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Static and seismic passive earth pressure

coefficients on rigid retaining structures

A.-H. Soubra

Abstract: The passive earth pressure problem is investigated by means of the kinematical method of the limit analysis
theory. A translational kinematically admissible failure mechanism composed of a sequence of rigid triangles is pro-
posed. This mechanism allows the calculation of the passive earth pressure coefficients in both the static and seismic
cases. Quasi-static representation of earthquake effects using the seismic coefficient concept is adopted. Rigorous
upper-bound solutions are obtained in the framework of the limit analysis theory. The numerical results of the static
and seismic passive earth pressure coefficients are presented and compared with the results of other authors.

Key words: limit analysis, passive pressure, earthquake.

Résumé : La méthode cinématique de la théorie de l’analyse limite a été appliquée à l’étude de la butée des terres. Un
mécanisme de rupture cinématiquement admissible de type translationnel est proposé. Ce mécanisme est composé de
plusieurs blocs triangulaires rigides et il permet le calcul des coefficients de butée avec une prise en compte éventuelle
des efforts sismiques grâce à une approche pseudo-statique. La solution présente est un majorant par rapport à la solu-
tion théorique exacte. Les résultats numériques obtenus sont présentés et comparés à ceux donnés par d’autres auteurs.

Mots clés : analyse limite, butée des terres, séisme. Notes 478

1. Introduction

Earthquakes have the unfavorable effects of increasing ac-
tive lateral earth pressures and reducing passive lateral earth
pressures. Hence, the assessment of seismic lateral earth
pressures or changes in lateral earth pressures as the result
of an earthquake is of practical significance in most seismic
designs of retaining walls. The traditional method for evalu-
ating the effect of an earthquake on the lateral earth pres-
sures is the so-called “pseudo-static method.” This method
continues to be used by consulting geotechnical engineers
because it is required by the building codes; it is easy to ap-
ply and gives satisfactory results. Quasi-static analysis using
the seismic coefficient concept is therefore of great practical
value in many cases, although the assessment of the seismic
coefficient still relies highly on past experience.

The well-known Mononobe–Okabe analysis of seismic
lateral earth pressures proposed by Mononobe and Matsuo
(1929) and Okabe (1924) is a direct modification of the
Coulomb wedge method where the earthquake effects are re-
placed by a quasi-static inertia force whose magnitude is
computed on the basis of the seismic coefficient concept. As
in the Coulomb analysis, the failure surface is assumed to be
planar in the Mononobe–Okabe method, regardless of the

fact that the most critical sliding surface may be curved.
Similar to the Coulomb analysis, the Mononobe–Okabe
analysis may underestimate the active earth pressure and
overestimate the passive earth pressure. Note, however, that
the Mononobe–Okabe analysis has been experimentally
proved by Mononobe and Matsuo (1929) and Ishii et al.
(1960) to be effective in assessing the seismic active earth
pressure; it is generally adopted in current practice for seis-
mic design of rigid retaining walls. The Mononobe–Okabe
solution is therefore practically acceptable at least for the ac-
tive pressure case, although its applicability to the passive
pressure case is somewhat in doubt.

Recent research conducted by Chang and Chen (1982) (cf.
Chen and Liu 1990) using a log-sandwich mechanism within
the framework of the kinematical method in limit analysis
has shown that the upper-bound solutions they obtained
were practically identical to those given by the Mononobe–
Okabe method for the active case. However, the passive
earth pressure coefficients are seriously overestimated by the
Mononobe–Okabe method; they are in most cases higher
than those obtained by the upper-bound method for a log-
sandwich mechanism.

In this paper, the static and seismic passive earth pressure
problems are investigated by the upper-bound method of
limit analysis using a translational failure mechanism. This
mechanism allows the slip surface to develop more freely in
comparison with the log-sandwich mechanism presented by
Chen and Rosenfarb (1973) (cf. Chen 1975 and Chen and
Liu 1990) in the static case and by Chang and Chen (1982)
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(cf. Chen and Liu 1990) in the seismic case; hence it leads
to smaller upper-bound solutions of the passive earth pres-
sure problem.

2. The upper- and lower-bound theorems of

limit analysis

The upper-bound theorem, which assumes a perfectly
plastic soil model with an associated flow rule, states that
the rate of energy dissipation in any kinematically admissi-
ble velocity field can be equated to the rate of work done by
the external forces, and so enables a strict upper-bound on
the true limit load to be deduced (see Drucker et al. 1952;
Chen 1975; and Salençon 1990). A kinematically admissible
velocity field is one which satisfies compatibility, the flow
rule, and the velocity boundary conditions. To provide solu-
tions that are useful in practice, the upper-bound theorem is
often used in tandem with the lower-bound theorem. The lat-
ter also assumes a perfectly plastic soil model with an asso-
ciated flow rule and states that any statically admissible
stress field (which satisfies equilibrium and the stress bound-
ary conditions, and nowhere violates the yield criterion) will
provide a lower-bound estimate of the true limit load (see
Drucker et al. 1952; Chen 1975; Salençon 1990). By using
these two theorems, the exact limit load can often be brack-
eted with an accuracy which is sufficient for design pur-
poses.

In this paper, only the upper-bound theorem of limit anal-
ysis is applied to the static and seismic passive earth pres-
sure problem using a kinematically admissible velocity field.
It should be noted here that the upper-bound theorem gives
an unsafe estimate of the passive failure load. The aim of
this work is to improve the best available upper-bound solu-
tions given by Chen and Liu (1990) in both the static and
seismic cases.

3. Theoretical analysis of the seismic

passive earth pressure problem

An earthquake has two possible effects on a soil–wall sys-
tem. One is to increase the driving forces, and the other is to
decrease the shearing resistance of the soil. The reduction in
the shearing resistance of a soil during an earthquake is in
effect only when the magnitude of the earthquake exceeds a
certain limit and the ground conditions are favorable for
such a reduction. Research conducted by Okamoto (1956)
indicated that when the average ground acceleration is larger
than 0.3g, there is considerable reduction in strength for
most soils. However, he claimed that in many cases the
ground acceleration is less than 0.3g, and the mechanical
properties of most soils do not change significantly in these
cases.

The assumptions made in the analysis can be summarized
as follows:

(1) Only the reduction of the passive pressures due to the
increase in driving forces is investigated under seismic load-
ing conditions. The shear strength of the soil is assumed un-
affected as the result of the seismic loading. This hypothesis
is currently made by consulting geotechnical engineers (see,
for instance, Commission of the European Communities
1994) and it has been adopted by many investigators in the

seismic stability analysis of geotechnical problems (see, for
instance, Sarma and Iossifelis 1990; Richards et al. 1993;
Budhu and Al-Karni 1993; Paolucci and Pecker 1997; and
Soubra 1997, 1999).

(2) A constant seismic coefficient is assumed for the en-
tire soil mass involved. Only the horizontal seismic coeffi-
cient Kh is considered, the vertical seismic coefficient often
being disregarded.

(3) A translational multiblock failure mechanism is as-
sumed. This mechanism is a generalization of the one-block
failure mechanism considered in the Mononobe–Okabe
method.

(4) The soil is assumed to be an associated flow rule Cou-
lomb material obeying the maximal work principle of Hill.
However, real soils do not obey the associative flow rule,
since frictional soils are found experimentally to dilate at in-
crements considerably less than those predicted by the nor-
mality condition, that is, dilatancy angle (ψ) < angle of
internal friction (φ). Recent theoretical considerations made
on translational failure mechanisms (Drescher and
Detournay 1993; Michalowski and Shi 1995, 1996) allow
one to conclude that for a nonassociative material the limit
load can be obtained using the flow rule associated with a
new yield condition in which φ and cohesion c are replaced
by φ* and c* as follows:

[1] tan *
cos sin

sin sin
φ φ

φ
=

−
Ψ

Ψ1

[2] c c*
cos cos

sin sin
=

−
Ψ

Ψ
φ
φ1

Hence, the results presented in this paper can be used for
nonassociative material provided φ and c are replaced with
φ* and c* calculated from eqs. [1] and [2], respectively.

(5) The angle of friction δ at the soil–structure interface is
assumed to be constant. This hypothesis is in conformity
with the kinematics assumed in this paper.

(6) An adhesive force Pa is assumed to act at the soil–
structure interface. The intensity of this force is cl (tan δ)/(tan φ),
where l is the length of the structure.

(7) The velocity at the soil–structure interface is assumed
tangential to the wall (see Chen 1975). Other investigators
(see Drescher and Detournay 1993; and Michalowski 1999)
assumed that the interfacial velocity is inclined at δ to the
wall to respect the normality condition. Both hypotheses
lead to the same result of the limit load (see Appendix 1).

3.1. Failure mechanism
The failure mechanism is shown in Fig. 1. It is composed

of a radial shear zone including n triangular rigid blocks.
The angles α i and β i (i = 1, …, n) are as yet unspecified.

As shown in Fig. 2a, the wall is translating horizontally
and all the triangles move as rigid bodies in directions which
make an angle φ with the discontinuity lines di (i = 1, …, n).

The velocity of each triangle is determined by the condi-
tion that the relative velocity between the triangles in contact
should have a direction which forms an angle φ with the con-
tact surface. The velocity hodographs are shown in Fig. 2b.
The velocities so determined constitute a kinematically ad-
missible velocity field.
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In the present analysis, the work equation is applied to the
soil mass in motion. Two another alternative approaches
considering the whole soil–structure system can also be used
and lead to an identical limit load (see Appendix 1).

3.1.1. Calculations of rate of external work

As shown in Fig. 3, the external forces contributing to the
rate of external work consist of the passive earth force PpE,
the adhesive force Pa, the weight of the soil mass Wi (i =

1,..., n) the surcharge q on the ground surface, and the dif-
ferent inertia forces. These inertia forces concern the soil
mass and the surcharge loading.

The rate of external work for the different external forces can
be easily obtained; the calculations are presented in Appendix 2.

3.1.2. Calculations of rate of internal energy dissipation

Since no general plastic deformation of the soil mass is
permitted to occur, the energy is dissipated solely at the dis-

Fig. 1. Failure mechanism for static and seismic passive earth pressure analyses.

Fig. 2. (a) Velocity field of the failure mechanism. (b) Velocity hodographs.
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continuity surfaces di (i = 1, …, n) between the material at
rest and the material in motion and at the discontinuity sur-
faces li (i = 1, …, n – 1) within the radial shear zone. The
rate of energy dissipation per unit length along such velocity
discontinuities can be expressed as

[3] & cosD cV= φ

where V is the velocity that makes an angle φ with the veloc-
ity discontinuity according to the associated flow rule of per-
fect plasticity. Calculations of the rate of energy dissipation
along the different velocity discontinuities are given in Ap-
pendix 2.

3.1.3. Work equation

By equating the total rate of external work (eq. [B14], Ap-
pendix 2) to the total rate of internal energy dissipation
(eq. [B19], Appendix 2), we have

[4] PpE =

K
l

K ql K cli i i i i ip E pqE pcEγ α β γ α β α β( , ) ( , ) ( , )
2

2
+ +

in which the seismic passive earth pressure coefficients Kp γ E,
KpqE, and KpcE can be expressed in terms of the 2n – 1 as yet
unspecified angles α i and βi. They are given as follows:

[5] K
f K f

p E
h

γ β φ δ
= −

+
− −

1 2

1sin( )

[6] K
f K f

pqE
h= −

+
− −

3 4

1sin( )β φ δ

[7] K
f f f

pcE =
+ +

− −
5 6 7

1sin( )β φ δ

4. Numerical results

The most critical passive earth pressure coefficients can be
obtained by minimization of these coefficients (eqs. [5]–[7])
with regard to the mechanism parameters. A computer pro-
gram has been developed for assessing the critical static and
seismic passive earth pressure coefficients. In the following

sections, we present and discuss in succession (i) the static
passive earth pressure coefficients Kpγ, Kpq, and Kpc given by
the present failure mechanism for Kh = 0; and (ii) the seismic
passive earth pressure coefficients Kp γ E, KpqE, and KpcE for
various values of the seismic coefficient Kh.

4.1. Static passive earth pressure coefficients
Table 1 presents the Kpγ factor obtained from the computer

program for φ = 45°, δ /φ = 1, β /φ = 1, λ /φ = 0, Kh = 0, and
various values of n (the number of triangular rigid blocks).

The upper-bound solution can be improved by increasing
the number of rigid blocks. The reduction in the Kp γ value
decreases with an increase in n and attains 0.4% for n = 14.
The same trend has been observed for the coefficients Kpq
and Kpc.

On the other hand, the results obtained from the computer
program indicate that the coefficient Kpc is related to the
coefficient Kpq0 by the following relationship (cf. theorem of
corresponding states of Caquot and Kérisel 1948):

[8] K

K

pc

pq0

=
− 1

cos
tan

δ
φ

Fig. 3. Free body diagram of the failure mechanism.

n Kpγ % reduction

2 2362.66
3 673.26 71.50
4 499.92 25.75
5 441.87 11.61
6 414.50 6.19
7 399.18 3.70
8 389.68 2.38
9 383.34 1.63

10 378.90 1.16
11 375.65 0.86
12 373.21 0.65
13 371.32 0.51
14 369.83 0.40

Table 1. Kpγ values versus number of rigid blocks n

for φ = 45°, δ /φ = 1, β /φ = 1, and λ /φ = 0.
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where Kpq0 is the coefficient of passive earth pressures
due to a surcharge loading acting normally to the ground
surface. This result is to be expected, since in the present
analysis an adhesive force Pa = cl (tan δ)/(tan φ) is assumed
to act along the soil–wall interface.

Figure 4 shows the critical slip surfaces obtained from the
numerical minimization of the coefficient Kpγ for φ = 45°,
δ /φ = 2/3, β /φ = 1/3, λ /φ = 0, and three values of n (3, 7, and
14).

For n = 14, the critical failure mechanism is composed of
a radial shear zone sandwiched between two triangular rigid
wedges. The shear zone is not bounded by a log-spiral slip
surface as is the case of the log-sandwich mechanism pro-
posed by Chen and Rosenfarb (1973). Thus, the present
mechanism leads to smaller upper-bound solutions of the
passive earth pressure coefficient Kpγ. However, the coeffi-
cients Kpq and Kpc are identical to those given by the log-
sandwich mechanism, since the multiblock mechanism ap-
proaches the log-sandwich mechanism as the number of
rigid blocks increases. The coefficients Kpq and Kpc are also
almost identical to those given by L’herminier and Absi
(1962) (cf. Kérisel and Absi 1990) using the slip line
method, and the maximum error does not exceed 0.5%. It

should be noted that the critical angular parameters (α i, β i)
obtained from the minimization of both Kpq and Kpc give ex-
actly the same critical geometry.

Table 2 presents the coefficients Kpγ and Kpq obtained
from the computer program for φ ranging from 10° to 45°
and five values of δ /φ when β /φ = λ /φ = 0; the coefficient
Kpc can be calculated using eq. [8]. In Table 2 and hereafter,
the results are given for n = 14, which means that the
minimization procedure is made with regard to 27 angular
parameters.

4.1.1. Comparison with Rankine’s solution

For the general case of an inclined wall with a sloped
backfill ( β /φ ≠ 0, λ /φ ≠ 0), the Rankine passive earth pres-
sure coefficient Kp γ is given as follows (cf. Costet and
Sanglerat 1975):

[9] Kpγ
β

β
β

λ β ω
α ω − β)

φ ω + β − 2 λ )]=
−

+
cos ( ) sin

cos sin(
[ sin cos(1

where

[10] sin
sin
sin

ω β
φβ =

As is well known, this pressure is inclined at an angle α with
the normal to the wall (cf. Fig. 5) irrespective of the angle of
friction at the soil–wall interface, where

[11] tan
sin(

sin cos (
α

ω + β − 2 λ ) φ
φ ω + β − 2 λ )
β

β
=

+
sin

1

and the inclination of the slip surface with the horizontal di-
rection is given as follows:

[12] θ
ω + β π φβ= + −

2 4 2

To validate the results of the present analysis, one considers
a soil–wall friction angle δ equal to the α value given by
Rankine. The numerical solutions obtained from the com-
puter program have shown that in this special case the pres-
ent results are similar to the exact solutions given by
Rankine (eqs. [9] and [12]).

4.1.2. Comparison with Caquot and Kérisel (1948) and
Chen and Rosenfarb (1973)

As mentioned earlier, the log-sandwich mechanism pro-
posed by Chen and Rosenfarb (1973) gives the exact solu-
tion solely in the case of a weightless soil. As a result, the
comparison of the present solutions with solutions of other
authors will be limited to the passive earth pressure coeffi-
cient Kpγ.

There are many solutions for Kpγ in the literature based on
(i) the limit equilibrium method (Janbu 1957; Rowe 1963;
Lee and Moore 1968; Packshaw 1969; Shields and Tolunay
1972, 1973; Spencer 1975; Rahardjo and Fredlund 1984;
Bilz et al. 1985), (ii) the slip line method (Caquot and
Kérisel 1948; Sokolovski 1960, 1965; Graham 1971;
Hettiaratchi and Reece 1975); and (iii) the limit analysis the-
ory (Lysmer 1970; Lee and Herington 1972; Chen and
Rosenfarb 1973; Basudhar et al. 1979; Soubra 1989, Soubra
et al. 1998, 1999; Chen and Liu 1990). The tendency today

Fig. 4. Critical slip surfaces for φ = 45°, δ /φ = 2/3, β /φ = 1/3,
λ /φ = 0, and three values of n (3, 7, and 14).
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in practice is to use the values given by Caquot and
Kérisel (1948) (cf. Tables of Kérisel and Absi 1990).

Figure 6 shows the comparison of the present solutions
with those of Caquot and Kérisel (1948) (cf. Kérisel and
Absi 1990) in the case of a vertical wall and horizontal
backfill ( β / φ = λ /φ = 0).

The values from the present analysis are greater than
those of Caquot and Kérisel, with the maximum difference
being less than 12%.

Figure 7 shows the comparison of the present solutions
with those of Caquot and Kérisel (1948) for different values
of β and λ when φ = 45° and δ /φ = 1.

As in the case of a vertical wall and a horizontal backfill,
the values from the present analysis are greater than those of
Caquot and Kérisel (1948). The difference is not significant
for small values of β / φ (≤ –0.4) and for large values
of λ (≥ 25°); however, it attains 38% when φ = 45°, δ /φ = 1,
β/φ = 1, and λ/φ = –1/3. Note that for practical configu-

rations (φ ≤ 45°, 0 ≤ δ /φ ≤ 2/3, λ /φ = 0, β / φ ≤ 1/3) the
maximum difference does not exceed 12.2%.

Kpγ Kpq

φ (°) 0 1/3 1/2 2/3 1 0 1/3 1/2 2/3 1

10 1.42 1.51 1.56 1.60 1.67 1.42 1.51 1.55 1.58 1.62
11 1.47 1.58 1.63 1.68 1.77 1.47 1.57 1.62 1.66 1.71
12 1.52 1.65 1.71 1.77 1.88 1.52 1.64 1.70 1.74 1.80
13 1.58 1.73 1.80 1.87 1.99 1.58 1.72 1.78 1.83 1.90
14 1.64 1.81 1.89 1.97 2.11 1.64 1.80 1.86 1.92 2.01
15 1.70 1.89 1.99 2.08 2.25 1.70 1.88 1.96 2.03 2.13
16 1.76 1.98 2.09 2.20 2.39 1.76 1.96 2.05 2.13 2.26
17 1.83 2.07 2.20 2.32 2.55 1.83 2.06 2.16 2.25 2.39
18 1.89 2.17 2.32 2.46 2.72 1.89 2.15 2.27 2.38 2.54
19 1.97 2.28 2.44 2.61 2.91 1.97 2.26 2.39 2.51 2.70
20 2.04 2.39 2.58 2.77 3.12 2.04 2.37 2.52 2.65 2.87
21 2.12 2.51 2.72 2.94 3.35 2.12 2.48 2.65 2.81 3.06
22 2.20 2.64 2.88 3.13 3.60 2.20 2.60 2.80 2.98 3.27
23 2.28 2.78 3.05 3.33 3.87 2.28 2.74 2.95 3.16 3.49
24 2.37 2.92 3.23 3.55 4.18 2.37 2.88 3.12 3.35 3.74
25 2.46 3.08 3.43 3.79 4.51 2.46 3.03 3.30 3.56 4.00
26 2.56 3.25 3.64 4.06 4.89 2.56 3.19 3.49 3.79 4.30
27 2.66 3.43 3.87 4.35 5.30 2.66 3.36 3.70 4.04 4.62
28 2.77 3.62 4.12 4.66 5.76 2.77 3.54 3.93 4.31 4.98
29 2.88 3.83 4.39 5.01 6.28 2.88 3.74 4.17 4.61 5.37
30 3.00 4.05 4.69 5.40 6.86 3.00 3.95 4.44 4.93 5.81
31 3.12 4.29 5.02 5.82 7.52 3.12 4.17 4.73 5.29 6.29
32 3.25 4.56 5.37 6.30 8.26 3.25 4.42 5.04 5.67 6.83
33 3.39 4.84 5.77 6.82 9.09 3.39 4.68 5.38 6.10 7.43
34 3.54 5.15 6.20 7.41 10.05 3.54 4.97 5.76 6.57 8.11
35 3.69 5.48 6.67 8.06 11.13 3.69 5.28 6.17 7.10 8.86
36 3.85 5.85 7.20 8.80 12.38 3.85 5.61 6.62 7.67 9.71
37 4.02 6.25 7.79 9.63 13.81 4.02 5.98 7.11 8.31 10.67
38 4.20 6.69 8.44 10.56 15.46 4.20 6.38 7.65 9.03 11.76
39 4.40 7.17 9.17 11.63 17.38 4.40 6.81 8.25 9.83 13.00
40 4.60 7.70 9.99 12.83 19.62 4.60 7.29 8.92 10.72 14.42
41 4.81 8.28 10.90 14.22 22.25 4.81 7.81 9.66 11.73 16.05
42 5.04 8.93 11.94 15.80 25.34 5.04 8.38 10.49 12.87 17.92
43 5.29 9.65 13.12 17.63 29.00 5.29 9.01 11.41 14.16 20.08
44 5.55 10.46 14.45 19.75 33.37 5.55 9.71 12.45 15.63 22.60
45 5.83 11.36 15.98 22.22 38.61 5.83 10.49 13.62 17.30 25.55

Table 2. Kpγ and Kpq values for φ ranging from 10° to 45° and δ /φ of 0, 1/3, 1/2, 2/3, and 1 (β /φ = λ /φ = 0).

Fig. 5. Rankine solution in the case of a general soil–wall system.

6



On the other hand, rigorous upper-bound solutions are
proposed in the literature by Chen and Rosenfarb (1973).
These authors considered six failure mechanisms and
showed that the log-sandwich mechanism gives in most
cases the least upper-bound solutions. The results given by
the present failure mechanism and those given by the log-
sandwich mechanism proposed by Chen and Rosenfarb are
presented in Fig. 8 in the case of φ = 45° and δ / φ = 1.

It is clear that the present upper-bound solutions are better
than those of Chen and Rosenfarb (1973); the improvement
attains 21% when φ = 45°, δ / φ = 1, β /φ = 1, and λ / φ = –1/3.

4.1.3. Comparison with other theoretical and experimental
solutions

Recently, Kobayashi (1998) performed laboratory tests to
compare the experimental passive earth pressure coefficients
obtained in the case of a large wall oblique angle with those
given by theoretical predictions based on the rigid plasticity
theory. The passive wall was pushed into a sand mass using
two different methods. Method A translates the passive wall
normally with a slight shear force, whereas method B sinks
the passive wall vertically with a full shear force. The rela-
tionship between the observed Kpγ and tan δ is demonstrated
in Fig. 9. Passive earth pressure coefficients given by the
present analysis, by Chen and Rosenfarb (1973) (cf. Chen
1975) using the upper-bound method in limit analysis, and
by Sokolovski (1960) using the slip line method are also in-
dicated in Fig. 9.

Observed values of Kpγ are smaller than the theoretical
predictions for large values of δ and Kpγ decreases consider-
ably from the peak to the residual. This may be explained by
the progressive failure observed along a shear band. On the
other hand, the comparison with the theoretical results given
by Chen (1975) indicates that our solution improves the best
upper-bound solution given by this author. The improvement
attains 20.4% when φ = 42°, tan δ = 0.9, λ = –60°, and β =
0°. The present solutions are greater than those given by
Sokolovski (1960), and the difference attains 19% when φ =
42°, tan δ = 0.9, λ = –60°, and β = 0°.

Fang et al. (1997) presented experimental data of earth
pressure acting against a vertical rigid wall which moves to-
ward a mass of dry sand with an inclined surface. The in-
strumented retaining-wall facility was used to investigate the
variation of earth pressure induced by the translational wall
movement. Based on experimental data, it has been found
that the earth pressure distributions are essentially linear at
each stage of wall movement and that the wall movement
S/H (where S is the horizontal wall movement and H is the
wall height) required for the backfill to reach a passive state
increases with an increasing backfill inclination β.

Fig. 6. Comparison of the coefficient Kpγ from the present solu-
tion with that of Caquot and Kérisel (1948) (β /φ = λ /φ = 0).

Fig. 7. Comparison of the coefficient Kpγ from the present solu-
tion with that of Caquot and Kérisel (1948) for different β and λ
values.

Fig. 8. Comparison of the coefficient Kpγ from the present solu-
tion with that of Chen and Rosenfarb (1973) for different β and
λ values.

7



The relationship between the passive earth pressure coeffi-
cient Kpγ,h and backfill inclination β at a different stage of
wall movement S/H is demonstrated in Fig. 10.

Figure 10 shows that Kpγ,h increases with increasing slop-
ing angle β. For large values of β, the experimental Kpγ,h val-
ues occur at a large wall displacement. As an example, for
β = 20°, the required wall movement is 0.46H. For an
arbitrarily assumed displacement criterion (S/H = 0.2)

chosen by the authors, the present results and those given by
the log-spiral method proposed by Terzaghi (1943) are in
fairly good agreement with the experimental data.

4.2. Seismic passive earth pressure coefficients
Earthquakes have the unfavorable effect of reducing pas-

sive earth pressures. Equation [7] shows that the coefficient
KpcE is unaffected by the seismic loading. To investigate how

Fig. 9. Comparison of results from the present solution with other theoretical and experimental results (Chen 1975; Sokolovski 1960;
Kobayashi 1998 “Methods A and B”).
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φ (°)

δ /φ Kh 15 20 25 30 35 40 45

0 0 1.70 2.04 2.46 3.00 3.69 4.60 5.83
0.05 1.63 1.97 2.38 2.91 3.59 4.49 5.71
0.10 1.56 1.89 2.30 2.82 3.49 4.38 5.58
0.15 1.47 1.80 2.21 2.73 3.39 4.27 5.46
0.20 1.37 1.71 2.12 2.63 3.29 4.15 5.33
0.25 1.22 1.61 2.02 2.53 3.18 4.03 5.20
0.30 — 1.48 1.91 2.42 3.06 3.91 5.07

1/3 0 1.89 2.39 3.08 4.05 5.48 7.70 11.35
0.05 1.81 2.30 2.97 3.91 5.31 7.48 11.07
0.10 1.71 2.19 2.84 3.77 5.14 7.27 10.78
0.15 1.60 2.08 2.72 3.62 4.96 7.04 10.49
0.20 1.47 1.95 2.58 3.47 4.78 6.81 10.19
0.25 1.28 1.81 2.44 3.31 4.59 6.58 9.88
0.30 — 1.64 2.28 3.13 4.39 6.33 9.57

1/2 0 1.99 2.58 3.43 4.69 6.67 9.99 15.98
0.05 1.89 2.47 3.29 4.53 6.46 9.70 15.57
0.10 1.79 2.35 3.15 4.35 6.24 9.40 15.15
0.15 1.67 2.22 3.01 4.18 6.01 9.10 14.73
0.20 1.53 2.08 2.85 3.99 5.78 8.79 14.29
0.25 1.32 1.92 2.68 3.79 5.54 8.48 13.85
0.30 — 1.73 2.50 3.59 5.29 8.15 13.40

2/3 0 2.08 2.77 3.79 5.40 8.06 12.83 22.22
0.05 1.98 2.65 3.64 5.20 7.80 12.46 21.65
0.10 1.87 2.52 3.48 5.00 7.53 12.08 21.06
0.15 1.74 2.37 3.32 4.79 7.25 11.68 20.47
0.20 1.58 2.22 3.14 4.57 6.96 11.28 19.86
0.25 1.36 2.04 2.95 4.34 6.66 10.87 19.24
0.30 — 1.83 2.74 4.10 6.35 10.44 18.61

1 0 2.25 3.12 4.51 6.86 11.13 19.62 38.61
0.05 2.13 2.98 4.33 6.61 10.76 19.05 37.61
0.10 2.01 2.83 4.13 6.35 10.39 18.46 36.60
0.15 1.86 2.66 3.93 6.07 9.99 17.85 35.56
0.20 1.69 2.48 3.71 5.79 9.59 17.23 34.51
0.25 1.44 2.28 3.47 5.49 9.17 16.60 33.43
0.30 — 2.03 3.22 5.17 8.74 15.94 32.33

Table 3. Seismic passive earth pressure coefficient Kp γE (β /φ = λ /φ = 0).

Fig. 10. Comparison of results from the present solution with other theoretical and experimental results (Terzaghi 1943; Fang et al.
1997) ( φ = 30.9°, δ = 19.2°, and λ = 0°).
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the passive earth pressure coefficients KpγE and KpqE are
affected by earthquakes, extensive numerical results based
on the present failure mechanism are presented in Tables 3
and 4.

The passive earth pressure coefficients KpγE and KpqE de-
crease with an increase in Kh. The reduction is more signifi-
cant for looser soils with lower φ values than for denser soils
with higher φ values. For example, for δ/φ = 1, the reduction
of the coefficient KpγE is 16% for φ = 45° and 35% for φ =
20° when Kh increases from 0 to 0.3. Finally, it should be
mentioned that the seismic acceleration generated by earth-
quakes not only imposes extra loading on a soil mass but
also shifts the sliding surface to less favorable positions.

Figure 11 shows that the critical slip surface becomes
more extended as the acceleration intensity increases.

4.2.1. Comparison of results with existing solutions

To see the validity of the present upper-bound solution,
the seismic passive earth pressure coefficients are calculated
and compared with solutions given by other authors.

Chang and Chen (1982) (cf. Chen and Liu 1990) consid-
ered a log-sandwich failure mechanism and gave rigorous
upper-bound solutions for the coefficient KpγE. The upper-
bound solutions given by the present mechanism and those
given by Chen and Liu (1990) are presented in Fig. 12.

As in the static case, the present upper-bound solutions
are better than those of Chen and Liu (1990); the improve-
ment attains 18.2% when φ = 45°, δ /φ = 1, β /φ = 1, λ /φ = 0,
and Kh = 0.3. Therefore, the present failure mechanism gives
interesting solutions for the seismic passive earth pressure
coefficients for translational wall movement. Further investi-

φ (°)

δ /φ Kh 15 20 25 30 35 40 45

0 0 1.70 2.04 2.46 3.00 3.69 4.60 5.83
0.05 1.63 1.97 2.38 2.91 3.59 4.49 5.71
0.10 1.56 1.89 2.30 2.82 3.49 4.38 5.58
0.15 1.47 1.80 2.21 2.73 3.39 4.27 5.46
0.20 1.37 1.71 2.12 2.63 3.29 4.15 5.33
0.25 1.22 1.61 2.02 2.53 3.18 4.03 5.20
0.30 — 1.48 1.91 2.42 3.06 3.91 5.07

1/3 0 1.88 2.37 3.03 3.95 5.28 7.29 10.49
0.05 1.80 2.28 2.93 3.83 5.14 7.11 10.27
0.10 1.71 2.18 2.82 3.71 4.99 6.93 10.04
0.15 1.60 2.07 2.70 3.57 4.84 6.75 9.81
0.20 1.47 1.95 2.57 3.43 4.67 6.55 9.56
0.25 1.28 1.81 2.43 3.28 4.50 6.35 9.32
0.30 — 1.64 2.28 3.12 4.32 6.14 9.06

1/2 0 1.96 2.52 3.30 4.44 6.17 8.92 13.62
0.05 1.88 2.42 3.19 4.31 6.00 8.71 13.33
0.10 1.78 2.32 3.07 4.17 5.83 8.49 13.03
0.15 1.67 2.20 2.95 4.02 5.65 8.26 12.73
0.20 1.53 2.07 2.81 3.86 5.46 8.02 12.42
0.25 1.32 1.92 2.65 3.69 5.26 7.78 12.09
0.30 — 1.73 2.48 3.51 5.05 7.52 11.76

2/3 0 2.03 2.65 3.56 4.93 7.09 10.72 17.29
0.05 1.94 2.56 3.45 4.78 6.90 10.47 16.93
0.10 1.84 2.45 3.32 4.63 6.71 10.20 16.55
0.15 1.73 2.33 3.18 4.46 6.50 9.93 16.17
0.20 1.58 2.19 3.03 4.29 6.28 9.64 15.77
0.25 1.36 2.03 2.86 4.10 6.05 9.35 15.36
0.30 — 1.83 2.68 3.90 5.81 9.04 14.93

1 0 2.13 2.87 4.00 5.81 8.86 14.42 25.55
0.05 2.04 2.77 3.87 5.64 8.62 14.08 25.01
0.10 1.94 2.65 3.73 5.45 8.38 13.72 24.45
0.15 1.82 2.52 3.57 5.26 8.12 13.35 23.88
0.20 1.66 2.37 3.40 5.05 7.85 12.97 23.29
0.25 1.43 2.19 3.22 4.83 7.56 12.57 22.69
0.30 — 1.98 3.01 4.59 7.26 12.16 22.06

Table 4. Seismic passive earth pressure coefficient KpqE (β /φ = λ /φ = 0).
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gation remains necessary for the elaboration of adequate ro-
tational failure mechanism.

5. Conclusions

A translational, kinematically admissible failure mecha-
nism has been considered for the calculation of the static
and seismic passive earth pressures using the upper-bound
method of the limit analysis theory. The solutions presented
are rigorous upper-bound solutions in the framework of the
limit analysis theory. The numerical results obtained lead to
the following conclusions.

For the static case, the present results for the coefficient
Kpq are almost identical to those given by Kérisel and Absi
(1990) using the slip line method and those given by Chen
and Liu (1990) using the upper-bound method in limit analy-
sis for a log-sandwich mechanism. For the coefficient Kpc,
the present analysis has shown that the traditional formula
given by the theorem of corresponding states (Caquot and
Kérisel 1948) is also valid in the present analysis using the
upper-bound method of the limit analysis theory. For the co-
efficient Kpγ, the present upper-bound solutions are better
than those of Chen and Liu (1990), since one obtains smaller
upper-bound solutions; the improvement is 21% for φ = 45°,
δ /φ = 1, β /φ = 1, and λ /φ = –1/3. On the other hand, the
comparison between the present solutions and the currently
accepted values of Caquot and Kérisel (1948) has shown that
the maximum difference is less than 12.2% for the practical
configurations (φ ≤ 45°, 0 ≤ δ /φ ≤ 2/3, λ /φ = 0, β /φ ≤ 1/3).

For the seismic case, the present multiblock failure mech-
anism continues to give smaller upper-bound solutions for
the coefficient KpγE than the log-sandwich mechanism; the
improvement is 18.2% for φ = 45°, δ /φ = 1, β /φ = 1, λ /φ = 0,
and Kh = 0.3. Extensive numerical results for the present
seismic passive earth pressure coefficients KpγE and KpqE are
presented for practical use in geotechnical engineering.
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List of symbols

c cohesion
c* residual cohesion due to nonassociativeness

di, li discontinuity lines
&D rate of energy dissipation per unit length along velocity

discontinuity
f1, f2, …,

f7 nondimensional intermediate functions
H wall height
Kh horizontal seismic coefficient

Kp Eγ ,
KpqE,
KpcE seismic passive earth pressure coefficients
Kp γ ,

Kpq, Kpc static passive earth pressure coefficients
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Kp γ ,h horizontal component of static passive earth pressure
coefficient Kp γ

Kpq0 static passive earth pressure coefficient due to a sur-
charge loading acting normally to the ground surface

l wall length
n number of rigid blocks in the failure mechanism

Pa adhesive force
Pp static passive force

PpE seismic passive force
q surcharge loading
S horizontal wall movement
Si area of block i

V velocity along velocity discontinuity
V0 wall velocity

V0,1 relative velocity at the soil–structure interface
Vi velocity of block i

Vi,i+1 relative velocity between blocks i and i + 1
Vi+1 velocity of block i + 1

Wi weight of block i
&

,WP Pp a
rate of work due to forces Pp and Pa

&
,WP Pp E a

rate of external work due to forces PpE and Pa

&Wq rate of external work due to surcharge loading and cor-
responding inertia force

&Wsoil rate of work due to soil weights and the corresponding
inertia forces in the multiblock mechanism

&W γ rate of work due to soil weight in the one-block mecha-
nism

α inclination of the Rankine passive earth pressures
α i, βi angular parameters of failure mechanism

β backfill inclination
ψ dilatancy angle
δ angle of friction at the soil–wall interface
φ angle of internal friction of the soil

φ * residual friction angle due to nonassociativeness
γ unit weight of the soil
λ angle between the soil–wall interface and the vertical di-

rection
θ inclination of the Rankine slip surface with the horizon-

tal direction
ω β intermediate angular parameter

Appendix 1

In the case of a vertical rough wall, Drescher and
Detournay (1993) and more recently Michalowski (1999)
have indicated that two different ways of incorporating the
wall friction in the energy-balance equation can be found in
the literature (cf. Chen 1975; Mroz and Drescher 1969; Col-
lins 1969, 1973), and that both approaches lead to an identi-
cal force Pp. The aim of this appendix is to present and
discuss the two approaches in the general case of an inclined
rough wall. A third approach is also presented and dis-
cussed. The following three approaches consider the simple
case of a single rigid block (Fig. A1) ; however, the results
remain valid for a multiblock mechanism.

First approach (Chen 1975)
In the approach of Chen (1975), the velocity jump vector

is assumed to be tangential to the wall (Fig. A2). The wall
moves horizontally with velocity V0 and the wedge moves

with velocity V1. Thus, sliding on the wall surface occurs
with sliding vector magnitude V0,1 = V1 cos ( )/ cosβ λ φ λ− −
(see velocity hodograph), and the rate of work dissipation
associated with this sliding is

[A1] & ( sin ) ,D P P V1 0 1= + =p aδ

( sin )
cos ( )

cos
P P Vp aδ β λ φ

λ
+ − −

1

The energy dissipation rate along the failure surface is given
by

[A2] & ( cos )
cos

cos(
D c V

l
2 1=

−
φ λ

β λ )

The work rates of forces Pp and Pa and the soil weight are

[A3] & [ cos ( ) sin ],W P P VP Pp a p a= − + =δ λ λ 0

[ cos ( ) sin ]
sin( )

cos
P P Vp aδ λ λ β φ

λ
− + −

1

and

[A4] & cos sin cos ( )
cos ( )

W
l

Vγ
γ λ β β φ λ

β λ
= − − −

−

2

2
1

By equating the rate of external work (eqs. [A3] and [A4])
to the rate of internal energy dissipation (eqs. [A1] and
[A2]), one obtains

[A5] Pp cos ( )
sin( )

cos
sin

cos( )
cos

δ λ β φ
λ

δ β λ φ
λ

− − − − −





=

γ λ β β φ λ
β λ

λ φ
β λ

l
cl

2

2
cos sin cos ( )

cos ( )
cos cos
cos ( )

− −
−

+
−

+ − − − −







Pa

cos ( )
cos

sin
sin( )

cos
β λ φ

λ
λ β φ

λ

Second approach (Mroz and Drescher 1969; Collins
1969, 1973)

In this approach, the inclination of the velocity jump V0,1
across the wall is taken as δ (Fig. A3). The wall moves hori-
zontally with velocity V0 and the wedge moves with velocity
V1 (see velocity hodograph).

The rate of work dissipation along the wall is given by

[A6] & cos cos
cos ( )

cos ( )
,D P V P V3 0 1 1= = − −

−a aδ δ β λ φ
λ δ

Fig. A1. One block failure mechanism.
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Note that the rate of work dissipation of Pp is equal to zero.
On the other hand, the rate of energy dissipation along the
failure surface is given by eq. [A2].

The work rate of forces Pp and Pa is

[A7] & [ cos ( ) sin ],W P P VP Pp a p a= − + =δ λ λ 0

[ cos ( ) sin ]
sin( )
cos ( )

P P Vp aδ λ λ β φ − δ
λ δ

− + −
−









 1

The work rate of soil weight is given by eq. [A4]. By equat-
ing the rate of external work (eqs. [A4] and [A7]) to the rate
of internal energy dissipation (eqs. [A2] and [A6]), one ob-
tains

[A8] P
l

p [sin( )]
cos sin cos ( )

cos ( )
β φ δ γ λ β β φ λ

β λ
− − = − −

−

2

2

+
−

cl
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−




Pa cos

cos ( )
cos ( )

sin
sin ( )

cos ( )
δ β λ φ

λ δ
λ β δ φ

λ δ





Third approach (present analysis)
In this approach, the passive force Pp and the adhesive

force Pa are considered as two external forces acting on the
soil wedge which moves with velocity V1 (Fig. A4).

The rate of work dissipation along the failure surface is
given by eq. [A2]. The work rates of forces Pp and Pa are

[A9] & cosW P VPp p= + − +

 


π δ β φ

2
1

and

[A10] & cos ( )W P VPa a= −β φ 1

The work rate of soil weight is given by eq. [A4]. By equat-
ing the rate of external work (eqs. [A4], [A9], and [A10]) to
the rate of internal energy dissipation (eq. [A2]), one obtains

[A11] P
l

p [sin( )]
cos sin cos ( )

cos ( )
β φ δ γ λ β β φ λ

β λ
− − = − −

−

2

2

+
−

+ −cl P
cos cos
cos ( )

[cos ( )]
λ φ
β λ

β φa

Discussion

By simple trigonometric manipulations or by numerical
calculations one can easily see that the three approaches lead
strictly to the same result of Pp. Hence, in the present paper
the third approach is adopted in which the passive and adhe-
sive forces are considered external forces acting on the soil
wedge which moves with velocity V1. In this analysis, no in-
dication is made with regard to the soil–wall velocity V0,1.
This confirms the conclusion of Drescher and Detournay

Fig. A2. Velocity field according to Chen (1975).

Fig. A3. Velocity field according to Mroz and Drescher (1969) and Collins (1969, 1973).

Fig. A4. Velocity field according to the present analysis.
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(1993) and Michalowski (1999) that the hypothesis of
associativeness or nonassociativeness along the soil–struc-
ture interface has no influence on the limit load.

Appendix 2

This appendix presents the rate of external work and the
rate of internal energy dissipation along the different veloc-
ity discontinuities.

Geometry

For the triangular block i, the lengths li and di and the sur-
face Si are given as follows:

[B1] l li
j

j jj=

i

= ∏ sin

sin ( + )

β
α β1

[B2] d li
i

i

j

j jj=

i

= ∏sin
sin

sin

sin ( + )
α
β

β
α β1

[B3] S
l

i
i i i

i

j

j jj=

i

=
+ ∏

2

12

sin

sin

sin

sin ( + )

2

2

α α β
β

β
α β

sin ( )

Velocities

From the velocity hodographs (cf. Fig. 2b), the blocks and
interblocks velocities are given as follows:

[B4] V Vi
j j

j ij=

i

=
−

−+

−

∏ sin ( + 2 )

sin ( 2 )

α β φ
β φ 1

1

1

[B5] Vi i
i i i

i

j j
,

sin( )

sin( )
+

+

+
=

− +
−

−
1

1

1 2

β β α
β φ

α β φsin ( + 2 )

sin ( 2 )β φjj=

i

V
+

−

−∏
1

1
1

1

Rate of external work

The rate of external work for the failure mechanism can
be calculated as follows:

(1) Rate of external work due to self-weights and inertia
forces of the n triangular rigid blocks: The rate of external
work due to self-weight in a rigid block is the vertical com-
ponent of the velocity in that block multiplied by the weight
of the block. The rate of external work due to the seismic
force in a block can be obtained by the multiplication of the
horizontal inertia force of that block and the corresponding
horizontal velocity. By summing this rate of external work
due to self-weights and inertia forces over the n triangular
blocks, one obtains

[B6] & [ ( , ) ( , )]W
l

f K f Vi i i isoil h= +γ α β α β
2

1 2 1
2

where

[B7] f1 =

−
+

− − −
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−

∑sin sin( )

sin
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α α β
β

β φ α λi i i

i

i j

j

i

1

1


=

∑
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n

1

×
+

−
−+

−

∏sin

sin (

sin ( + 2 )

sin ( 2 )

2
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β
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α β φ
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j j

j j
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[B8] f2 =

sin sin( )
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α α β
β

β φ α λi i i
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i j
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−
−+

−

∏sin

sin (

sin ( + 2 )

sin ( 2 )

2

2

β
α β

α β φ
β φ

j

j j

j j

jj=

i

) 11
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(2) Rate of external work due to the passive force PpE and
the adhesive force Pa: The rate of external work due to these
forces is given as

[B9] &
,WP PpE a

=

P P VpE acos cos ( )
π β φ δ β φ
2

1 1 1− + +

 


 − −











where

[B10] P c la = tan
tan

δ
φ

(3) Rate of external work due to the surcharge loading and
the corresponding inertia force: This rate of external work is
given as

[B11] & [ ( , ) ( , )]W ql f K f Vi i i iq h= +3 4 1α β α β

where

[B12] f n j

j

n

3
1

1

= − − − −
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∑cos β φ α λ
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−
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n
j

j j

j j
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n

1 11
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β
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[B13] f n j

j

n

4
1

1
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−
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n

1 11

sin
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β
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α β φ
β φ)

−

∏
1

The total rate of external work is the summation of these
three contributions, that is, eqs. [B6], [B9], and [B11]:

[B14] ∑ = + +& & & &
,W W W WP Pext soil qpE a

Rate of internal energy dissipation
(1) Along lines di (i = 1, …, n)

[B15] & ( , )( ,.., )D clf Vd i n i ii = =1 5 1α β
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where

[B16] f
i

ii

n

5
1

=
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β
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−
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α β φ
β φ

j

j j

j j

jj=

i

j= ) 11

1

1

i

∏






(2) Along the radial lines li (i = 1, …, n–1)

[B17] & ( , )( ,.., )D clf Vl i n i ii = − =1 1 6 1α β

where
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The total rate of energy dissipation is the summation of
these two parts, that is, eqs. [B15] and [B17]:

[B19] & & &
( ,.., ) ( ,.., )D D Dd i n l i ni i∑ = += = −1 1 1

By equating &Wext∑ in eq. [B14] to &D∑ in eq. [B19],
we have

[B20] K
f K f

p E
h

γ β φ δ
= − +

− −
1 2

1sin( )

[B21] K
f K f

pqE
h= − +

− −
3 4

1sin( )β φ δ

and

[B22] K
f f f

pcE = + +
− −

5 6 7

1sin( )β φ δ

where

[B23] f7 1= −tan
tan

cos ( )
δ
φ

β φ
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