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Abstract Binary pulsar observations and gravitational
wave detections seriously constrained scalar–tensor theo-
ries with massless scalar field allowing only small devia-
tions from general relativity. If we consider a nonzero mass
of the scalar field, though, significant deviations from gen-
eral relativity are allowed for values of the parameters that
are in agreement with the observations. In the present paper
we extend this idea and we study scalar–tensor theory with
massive field with self-interaction term in the potential. The
additional term suppresses the scalar field in the neutron star
models in addition to the effect of the mass of the scalar
field but still, large deviations from pure GR can be observed
for values of the parameters that are in agreement with the
observations.

1 Introduction

Over the last few decades the scalar–tensor theories (STT) of
gravity have been studies as the most natural cosmological
and astrophysical generalization of general relativity (GR).
Particularly interesting subclasses of STT are those for which
the weak field regime coincides with GR, and deviations
would occur only for strong gravity, i.e. in the gravitation
field of compact objects like black holes and neutron stars.
For the considered classes of STT, however, black holes are
ruled out of the picture due to the existence of “no-hair” the-
orems, which makes neutron stars the perfect natural labora-
tory to test strong gravity regime, and modified theories. Neu-
tron star structure, properties, and physical effects in classes
of STT where scalarization of the solutions is observed in
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the strong field regime, were extensively studied in the past
decades (see e.g. [1–9]) both in the static and rapidly rotating
cases. A few year ago particular interest attracted the STT
with massless scalar field [10–13] due to the possibilities for
much larger deviations from GR compared to the massless
case within the observationally allowed values of the param-
eters.

The effect of spontaneous scalarization of neutron stars
(and if one considers more exotic objects – quark stars) has
nonperturbative scale and thus the deviations from pure gen-
eral relativity can be very large. In the recent years, however,
the astrophysical observations constrained significantly the
massless STT [14,15]. Thus, the parameters of these theo-
ries were seriously restricted to narrow sets which does not
allow for significant physical deviations from pure GR. If
one, however, extends the study to the case of STT with mas-
sive scalar field, the situation changes dramatically and the
parameters in this case are only weakly restricted. The reason
lays in the fact that for a scalar field with mass mϕ one can
assign a Compton wave-length λϕ = 2π/mϕ , which leads to
a finite range of the scalar field. More precisely the presence
of the scalar field will be suppressed outside the compact
object at distance greater than the corresponding Compton
wave-length of the field λϕ . This means that observations
of compact objects with a scale greater than λϕ can not set
any rigorous constraints on the parameters of massive STTs
[11,12] (see also [16] for the massive Brans-Dicke case).

The most popular class of STT which exhibits the non-
perturbative strong field effect of spontaneous scalariza-
tion has an Einstein frame coupling function of the form
α(ϕ) = βϕ, with β being negative constant. The obser-
vations of binary systems set very rigid constraints on the
free parameter in the massless scalar field case, namely
β � − 4.5 [14,15,17] which is quite restrictive if one
considers that spontaneous scalarization can be observed
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only for β � −4.35 for static neutron stars [2,4,18] and
β � −3.9 for rapidly rotating stars [8]. The allowed val-
ues for the parameter β can be much smaller than − 4.5
for massive STT and detailed considerations of the prob-
lem are given in [11,12]. For example, the strongest con-
straint on massless STT comes from the observations of the
pulsar-white dwarf binary PSR J0348 + 0432 [15] and if
we consider a massive scalar field with mϕ � 10−16 eV,
which is equivalent to Compton wave-length λϕ � 1010m,
then PSR J0348 + 0432 practically can not impose any con-
straints on the parameter β since λϕ is smaller than the orbital
separation between the two stars. In addition the requirement
that we can have scalarized neutron star but no scalarization
for white dwarfs leads to 3 � −β � 103 [11].

As one can see in the presence of massive scalar field
the observationally allowed values for β can significantly
differ from the massless STT ones, and neutron stars in both
cases can have significantly different properties and structure.
This was thoroughly investigated for static and for slowly
rotating neutron stars in [9–13]. A natural extension in this
case is to include self-interaction of the massive scalar field
and investigate the influence on the neutron star structure and
properties, that would be the goal of the present paper.

The structure of the paper is as follow. In section II we
present the basic equations for massive STT, and we intro-
duce the explicit form of the potential for the specific the-
ory we study. In section III the numerical results with some
additional comments on the parameters of the theory are pre-
sented. The paper ends with a Conclusion.

2 Basic equations

For mathematical simplicity in this paper we work not in the
physical Jordan frame, but in the more convenient Einstein
frame. All of the results in the next section, however, are
presented in the physical Jordan frame.

The scalar–tensor theory action in the Einstein frame is
given by

S = 1

16πG

∫
d4x

√−g
[
R − 2gμν∂μϕ∂νϕ − V (ϕ)

]

+Smatter(A
2(ϕ)gμν, χ), (1)

where R is the Ricci scalar curvature with respect to the
metric gμν . The STTs are specified by the function A(ϕ) and
the potential V (ϕ). In the present paper we shall restrict our
study to STT with

A(ϕ) = e
1
2 βϕ2

(2)

and a non-negative scalar potential with self-interaction. The
natural and the simplest case is a Z2 symmetric scalar poten-

tial with a quartic self-interaction, namely

V (ϕ) = 2m2
ϕϕ2 + λϕ4, (3)

where mϕ is the mass of the scalar field ϕ and λ ≥ 0 is
a parameter with dimension of length−2. This particular
choice of A(ϕ) leads to a STT that is indistinguishable from
pure GR in the weak field regime, while non-perturbative
effects can appear for strong fields. The first term in the scalar
field potential V (ϕ) on the other hand is the standard one con-
sidered in previous studies of massive STT [10–13] while the
second term describes self-interaction of the scalar field and
was not considered until now.

The Jordan frame metric g̃μν is connected to the Einstein
one gμν via the conformal relation g̃μν = A2(ϕ)gμν and the
gravitational scalar respectively by 
 = A−2(ϕ). The rela-
tion between the energy-momentum tensor in both frames
is given by the formula Tμν = A2(ϕ)T̃μν , where Tμν is the
Einstein frame one, and T̃μν is the Jordan frame one. In the
case of a perfect fluid the relations between the energy den-
sity and pressure in both frames are given by ρ = A4(ϕ)ρ̃

and p = A4(ϕ) p̃.
In this paper we are using slow rotation approximation

in first order in the angular velocity �, i.e. keeping only
first order terms. Furthermore we consider stationary and
axisymmetric spacetime as well as stationary and axisym-
metric scalar field and fluid configurations. The spacetime
metric in this case is taken in the standard form [19]

ds2 = −e2φ(r)dt2 + e2�(r)dr2 + r2(dθ2

+ sin2 θdϑ2) − 2ω(r, θ)r2 sin2 θdϑdt. (4)

While the metric functionω is in linear order of�, the rota-
tional corrections to other metric functions, the scalar field,
the fluid energy density and pressure are of orderO(�2). That
is why within this approximation we can derive the moment
of inertia of the star, but the rest of the parameters, such as
the mass and the radius, coincide with the ones of a static
model.

The dimensionally reduced Einstein frame field equations,
derived from the action (1) and containing at most terms
linear in �, are the following

1

r2

d

dr

[
r(1 − e−2�)

]

= 8πGA4(ϕ)ρ̃ + e−2�

(
dϕ

dr

)2

+ 1

2
V (ϕ),

2

r
e−2� dφ

dr
− 1

r2 (1 − e−2�)

= 8πGA4(ϕ) p̃ + e−2�

(
dϕ

dr

)2

− 1

2
V (ϕ),

d2ϕ

dr2 +
(
dφ

dr
− d�

dr
+ 2

r

)
dϕ

dr
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= 4πGα(ϕ)A4(ϕ)(ρ̃ − 3 p̃)e2� + 1

4

dV (ϕ)

dϕ
e2�,

d p̃

dr
= −(ρ̃ + p̃)

(
dφ

dr
+ α(ϕ)

dϕ

dr

)
,

eφ−�

r4 ∂r

[
e−(φ+�)r4∂r ω̄

]
+ 1

r2 sin3 θ
∂θ

[
sin3 θ∂θ ω̄

]

= 16πGA4(ϕ)(ρ̃ + p̃)ω̄, (5)

where the function ω̄ is defined as ω̄ = � − ω, and the
coupling function α(ϕ) is defined by α(ϕ) = d ln A(ϕ)

dϕ
.

The system of Eq. (5), supplemented with the equation
of state for the matter inside the star and the appropriate
boundary conditions, describes the interior and the exterior
of the neutron star. For the exterior of the neutron star to be
described by the system (5), however, we have to set ρ̃ =
p̃ = 0.

The natural boundary conditions at the center of the star
are ρ(0) = ρc,�(0) = 0, and dϕ

dr (0) = 0, where ρc is
the constant central density, while from the requirement for
asymptotic flatness, at infinity we have limr→∞ φ(r) =
0, limr→∞ ϕ(r) = 0 (see e.g. [20]). The coordinate radius rS
of the star in the Einstein frame is determined by the standard
condition p(rS) = 0, while the physical radius of the star in
the Jordan frame is given by RS = A[ϕ(rS)]rS .

The equation for ω̄ is separated from the other equations in
the system (5) and it can be considerably simplified. Expand-
ing ω̄ in the form [19]

ω̄ =
∞∑
l=1

ω̄l(r)

(
− 1

sin θ

dPl
dθ

)
, (6)

where Pl are Legendre polynomials and substituting into the
equation for ω̄ we find

eφ−�

r4

d

dr

[
e−(φ+�)r4 dω̄l(r)

dr

]

− l(l + 1) − 2

r2 ω̄l(r) = 16πGA4(ϕ)(ρ + p)ω̄l(r). (7)

One can easily show that the asymptotic behavior of the
function ω at large distances from the center of the star
and for asymptotically flat spacetimes, has the form ω̄l →
const1 r−l−2+const2 rl−1. This asymptotic is also connected
with the angular momentum of the star J via the standard
relation ω → 2J/r3 (or equivalently ω̄ → � − 2J/r3) for
r → ∞. Comparing the two expressions for ω , we conclude
that l = 1, i.e. ω̄l = 0 for l ≥ 2. Therefore, ω̄ is a function
of r only and the equation for ω̄ is

eφ−�

r4

d

dr

[
e−(φ+�)r4 dω̄(r)

dr

]

= 16πGA4(ϕ)(ρ + p)ω̄(r). (8)

The natural boundary condition for ω̄ to ensure its regular-
ity at the center of the star is dω̄

dr (0) = 0, and at infinity
limr→∞ ω̄ = �.

As we mentioned earlier, in the present paper we consider
the moment of inertia I of the compact star. It is defined in
the standard way

I = J

�
. (9)

Using Eq. (8) for ω̄ and the asymptotic form of ω̄ one can
also derive a more convenient for numerical computations
integral equation for the moment of inertia

I = 8πG

3

∫ rS

0
A4(ϕ)(ρ + p)e�−φr4

(
ω̄

�

)
dr. (10)

In the next section where we present our numerical results
we shall use the dimensionless parameters mϕ → mϕR0 and
λ → λR2

0, where R0 = 1.47664 km is one half of the solar
gravitational radius.

3 Numerical results

As we have mentioned earlier, binary systems of compact
objects [14,15] are used to set rigorous constraints on the
parameters in the massless STT with A(ϕ) = eβϕ2/2, leav-
ing the possibility only for small deviations from GR by
setting β > − 4.5, while spontaneous scalarization occur
for β < −4.35 [2,4] and β < −3.9 [8] for static and for
rapidly rotating models correspondingly. This, however, sig-
nificantly changes if massive scalar field is added. The con-
straints of these theories come from observations on shrink-
ing of the orbit of the binaries due to gravitational wave
emission and the theory free parameters should be in agree-
ment with these observations. More precisely, the emitted
gravitational radiation match very well the GR predictions,
which means that there is non or negligible scalar gravita-
tional radiation. As a result the observed objects should be
nonscalalrized or very weakly scalarized. If one considers
massive scalar field, however, the mass of the scalar field
suppresses the emission of scalar radiation, which reconciles
already discarded values of β with the binary observations.
The lower boundary for the mass of the scalar field can be
set by these same binary systems [14,15], and more pre-
cisely by the distance between the two companions (rbinary).
In order to have negligible scalar gravitational radiation, the
Compton wave-length of the field should be smaller than the
orbital separation λϕ � rbinary . For the observed binaries
rbinary ∼ 109m, which translates into mϕ � 10−16eV. The
upper limit for the mass of the field should be such that it does
not suppresses the spontaneous scalarization in the stars, i.e.
the characteristic length of the star should be smaller than the
Compton wave-length for the corresponding field. In num-
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bers this translates as mϕ � 10−9 eV. As a final interval for
the mass mϕ of the scalar field we have

10−16 eV � mϕ � 10−9 eV, (11)

which roughly corresponds to 10−6 � mϕ � 10 in our
dimensionless units. Although, there are additional midrange
constraints for the mass of the scalar field, the above ones are
the most reliable and we will stick to them.

We already have mentioned that if the mass of the scalar
field is sufficiently large, the parameter β can be set in signifi-
cantly wide interval of values compared to the massless case,
more precisely 3 � −β � 103 coming from the requirement
that we can have scalarized neutron stars but no scalarization
for white dwarfs. We will, however, consider only moderate
values of β ≥ −10, on one side to be in correlation with
[10–12], and on the other we have additional parameter λ

coming from the self-interaction term in the potential, and
it is a good practice to study its effect for familiar and well
behaving models. Concerning the parameter λ we constrain
ourself to positive values which allow spontaneous scalariza-
tion.

In this paper we employ one of the most popular EOS,
the so-called APR4 EOS [21], for which the piecewise poly-
tropic approximation is used [22]. We will concentrate on the
manifestation of the free parameters in the theory instead of
considering a wide variety of EOS since here we have a three
parameter (β,mϕ and λ) family of solutions. The neutron star
models are studied in slow rotations approximation in first
order in �, which means that we can determine the moment
of inertia of the star, but the mass and the radius does not
change with respect to the static case because the corrections
to these quantities are of second order in �. The system of
Eq. (5) combined with the EOS is solved using a shooting
method, where the central value of the scalar field ϕ, and the
metric functions φ and ω are the shooting parameters.

In Fig. 1 we plot the mass of radius relation for two values
for the parameter β (the top and the bottom panel). Different
combinations of the mass of the scalar field and the value of
the coupling constant λ (not to be mistaken with the Compton
wave-length of the scalar field) are presented. In both panels
some of the results for the pure massive case, i.e. λ = 0 (con-
tinuous blue lines) are partially cut out of the figures in order
to have a better visibility of the results for different nonzero
λ. As one can see the self-interaction term in the potential
additionally suppresses the scalarization in the star. For all of
the rest parameters fixed, the limiting case of λ → 0 leads to
the results for massive STT with quadratic term (respectively
to the massless case if the massive term is absent), and with
the increases of λ the results converge to the GR ones. One
can examine this behavior further in Fig. 2, where the mass
as function of the central density (top) and the central value
for the scalar field as function of the central density (bottom)
are plotted. It is interesting to point out that with the increase

Fig. 1 Mass of radius relation for models with EOS APR4, β = − 6
(top), and β = − 10 (bottom). On both figures are presented results for
GR (black continuous line), mass of the scalar field mϕ = 10−3 with
λ = 0 (blue continuous line) and mϕ = 10−3 with different values
for λ (blue lines in different patterns), and with mass of the scalar field
mϕ = 5×10−2 with λ = 0 (purple continuous line) andmϕ = 5×10−2

with different values for λ (purple lines in different patterns)

of the parameter β, the shape of relation ϕc(ρc) changes and
a sharp maximum of ϕc can be observed. In Fig. 3 we plot
the distribution of the scalar field with the radial coordinate.
In the top panel we study the scalar field for fixed value of
the mass of the field, fixed β, and fixed mass of the mod-
els with different values for λ. In the bottom one we study
models with equal central density for the massless case with
different values for λ, and models without self-interaction
with different values for the mass of the field. The models in
the last figure are pared two by two for equal central values
of the scalar field in order to examine the effect of the differ-
ent terms in the potential individually. The expected decay
of the scalar field is clearly visible in both panels but it is
clear that for massless field with self-interaction the scalar
field decay is slower. In Table 1 we present the parameters
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Fig. 2 (Top) Mass as function of the central density of the models. The
results are for GR (black), and β = −6 with mϕ = 10−3 and different
values for λ (blue in different patterns). (bottom) The central value of
the scalar field as a function of the central density of the model. The
models are with β = − 6 (blue) and β = −10 (purple), mϕ = 10−3

and different values for λ (in different patterns)

of these models. It is clear that for the same central den-
sity and scalar field, the self-interaction term has marginally
more pronounced effect on the mass of the star and its radius,
which considering the distribution of the scalar field is nat-
ural (the more slowly decaying scalar field will have higher
contribution to the gravitational mass of the star).

In Fig. 4 we plot the mass of radius relation in two dif-
ferent cases: massless STT with self-interaction (top) and
massive STT without self-interaction (bottom). One can see
the expected consequences from the self-interaction term.
Both terms independently suppress scalarizaton, but except
for this, the effect is qualitatively different. While the mas-
sive term (∼ ϕ2) suppresses the field, in the same time both
bifurcation points (the one at lower and the one at higher cen-
tral energy densities) move to each other. The self interaction
term (∼ ϕ4) on the other hand also suppresses the scalar field

Fig. 3 (Top) The scalar field distribution with the radial coordinate for
models with equal mass. The models are with β = − 6 and mϕ = 10−3

and different values for λ (blue in different patterns). (bottom) The radial
distribution of the scalar field for models with equal central density. The
results are for massless STT with self-interaction (blue), and for massive
STT without self-interaction (black)

Table 1 Parameters of the star for GR, massive STT without self-
interaction, and massless STT with self interaction for the same central
density ρc = 1.398 × 1015(g/cm3)

M/M	 R (km) ϕc

GR 1.867 11.06 0.0

λ = 0.1, mϕ = 0 1.996 12.43 0.209

λ = 0, mϕ = 2.478 × 10−2 1.958 12.32 0.209

λ = 1, mϕ = 0 1.903 11.39 0.106

λ = 0, mϕ = 5.115 × 10−2 1.888 11.35 0.106

λ = 10, mϕ = 0 1.872 11.10 0.0376

λ = 0, mϕ = 5.975 × 10−2 1.870 11.10 0.0376

but it does not change the position of the bifurcation points.
The latter means that even for big values for λ, i.e. highly
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Fig. 4 Mass of radius relation for massless STT with self-interaction
(top), and for massive STT without self-interaction (bottom). Both rela-
tions are for β = −6, and different values of the free parameter

suppressed scalarization, we will have wider range of central
density values for which scalarization can occur contrary to
the massive case.

In Fig. 5 we plot the moment of inertia as function of
stellar mass for two values for the parameter β (the top and
the bottom panel). Different combinations for the mass of the
scalar field and for the value of the constant λ are shown. As
one can see, the self-interaction term additionally suppresses
the scalarization compared to the pure massive case similar
to the mass of radius relation presented in Fig. 1.

Lets us comment on the chosen values for the parameters,
and the effect which varying them has on the neutron star
models. The chosen values for β are smaller compared to the
restricted values for the massless STT but they are still quite
conservative as compared with the interval of allowed values
for STT with massive scalar field. In addition, because of the
additionally suppressed scalarization by the self-interaction
term, the intervals of allowed values the scalar-field mass

Fig. 5 Moment of inertia as function of mass for models with EOS
APR4, β = −6 (top), and β = −10 (bottom). On both figures are
presented results for GR (black continuous line), mass of the scalar
field mϕ = 10−3 with λ = 0 (blue continuous line) and mϕ = 10−3

with different values for λ (blue lines in different patterns), and with
mass of the scalar field mϕ = 5 × 10−2 with λ = 0 (purple continuous
line) andmϕ = 10−3 with different values for λ (purple lines in different
patterns)

can get even wider. As one can see, the effect of the self-
interaction causes partial overlapping of the results for mod-
els with low mass of the scalar field and high values for λ

with models with high mass of the scalar field and low values
for λ, which introduces additional degeneracy between the
parameters. In addition, we have examined models with zero
mass of the scalar field, i.e. massless scalar field, but nonzero
λ and found the behavior to be similar to the case in which
we have massive scalar field, and no self-interaction term,
but together with the differences discussed above.
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4 Conclusion

In this paper we studied a certain class of scalar–tensor the-
ories with a massive scalar field with quartic self-interaction
term in the potential. The STTs are a natural generalization
of Einstein’s theory of gravity and they does not suffer from
intrinsic problems. The most extensively studied STTs for
the last few decades were theories with massless scalar field,
but observations of binary systems of compact objects and
the gravitational waves emissions drastically restricted the
allowed values for the parameters of the theories, which man-
ifests in small deviation from pure GR.

Adding massive scalar field changes this by reconciling
the theory with the observations for a much wider range
for the parameters compared to the massless case. This has
been examined in [10–13], and in our paper we extended
these studies by including a quartic self-interacting term in
the scalar field potential. Our results show that the self-
interaction term additionally suppresses the scalarization,
which means it decreases the deviations from GR even more.
More precisely, for fixed value of the couping constant β

and fixed mass for the scalar field, the deviation from GR
decreases if one increases the value for the constant λ in the
self-interaction term. This can reconcile even wider range of
values for the scalar-field masses with the observations.

In order to study better the effect of the self-interaction
term we examined the case of massless scalar field with non-
zero self-interaction. The results showed that the scalariza-
tion is again suppressed and up to a large extent the constant in
the self-interaction term has qualitatively very similar effect
on the neutron star properties as the scalar field mass. The
main qualitative difference comes from the fact that the self-
interaction does not change the position of the bifurcation
points (in the massless case) while the mass of the scalar
field changes the critical values of the parameters where new
branches of scalarized solutions appear or disappear.

A standard problem of the alternative theories in general
is that modifications of the gravitational theory may either
have negligible effect on the neutron star properties or this
effect is very similar to the one created by the uncertainty
in the equation of state for the matter in the star. In the the-
ory we studied the deviations from pure GR which can be
considerably larger than the equation of state uncertainty,
but addition problem appears. Namely, we have three free
parameters of the theory and varying them have very sim-
ilar effect on the neutron star structure. Thus, breaking the
degeneracy between these parameters can not be done solely
by the electromagnetic observations of the neutron star mass,
radius or moment of inertia. The gravitational wave observa-
tions of merging neutron stars, though, might offer additional
ways of breaking the degeneracy but further studies in this
direction are needed.
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