is recognized as the dreibein.
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Table 1 The BTZ black
strings (50) solve the field
equations (35), provided the
torsional configurations (43)
and (48) with the integration
constants β0, t0 and λi fixed as
shown in this table. The
(non-)Riemannian AdS
curvature radii (�i ) �̃i are
presented for each case
separately

(i) Pseudoscalar-Nieh–Yan (ii) Pseudoscalar-Pontryagin (iii) Scalar-Gauss–Bonnet

λi λ2
1 = − 8Λ

3α2
1+8κ

λ2
2 = −Λ

κ
λ2

3 = −Λ
κ

β0 0 0 α3λ3Λ
2

t0 − α1λ1
2 − α2λ2Λ

2 0

1
�̃2
i

−Λ
2 −Λ

2

(
1 + α2

2Λ2

8κ

)
−Λ

2

(
1 − α2

3Λ2

2κ

)

1
�2
i

−Λ
(
α2

1+4κ
)

3α2
1+8κ

−Λ
2 −Λ

2

where β0 is an integration constant. Additionally, the fact that
Xāb̄ ∧ eb̄ = 0 yields to

εāb̄c̄γd̄ e
d̄ ∧ ec̄ ∧ eb̄ = α2∂zϕ2 R̄āb̄ ∧ eb̄. (44)

The Bianchi identity D̄T̄ ā = R̄ā
b̄ ∧ eb̄ implies that Eq. (44)

can be solved as

γā = α2

2
∂zϕ2�̄D̄T̄ā, (45)

where �̄ is the Hodge dual with respect to ēā . Following a
similar procedure, the equation Zā = 0 can be used to find

αāb̄ = −α3∂zϕ3εāb̄c̄�̄D̄T̄ c̄. (46)

In what follows, three cases are studied separately:
(i) scalar-Nieh–Yan coupling, obtained when α2 = 0, α3 =
0, ϕ2 = 0, and ϕ3 = 0, (ii) scalar-Pontryagin coupling,
obtained when α1 = 0, α3 = 0, ϕ1 = 0, and ϕ3 = 0, and
(iii) scalar-Gauss–Bonnet coupling, obtained when α1 = 0,
α2 = 0, ϕ1 = 0, and ϕ2 = 0. Since our interest is to find
locally AdS3 × R black string solutions, we restrict our-
selves to locally AdS3 Riemann–Cartan spacetimes on the
3-dimensional section, i.e.,

R̄āb̄
(i) = − 1

�2
i

ēā ∧ ēb̄, (47)

where �i ’s denote the non-Riemannian AdS curvature radii
for each different nonminimal coupling denoted by the sub-
script i , with i = 1, 2, 3. For this class of spacetimes, the
Bianchi identity implies that D̄T̄ ā = 0. Thus, from Eqs. (45)
and (46) one concludes that γā and αāb̄ vanish. The condition
D̄T̄ ā = 0 can be integrated, giving [50]

T̄ ā = 1

2
t0ε

ā
b̄c̄ ē

b̄ ∧ ēc̄, (48)

where t0 is an integration constant. Importantly, the Nieh–
Yan, Pontryagin, and Gauss–Bonnet densities vanish for this

class of spacetimes. Therefore, the Klein–Gordon equation
can be solved in each case as

ϕi = λi z, (49)

where λi ’s are integration constants associated to each scalar
field.

The three cases are solved by (38), with a 3-dimensional
section given by (40) with

f 2 = h−2 = −M + J 2

r2 + r2

�̃2
i

and N = J

r2 , (50)

with M and J being integration constants related to the mass
and angular momentum, while the three different effective
Riemannian AdS curvature radii are denoted by �̃i , with i =
1, 2, 3. Moreover, in order to solve the field equations, we
find that the integration constants β0, t0, and λi ’s must be
fixed in terms of the theory’s parameters. These solutions
represent the cilindrical extension of the BTZ black hole and
they are summarized in Table 1.

The appearance of a modified Riemannian AdS curvature
radius stem from the fact that β ā , T̄ ā , and ϕi contribute to
an effective cosmological constant, as it can be seen from
equation of motion Bā = 0. The contribution of torsion to
the cosmological constant in 3-dimensions has been already
observed in [50,51] and in black hole solutions [52,53] of the
Mielke–Baekler model [54]. Notice that the Riemannian AdS
curvature radius do not coincide with the one associated to
the Riemannian–Cartan geometry denoted by �i . This can be
seen from the decomposition ωab = ω̃ab + Kab, where ω̃ab

is the Levi-Civita connection satisfying dea + ω̃a
b ∧ eb = 0

and Kab is the contorsion 1-form defined as T a = Ka
b ∧eb.

This decomposition yields to

Rab = R̃ab + D̃Kab + Ka
c ∧ Kcb, (51)

where R̃ab = dω̃ab + ω̃a
c ∧ ω̃cb and D̃ is the Lorentz-

covariant derivative with respect to ω̃ab. Thus, the Rie-
mannian curvature 2-forms of the 3-dimensional section are
locally constant and given by
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˜̄Rāb̄
(i) = − 1

�̃2
i

eā ∧ eb̄. (52)

Interestingly, the case with scalar-Gauss–Bonnet coupling
admits a Riemannian flat geometry when the condition
2κ − α2

3Λ2 = 0 is satisfied, even though the negative
bare cosmological constant is nonvanishing. The case when
2κ − α2

3Λ2 < 0 and Λ < 0 admits a positive curvature
radius, however, it represents a naked singularity. The tor-
sional invariants reported in Refs. [55–57] have been com-
puted in all cases and it turns out that they are locally constant
everywhere. However, the nature of the singularity at r = 0
persists according to the BTZ geometry [49,58].

It is well-known that Dirac spinors are sensitive to the axial
piece of torsion [59,60], defined in terms of the irreducible
components6

Kab = V [aeb] + εabcd A
ced + Qab, (53)

where Va and Aa are Lorentz-valued 0-forms denoting the
vectorial and axial pieces, respectively, while the mixed part
Qab = Qab

c ec satisfies ia Qab = 0 = Qab ea ∧ eb. The
Dirac equation in Riemann–Cartan spacetimes is given by

�γ ∧
(

Dψ − 1

2
iaT

aψ

)
= 0, (54)

where γ = γaea is the gamma matrix 1-form satisfying the
Clifford algebra {γa, γb} = 2ηab, and Dψ = dψ + 1

4ωabγab
with γa1...ap ≡ γ[a1 ...γap]. It is found that the solutions
with scalar-Nieh–Yan and scalar-Pontryagin couplings pos-
sess nonvanishing axial torsion, thus, Dirac fermions will be
sensitive to such black string backgrounds. For scalar-Gauss–
Bonnet coupling, however, only the vectorial irreducible
component of the torsion is present, therefore, fermions will
not be sensitive to the torsional part of this black string con-
figuration.

Additionally, it is well-known that point particles without
spin move along geodesics, regardless the dynamical content
of the gravitational theory. In Ref. [61], an equation for the
trajectory of spinning test particles was derived, showing that
they are sensitive to all the components of the contorsion.
This kind of test particles can serve to probe all the black
string geometries with nonvanishing torsion presented in this
work.

4 Conclusions

In this work, different static and rotating four-dimensional
black string solutions have been presented in vacuum within

6 In fact, Dirac fermions are source of the axial component of torsion
when backreaction is considered.

dynamical CSMG, with and without torsion. These solutions
represent the first static and rotating black strings in dynami-
cal CSMG with nontrivial contributions of the Cotton tensor.
They represent the black string extension of the rotating BTZ
black hole [48] with one additional extended direction. For a
horizon to exist, the same conditions of the BTZ black hole
must hold. The solutions differ from the one reported in [24],
since the scalar field is dynamical and it can be completely
determined from the field equations. Moreover, these config-
urations belong to the Chern–Simons sector of the space of
solutions according to [10].

Next, the first-order formulation of CSMG is studied by
considering nonminimal couplings of the scalar fields to the
Nieh–Yan, Pontryagin, and Gauss–Bonnet densities. Homo-
geneous and rotating BTZ black strings are found that, to
the best of the authors’ knowledge, represent the first black
strings with nonvanishing torsion reported in the literature.7

It is found that either axial or vectorial components of the tor-
sion arise, while the other components are zero in all cases.
We found that torsion contributes to an effective cosmologi-
cal constant, shifting the Riemannian AdS curvature radius.
This behaviour could have interesting consequences in cos-
mology by considering a torsion-driven acceleration without
the cosmological constant and its fine-tuning problem. On
the other hand, in the case of the scalar-Gauss–Bonnet cou-
pling, there exist a particular choice of the coefficients that
allows for a flat Riemannian geometry in presence of a non-
vanishing cosmological constant. This is possible due to the
presence of a vectorial component of the torsion that can
cancel the contribution of the bare cosmological constant.
Finally, it is shown that spinning test particles and Dirac
spinors will sensitive to some of the BTZ black string back-
grounds reported here, providing a suitable scenario for the
latter to study spinorial quasinormal modes and their stabil-
ity.

Charged black strings in dynamical CSMG were sought in
this work, nevertheless, the same impossibility arising in the
black string extension of the Reissner–Norstrom black hole
was found (see [63] and references therein). It is worth men-
tioning that this can be circumvented in higher dimensional
gravity by considering Einstein–Gauss–Bonnet theory, p-
forms instead of Maxwell fields [63], or in four-dimensional
Einstein-SU (2) Skyrme model where the charge like term
comes from the inclusion of the Skyrme fields rather than
from the Maxwell fields [64].

Interesting questions remain open. For instance, con-
served Noether charges within the first-order formalism and
their connection with black hole thermodynamics have been

7 In the context of string theory, a black string configuration supported
by a completely antisymmetric 3-form was obtained in [62]. This notion
of “torsion” is not the Cartan’s torsion, which is described by a 2-form
in any spacetime dimension (see Ref. [60]).
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studied in [60,65–71]. In order to apply these techniques
for the black string solutions presented here, the gravita-
tional degrees of freedom should be extended by consid-
ering the scalar fields present in CSMG. This is certainly
of great interest and it is left for a future contribution. On
the other hand, although the four-dimensional Schwarzschild
black hole is stable under linear perturbations [72–75], it has
been shown that its cylindrical extensions, alongside a vari-
ety of black strings and branes in D ≥ 5, suffer from the
so-called Gregory–Laflame instability [76,77]. It remains to
be seen if torsion modifies this instability somehow. If these
black string are unstable, it is very interesting to figure out
their final state from both Riemannian and non-Riemannian
viewpoints, which could lead to the formation of naked sin-
gularities in four dimensions.
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A Decompositions

The curvature and torsion constructed out of Eqs. (38)
and (39) can be decomposed as

Rab =
{
Rāb̄ = Māb̄ + Nāb̄e3,

Rā3 = Lā + Qāe3,
(55)

T a =
{
T ā = T̄ ā + Pāe3,

T 3 = −βb̄e
b̄ + γb̄e

b̄e3,
(56)

where R̄āb̄ = dω̄āb̄ + ω̄ā
c̄ ∧ ω̄c̄b̄ and T̄ ā = dēā + ω̄ā

b̄ ∧ ēb̄,
with

Māb̄ = R̄āb̄ − β ā ∧ β b̄, (57)

Nāb̄ = D̄αāb̄ − 2β[āγ b̄], (58)

Lā = D̄β ā, (59)

Qā = D̄γ ā − αā
b̄β

b̄, (60)

Pā = β ā − αā
b̄e

b, (61)

where D̄ = d + ω̄. The energy-momentum 3-form (36) can
be written as

τ (i)
a =

{
τ

(i)
ā = τ̄

(i)
ā + χ

(i)
ā ∧ e3,

τ
(i)
3 = μ(i) + ν(i) ∧ e3,

(62)

where

τ̄
(i)
ā = 1

2

[
1

2
∂b̄ϕi∂

3ϕiεāl̄m̄e
b̄ ∧ el̄ ∧ em̄

+ 1

3!∂āϕi∂
3ϕiεc̄d̄ ēe

c̄ ∧ ed̄ ∧ eē
]

, (63)

χ
(i)
ā = 1

2

[
∂b̄ϕi∂

c̄ϕiεāc̄m̄e
b̄ ∧ em̄

+1

2
(∂zϕi )

2 εāl̄m̄e
l̄ ∧ em̄

−1

2
∂āϕi∂

b̄ϕiεb̄d̄ ēe
d̄ ∧ eē

]
, (64)

μ(i) = −1

2

[
1

2
∂b̄ϕi∂

c̄ϕiεc̄l̄m̄e
b̄ ∧ el̄ ∧ em̄

− 1

3! (∂zϕi )
2 εc̄d̄ ēe

c̄ ∧ ed̄ ∧ eē
]

, (65)

ν(i) = −1

4
∂zϕi∂

c̄ϕiεc̄l̄m̄e
l̄ ∧ em̄, (66)

and εāb̄c̄3 ≡ εāb̄c̄.
Similarly, the field equations (35) admit the decomposi-

tion

Ea =
{
Eā = Aā + Bāe3,

E3 = C + De3
(67)

where

Aā = −2εāb̄c̄ L
b̄ ∧ ec̄ + α1∂b̄ϕ1e

b̄ ∧ T̄ā

− 2κ

3∑
i=1

τ̄
(i)
ā , (68)

Bā = εāb̄c̄

(
Mb̄c̄ − Λeb̄ ∧ ec̄ + 2Qb̄ ∧ ec̄

)

+ α1

(
∂b̄ϕ1e

b̄ ∧ Pā + ∂zϕ1T̄ā
)

− 2κ

3∑
i=1

χ
(i)
ā , (69)

C = −εāb̄c̄

(
Māb̄ − Λ

3
eā ∧ eb̄

)
∧ ec̄

− α1∂āϕ1e
ā ∧ βb̄ ∧ eb̄ − 2κ

3∑
i=1

μ(i), (70)
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D = εāb̄c̄ N
āb̄ ∧ ec̄

+ α1

(
∂āϕ1e

āγb̄ − ∂zϕ1βb̄

)
∧ eb̄ − 2κ

3∑
i=1

ν(i), (71)

and

Eab =
{
Eāb̄ = Wāb̄ + Xāb̄e

3,

Eā3 = Yā + Zāe3
(72)

where

Wāb̄ = εāb̄c̄βd̄ ∧ ed̄ ∧ ec̄ − α1

2
∂c̄ϕ1e

c̄ ∧ eā ∧ eb̄

− α2∂c̄ϕ2e
c̄ ∧ Māb̄ + 2α3εāb̄c̄∂d̄ϕ3e

d̄ ∧ Lc̄, (73)

Xāb̄ = εāb̄c̄

(
T̄ c̄ + γd̄ e

d̄ ∧ ec̄
)

− α1

2
∂zϕ1eā ∧ eb̄

− α2

(
∂c̄ϕ2e

c̄ ∧ Nāb̄ + ∂zϕ2Māb̄

)

+ 2α3εāb̄c̄

(
∂d̄ϕ3e

d̄ ∧ Qc̄ + ∂zϕ3L
c̄
)

, (74)

Yā = εāb̄c̄ T̄
b̄ ∧ ec̄ − α2∂b̄ϕ2e

b̄ ∧ Lā

+ α3εāb̄c̄∂d̄ϕ3e
d̄ ∧ Mb̄c̄, (75)

Zā = −εāb̄c̄ P
b̄ ∧ ec̄ − α1

2
∂b̄ϕ1e

b̄ ∧ eā

− α2

(
∂b̄ϕ2e

b̄ ∧ Qā + ∂zϕ2Lā

)

+ α3εāb̄c̄

(
∂d̄ϕ3e

d̄ ∧ Nb̄c̄ + ∂zϕ3M
b̄c̄

)
. (76)

On shell, each Aā , Bā , C, D, Wāb̄, Xāb̄, Yā , and Zā vanish
independently.

B Riemannian Chern–Simons modified gravity in the lan-
guage of diferential forms

In this Appendix, it is shown that the BTZ black strings solu-
tion of Sect. 2 can be obtained from the first-order formalism,
by imposing the torsion-free condition through a Lagrange
multiplier. The action under consideration is given by

S[ea, ωab, ϕi , ζa] = 1

4κ

∫ [
εabcd

(
Rab − Λ

6
ea ∧ eb

)

∧ec ∧ ed + αϕRa
b ∧ Rb

a + ζa ∧ T a
]

− 1

2

∫
dϕ ∧ �dϕ, (77)

where ζa is a Lorentz-valued Lagrange multiplier 2-form.
The field equations for the vierbein, Lorentz connection,
scalar fields, and Lagrange multiplier are respectively given

by

Ea + 1

2
Dζa = 0, (78a)

Eab + 1

2
ζ[a ∧ eb] = 0, (78b)

E (ϕi ) = 0, (78c)

T a = 0, (78d)

where Ea , Eab, and E (ϕi ) have been defined in Eq. (35), by
taking ϕ1 = ϕ3 = 0 and redefining ϕ2 ≡ ϕ. The Lagrange
multiplier can be solved algebraically from Eq. (78b) as

ζa = 4ibEba −
(
ibi cEbc

)
ea . (79)

Using this expression, alongside the constraint T a = 0, the
field equations reduces to

εabcd

(
R̃bc − Λ

3
eb ∧ ec

)
∧ ed + 1

2
D̃ζa − 2κτ (ϕ)

a = 0,

(80a)

d � dϕ + α

4κ
R̃a

b ∧ R̃b
a = 0, (80b)

where, as before, tilde denote Riemannian (torsion-free)
quantities. It is straightforward to see that Eq. (20), as well
as Eq. (21) with (28), solve the field equations (80).
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