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1. INTRODUCTION

A critical challenge faced by the developer of a software system is to
understand whether the system’s components correctly integrate. While
type theory has provided substantial help in detecting and preventing
errors in mismatched static properties, much work remains in the area of
dynamics. In particular, components make assumptions about their behav-
ioral interaction with other components, but currently we have only limited
ways in which to state those assumptions and to analyze those assumptions
for correctness.

In previous work [Inveradi and Wolf 1995; Inverardi and Yankelevich
1996], we developed a specification and analysis method for software
architectures based on the CHAM (Chemical Abstract Machine) formalism
[Berry and Boudol 1992]. The CHAM formalism had, until then, been used
primarily to describe the semantics of various models of concurrency and
the semantics of various concurrent programming languages. We showed
how it also could be used to describe actual software systems.

The method has proven to be useful for uncovering a variety of errors at
the architectural level. One class of such errors involves mismatches in
architectural components [Garlan et al. 1995a], where assumptions made
by different components are in conflict. We showed how our method could
be used to uncover architectural mismatch in component behavior [Com-
pare et al. 1999].

There is, however, a significant shortcoming in the method as it was
defined. This shortcoming limits the method’s usefulness when one is
developing a system by assembling existing architectural components. In
particular, the method depends on a monolithic specification and analysis
of a whole system’s component interaction behavior. A more appropriate
method would permit the individual specification of a component’s interac-
tion behavior together with a specification of the assumptions that the
component makes about the expected interaction behavior of other compo-
nents with which it might have to interact. The method would then use the
specifications to discover mismatches among the components at system
integration or configuration time.
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We can illustrate this point through an analogy that we call the guest
analogy. Suppose you are invited to a party. You expect the host to receive
you at the door and to invite you in. You also expect your host’s partner to
take you to the living room and to offer you a drink. If your host’s partner
does not yet know you, then you expect your host to first introduce you to
the partner. If both individual behaviors (host and partner) are satisfied,
but your host disappears before introducing you to the partner, then you
will be in an uncomfortable situation. From your perspective, it is therefore
insufficient to have only the behavior of your interaction with the host and
your interaction with the partner described, but your assumptions about
the global party context—that the host will introduce you to the partner—
must also be described.

We have begun to formulate a new method that takes this approach. The
method proceeds in four basic steps.

(1) Component Specification. The first step is the specification of what we
call component CHAMs, which are similar in form to normal “system”
CHAMs, but involve the use of metavariables to act as placeholders for
the components with which the specified component is expected to
interact. This is consistent with a component-based engineering ap-
proach in which individual components are developed independently of
the system or systems within which they might eventually be used.

(2) System Configuration. The second step is the configuration of a system
from individual components, which involves an instantiation of the
metavariables present in component CHAMs.

(3) Representation Derivation. The third step automatically derives from a
component CHAM two finite representations, the first being a represen-
tation of the actual behavior of the specified component and the second
being a representation of the assumed behavior of the specified compo-
nent’s external context (i.e., an expectation of the actual behaviors of
other components).

(4) Correctness Check. Finally, the fourth step is a static correctness check
of the configuration performed using the representations of actual and
assumed behaviors. The check is based on an algorithm that we have
developed to incrementally assess the compatibility between a compo-
nent’s context assumptions and the actual interaction behaviors of the
other components in the configuration.

A configuration of a system is possible if and only if a successful way of
matching actual behaviors with assumptions can be found. In effect, we are
extending the usual notion of type checking to include the checking of
behavioral compatibility.

One of the goals, and major contributions, of our work is to prove
deadlock freedom of a system without building a complete finite-state
model of the entire system, as is done in traditional approaches based on
nondeterministic finite-state machines (e.g., Wright’s use of CSP [Allen and
Garlan 1997]). With respect to standard reachability analysis, our ap-
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proach has the advantage that it dramatically reduces the state space. In
particular, we only build (finite) representations of the individual compo-
nents, which for each such component consists of representations of its
actual behavior and of the assumed behavior of its context. For each
component, the sizes of these two representations are the same. It is well
known that the state space of a system composed of N concurrent compo-
nents, each of size O(K), is of size O(KN). In our approach, the state space
used to check for deadlock of a system composed of N concurrent compo-
nents is O(KN). Furthermore, in the worst case, the time complexity is
comparable to the worst case of standard reachability analysis. Although
not explored in this paper, we foresee several effective heuristics to reduce
the average time complexity. When our algorithm returns “true,” then the
system is proven to be deadlock free. The price we pay for achieving a
reduced complexity, however, is that when the algorithm returns “false,”
then we do not know whether or not the system will deadlock. Notice that
this is similar to the conservative trade-off made in traditional type
checking.

The reasoning for compositional variants of existing approaches based on
nondeterministic finite-state machines (e.g., Darwin’s use of LTS [Magee et
al. 1997]) is different, since in general they are effective only under certain
restrictions on the style or structure of the systems being modeled. In
particular, compositional techniques are incremental, since by assuming a
hierarchical decomposition of a system into subsystems, they can compute
the system graph by first applying a minimization operation on each
subsystem and then composing them. In general, this technique does not
guarantee avoidance of the state explosion problem at intermediate stages
of composition. To make this technique more effective, one must typically
provide information at the subsystem level to capture the supposed inter-
action between the subsystem and its context. This information is encapsu-
lated in a so-called “interface” that serves the purpose of reducing the
amount of visible information that the subsystem must export. The ap-
proach is effective only when a good knowledge of the context interaction
can be embodied in the interface. Our work can be seen as an attempt to
address this issue.

In this paper we give an initial demonstration of the feasibility of our
approach by describing its application to a system, the Compressing Proxy,
first investigated by Garlan, Kindred, and Wing [Garlan et al. 1995b], and
later by Compare, Inverardi, and Wolf [Compare et al. 1999]. The system
contains incompatibilities between the assumptions and the interaction
behaviors of two of its components. Our algorithm successfully reveals the
known fact that these incompatibilities can result in a deadlock. Using a
corrected version of one of the components, the system is then shown to be
free of deadlock. Although currently based on the CHAM formalism, our
method is likely to have wider applicability. In particular, our purpose in
this paper is not to advocate a particular formalism, but rather to present
the foundations of a potentially useful and practical static checking tech-
nique.
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In the next section we briefly review related work. In Section 3 we
provide some background on the CHAM formalism and our use of it for
software architectures. In Section 4 we informally describe the Compress-
ing Proxy problem. The specification, configuration, and derivation aspects
of our method are presented in Section 5, while the checking algorithm is
presented in Section 6. We conclude with some final comments on the
method and our plans for future work.

2. RELATED WORK

Large software systems typically are seen as structures of individual
components that behave independently and occasionally interact. There-
fore, it is not unexpected that languages used to express concurrency
semantics have been borrowed to describe the architectures of software
systems. Besides CSP and CHAM, other models being explored include the
Pi Calculus [Radestock and Eisenbach 1994] and Posets [Luckham et al.
1995]. We believe that our approach is independent of the specification
language used, but one advantage of the CHAM formalism is that it does
not embed within it any particular form of interaction. In most other
languages, synchronous or asynchronous broadcast, or point-to-point com-
munication are implicit and unavoidable.

From the perspective of module interconnection, informal or semiformal
languages have been used to describe software architectures [Wolf et al.
1989]. In those cases, it is more difficult to prove properties of the systems.
Perry [1989] presents an improved model in which the semantics of
connections is taken into account to check when modules match. The
semantic information in the modules, given as predicates, is used to verify
some properties. One kind of predicate that can be associated with a
module is a so-called “obligation,” which is intended to be satisfied by the
global system, not necessarily by the immediate modules with which the
module interacts. These predicates can be seen as a nascent mechanism to
record assumptions. Assumptions are also determined during construction
of a system in the form of the semantic interconnections, which amount to
the assumptions about the components used in the implementation that
must be satisfied in any substitutions for those components. However, since
both obligations and semantic interconnections are aimed at modules and
assembly of modules, the dynamics of the system are not considered.

The use of sequences of actions associated with individual components to
describe permissible interactions was introduced in Path Expressions
[Campbell and Habermann 1974]. In that work, a description of potential
behavior is given by a regular expression in which atomic elements repre-
sent operations on the component.

The idea of using behavioral equivalence to check the dynamics of a
software system at the architectural level has been explored by Allen and
Garlan [1996; 1997]. In their architectural description language Wright
[Shaw and Garlan 1996], each component has one or more ports that
represent points of interaction with other components. Rather than inter-
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acting directly, however, components interact indirectly through special
components called connectors. Connectors themselves have special ports
called roles. Interaction occurs between two or more components by placing
a connector between them and by associating each port in a component
with a role in the connector. The semantics of ports and roles in Wright are
given using a subset of the language CSP [Hoare 1985]. A notion of
consistency is introduced via a behavioral equivalence between the CSP
agents describing the semantics of corresponding ports and roles.

The main issues being studied in Wright are specifying and proving
properties of individual connectors, and defining compatibility relation-
ships through refinement. Provided that a connector is deadlock free, the
compatibility relationship between roles and ports guarantees the preser-
vation of deadlock freedom for that individual connector. Our concern is
focused instead on proving global properties, initially system deadlock
freedom. Given this difference in focus, we have developed an approach to
proving deadlock freedom of a system without building a complete finite-
state model of the entire system. To be more precise, we only build (finite)
representations of the individual components, which for each such compo-
nent consists of representations for its actual behavior and the assumed
behavior of its context. To prove global deadlock freedom, the strategy
followed in Wright is to first translate a Wright system configuration into a
single CSP specification of the entire system and then to build the autom-
ata model from the CSP specification.

Although roles in Wright were introduced explicitly to support connector
reuse, the idea is related to our notion of assumptions. Roles, in a sense,
describe the expected behavior for a particular port. An important method-
ological difference from Wright is our automatic derivation of assumptions.
In our approach we examine the specification of a component’s actual
behavior to reveal the assumptions it makes on the behaviors of other
components. In the current Wright methodology, the designer is required to
express those assumptions explicitly as roles in a connector. Thus, in using
Wright, one anticipates a particular interaction situation by creating an
appropriate connector to capture (and enforce) the assumptions of all the
components involved in that specific interaction. In our approach, assump-
tions “come along with” each component so that each component can be
used in multiple situations without requiring any additional specification
effort beyond the usual configuration step inherent in any component-based
architectural framework.

In the framework of specification languages for concurrent systems,
Kobayashi and Sumii [Kobayashi 1998; Sumii and Kobayashi 1998] have
recently proposed type systems that ensure certain kinds of deadlock
freedom through static checking. Their approach is based on annotating
each type of communication channel with an expression, its so-called usage,
which specifies how the channel can and must be used. The annotations are
based on a process calculus that allows the detection of certain erroneous
situations arising from the incorrect use of channels. Their approach shares
with us the idea of using behavioral specifications to statically check for
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deadlock. It is different in the way the annotation is performed—that is, by
having the programmer explicitly annotate communication channels. Thus,
their approach can be seen as much closer to that of Wright and its notion
of connector specifications.

The Kobayashi and Sumii approach is also strongly related to that of the
earlier work of Liskov and Wing [1994], in the sense that behavioral
information is being used to enhance a static type-checking mechanism.
However, Liskov and Wing investigate this enhancement in the context of
definitions for two particular subtype relationships, the idea being that
properties demonstrated to hold for supertype objects should also hold for
subtype objects. Synchronization among different components is not consid-
ered in their approach because their main concern is type and subtype
compatibility in terms of input/output behavior.

Zaremski and Wing [1997] describe a technique called specification
matching that is intended as a means to retrieve software components from
a reuse library. They point out that their technique is currently limited in
that it is based on simple input-output functional behavior. An enhance-
ment that they propose to investigate would extend their formal framework
to interaction protocols of architectural components, resulting in a tech-
nique for uncovering architectural mismatch.

Within the reuse community, there is an awareness of the need to
enhance the behavioral description of components in order to “reason about
how the behavior exhibited by a component affects the behavior of a system
into which it is integrated” [Edwards and Weide 1997]. In particular, they
are looking for ways to capture the assumptions made by components about
the behaviors of other components. The work described here is a step in
that direction.

3. BACKGROUND

The CHAM formalism was developed by Berry and Boudol in the domain of
theoretical computer science for the principal purpose of defining a gener-
alized computational framework [Berry and Boudol 1992]. It is built upon
the chemical metaphor first proposed by Banâtre and Le Métayer to
illustrate their Gamma (G) formalism for parallel programming, in which
programs can be seen as multiset transformers [Banâtre and Métayer 1990;
1993]. The CHAM formalism provides a powerful set of primitives for
computational modeling. Indeed, its generality, power, and utility have
been clearly demonstrated by its use in formally capturing the semantics of
familiar computational models such as the l calculus and the CCS process
calculus. Boudol [1994] points out that the CHAM formalism has also been
demonstrated as a modeling tool for concurrent-language definition and
implementation.

A CHAM is specified by defining molecules m1, m2, . . . defined as terms
of a syntactic algebra that derive from a set of constants and a set of
operations, and solutions S0, S1, . . . of molecules. Molecules constitute
the basic elements of a CHAM, while solutions are multisets of molecules
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interpreted as defining the states of a CHAM. A solution is denoted by a
comma-separated list of molecules enclosed in braces. In a recursive
fashion, solutions can be subsolutions, in which case they are considered
molecules of the supersolution.

A CHAM specification contains transformation rules T1, T2, . . . that
define a transformation relation Si 3 Sj dictating the way solutions can
evolve (i.e., states can change) in the CHAM. Following the chemical
metaphor, the term reaction rule is used interchangeably with the term
transformation rule. Transformation rules can be applied depending on
the satisfaction of a condition by the current state. Conditions are ex-
pressed as premises in the rule, with the meaning that the rule can be
applied if and only if the current state satisfies the condition expressed by
the premises.

At any given point, a CHAM can apply as many rules as possible to a
solution, provided that their premises do not conflict—that is, no molecule
is involved in more than one rule. In this way it is possible to model
parallel behaviors by performing parallel transformations. When more than
one rule can apply to the same molecule or set of molecules, we have
nondeterminism, in which case the CHAM makes a nondeterministic choice
as to which transformation to perform. Thus, we may not be able to
completely control the sequence of transformations; we can only specify
when rules are enabled. Finally, if no rules can be applied to a solution,
then that solution is said to be inert.

In our original formulation for software architectures [Inverardi and
Wolf 1995] we structured CHAM specifications of a system into three parts:

(1) a description of the syntax by which components of the system (i.e., the
molecules) can be represented;

(2) a solution representing the initial state of the system; and
(3) a set of reaction rules describing how the components interact to

achieve the dynamic behavior of the system.

Here, we add a fourth part:

(4) a set of solutions representing the intended final states of the system.

The syntactic description of the components is given by an algebra of
molecules or, in other words, a syntax by which molecules can be built.
Following Perry and Wolf [1992], we distinguish three classes of compo-
nents: data elements, processing elements, and connecting elements. The
processing elements are those components that perform the transforma-
tions on the data elements, while the data elements are those that contain
the information that is used and transformed. The connecting elements are
the “glue” that holds the different pieces of the architecture together. For
example, the elements involved in effecting communication among compo-
nents are considered connecting elements. This classification is reflected in
the syntax, as appropriate.
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We model components as elements of a syntactic category, thus com-
pletely abstracting away from their internal behavior. In other words, a
component is represented by a name; the only structure that we add refers
to the state of the component with respect to its interaction with other
components in the system. Thus, a complex molecule can represent a
specific state of a component in terms of its interaction with the external
context. This reflects a precise choice in the level of abstraction we have
chosen to model software architectures.

The initial solution is a subset of all possible molecules that can be
constructed using the syntax. It corresponds to the initial, static configura-
tion of the system. We require the initial solution to contain one molecule
for each component, thus modeling the initial state of each component.
Transformation rules applied to the initial solution define how the system
dynamically evolves from its initial configuration.

The set of final solutions represents the different possible states of the
system in which the computation is considered to have completed. These
solutions may or may not be inert. For example, a legitimate final solution for
an iterative system would be the initial solution. If a final solution is inert,
then the explicit specification of that final state serves to distinguish it from
an unintended deadlock state, which is also inert. The specification of final
states is common in behavioral models, such as finite-state machines.

We now present a simple example of a CHAM specification as a way to
illustrate the concepts mentioned above. The example is a highly abstract
client-server system. It consists of a single server and a single client. The
server provides a single piece of data, and the client requests that piece of
data. The specification of the Compressing Proxy system given in Section 5
is, of course, more complex. Detailed examples and explanations of our use
of the CHAM formalism to model software architectures are also presented
elsewhere [Compare et al. 1999; Inverardi and Wolf 1995].

The first step is to define the syntax ¥ of its molecules M.

M <5 P u C u D u MeM
P <5 Server u Client1

C <5 serve~D! u request~D!

D <5 data

The syntax consists of the set P representing the two kinds of processing
elements and of an infix operator “e” used to express the status of a
processing element. The connecting elements for the architecture are given
by a second set C consisting of two operations, request (for input by the
client) and serve (for output by the server). The third set D defines the
data, in this case trivially the constant “data.”

We use the two operations serve and request to represent the communi-
cation over the channel between the components. The infix operator “e” is
used to express the status of a processing element with respect to its
communication behavior. In particular, the status is understood by “read-
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ing” the molecule from left to right. Consider, for example, the possible
server molecule serve(data) e Server. This is interpreted to mean that
the server is prepared to serve a client, while the molecule Server e

serve(data) is interpreted to mean that the server is in an idle or “wait”
state with respect to its communication behavior.

The next step in specifying the client-server system is to define an initial
solution S0.

S0 5 serve~data!eServer, request~data!eClient1

This solution establishes that, in the initial configuration of the system,
both the server and the client are ready to communicate.

The transformation rules define how the system can evolve from the
initial solution. Consider the following simple rule, which describes the
communication between the components.

T1 ; serve~d!ep1, request~d!ep2 3 p1eserve~d!, p2erequest~d!

Notice the generic form of the rule, which makes use of the variables p1
and p2, which range over P, and the variable d, which ranges over D. With
this rule we can model a deterministic behavior that evolves the system
into the following state:

S1 5 Servereserve~data!, Client1erequest~data!

In this state rule T1 cannot be applied, so the system is inert. If the system
is to exhibit further behavior, then we need another rule, one that describes
an iterative behavior of the components:

T2 ; pec 3 cep

Again, notice the generic form of the rule; using variable p ranging over P
and variable c ranging over C, the rule applies to both Server and Client1.
Together the two rules now describe a deterministic, but infinite, behavior
of the system in which every request is served. That is, the only possible
behavior of the system is described by the following (infinite) sequence of
rule applications

S0 O¡
T1

S1 O¡
T2

S2 O¡
T2

S3 O¡
T1

. . .

where S0 5 S3n, for n 5 0, 1, . . ..
With only a slight change to the specification we can obtain a more

interesting system behavior. Consider what happens if we add a second
client Client2 to ¥ and use the following as the initial solution:

S90 5 serve~data!eServer, request~data!eClient1,

request~data!eClient2
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We have now introduced an element of nondeterminism, as well as en-
riched the set of different states that can occur, because in certain states
both clients can request the service and only one can be served at a time.

If we add the following rule

T3 ; pec 3 p

where p ranges over P and c ranges over C, then we have introduced a
second element of nondeterminism, in this case with respect to the choice of
rule to apply in a given state, since both T2 and T3 have the same premise.
We have also reintroduced the possibility of a terminating, or finite,
sequence of rule applications because, through T3, molecules can enter a
state in which no rule can be applied. For example, if Server is trans-
formed by this rule, then no further requests can be served. Whether this is
a desirable situation or not depends on whether or not the designer has
identified this state as an intended final state. A reasonable choice for an
intended final state might be the following:

Sf 5 serve~data!eServer, Client1, Client2

This solution represents the fact that the clients no longer require service,
although the server is still willing to offer the service. This solution is not
inert, however, since rule T3 can still be applied to Server. An inert
solution that is not an intended final state can be characterized as a
deadlock state. Note that in general a designer can indicate more than one
state as an intended final state.

The preceding discussion of basic concepts is given in terms of a mono-
lithic specification of a whole system. One of the contributions of the work
described in this paper is to develop a method for breaking apart the
specifications along the lines of components. This is discussed in Section 5,
where we introduce the concept of the component CHAM. First, however,
we introduce our main example, the Compressing Proxy.

4. THE COMPRESSING PROXY PROBLEM

In this section we present the design of the Compressing Proxy system. Our
description is derived from that given by Garlan, Kindred, and Wing
[Garlan et al. 1995b].

To improve the performance of UNIX-based World Wide Web browsers
over slow networks, one could create an HTTP (Hyper Text Transfer
Protocol) server that compresses and uncompresses data that it sends
across the network. This is the purpose of the Compressing Proxy, which
weds the gzip compression/decompression program to the standard HTTP
server available from CERN.

A CERN HTTP server consists of filters strung together in series. The
filters communicate using a function-call-based stream interface. Functions
are provided in the interface to allow an upstream filter to “push” data into
a downstream filter. Thus, a filter F is said to read data whenever the
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previous filter in the series invokes the proper interface function in F. The
interface also provides a function to close the stream. Because the interface
between filters is function-call based, all the filters must reside in a single
UNIX process.

The gzip program is also a filter, but at the level of a UNIX process.
Therefore, it uses the standard UNIX input/output interface, and commu-
nication with gzip occurs through UNIX pipes. An important difference
between UNIX filters, such as gzip, and the CERN HTTP filters is that the
UNIX filters explicitly choose when to read, whereas the CERN HTTP
filters are forced to read when data are pushed at them.

To assemble the Compressing Proxy from the existing CERN HTTP
server and gzip without modification, we must insert gzip into the HTTP
filter stream at the appropriate point. But since gzip does not have the
proper interface, we must create an adaptor, as shown in Figure 1. This
adaptor acts as a pseudo-CERN HTTP filter, communicating normally with
the upstream and downstream filters through a function-call interface, and
with gzip using pipes connected to a separate gzip process that it creates.

Without a proper understanding of the assumptions made by each
component, a mismatch in the interaction behavior of the components can
occur when they become integrated into a single system. Consider the
following straightforward method of structuring the adaptor. The adaptor
simply passes data onto gzip whenever it receives data from the upstream
filter. Once the stream is closed by the upstream filter (i.e., there are no
more data to be compressed), the adaptor reads the compressed data from
gzip and pushes the data toward the downstream filter.

Fig. 1. The Compressing Proxy.
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From the perspective of the adaptor, this individual behavior makes
sense. But it is making assumptions about its interactions with gzip that
are incompatible with the actual behavior of gzip. In particular, gzip uses
a one-pass compression algorithm and may attempt to write a portion of
the compressed data (perhaps because an internal buffer is full) before the
adaptor is ready, thus blocking. With gzip blocked, the adaptor also
becomes blocked when it attempts to pass on more of the data to gzip,
leaving the system in deadlock.

Obviously, the way to avoid deadlock in this situation is to have the
adaptor handle the data incrementally and use nonblocking reads and
writes. This would allow the adaptor to read some data from gzip when its
attempt to write data to gzip is blocked.

The Compressing Proxy is a simple example with a well-understood
solution. Nevertheless, one can see that it is representative of the all-too-
common problem of architectural mismatch in software development.

5. SPECIFYING COMPONENT BEHAVIOR AND ASSUMPTIONS

In this section we show how to specify the behavior of a component at the
architectural level and, from this, how it is then possible to derive a
representation of its actual behavior as well as the assumptions that it
makes on the external context. In essence, each component is modeled
using a separate CHAM, which we refer to as a component CHAM.
Conceptually, a complete system is specified by combining the separate
CHAMs into a single, integrated system CHAM.

5.1 Component CHAMs

To specify a component CHAM, we give a syntax for the molecules repre-
senting the component, rules describing the behavior of the component, an
initial molecule representing the initial state of the component, and a set of
final molecules representing the possible final states of the component. For
the Compressing Proxy we must specify four component CHAMs (Table I).

It is important to note that the justification for choosing these particular
specifications of the Compressing Proxy component behaviors is not ger-
mane to the topic of this paper. In fact, a detailed understanding of the
specifications is unnecessary to follow the discussion below. Therefore, we
only give a partial, high-level explanation of the specifications.

Consider the upstream CERN filter CFu. The syntax for molecules M
representing this component consists of four sets. P represents the name of
the component’s processing element CFu. It also represents a metavariable F1
to refer to the unknown syntactic structure of other components with which
CFu is expected to interact. As discussed below in Section 5.2, metavariables
are instantiated (and thereby eliminated) as a side effect of configuring
component CHAMs into a system CHAM. Note that for presentation purposes
we use Greek letters for metavariables (i.e., F and r) to clearly distinguish
them from ordinary variables. As a further presentation aid, we use unique
metavariables (e.g., r1, r2, . . .) across the component CHAMs. This is not
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Table I. Component CHAMs for the Compressing Proxy Example
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required by our method, since each component CHAM is understood to exist
on its own, but simplifies the presentation of the configuration step.

The set C represents the connecting elements. The connecting elements
for this component are two operations, i for input and o for output, that act
on the elements of a third set N. In general, elements of N are used to refer
to the channels through which a component communicates with other
components. Therefore, elements of N also act as metavariables that are
instantiated in a configured system CHAM. In the case of CFu we only need
to consider one channel, namely the output channel for this upstream filter.
Notice that for CFd, the downstream filter, we also only consider one
channel, in this case the one representing input to the filter.

The final syntactic element of CFu is the infix operator “e”, which is used
to express the status of the component with respect to its communication
behavior. The status is understood by “reading” a molecule from left to
right. The leftmost position (i.e., the left operand of the leftmost “e”
operator) in the molecule indicates the next action that the molecule is
prepared to take. If this position is occupied by a communication operation,
then the kind of communication represented by that operation can take
place. Correspondingly, if this position is occupied by an element of P (i.e.,
the name of the processing element), then the molecule is interpreted to be
in a “wait” state, unprepared to communicate with other components until,
and unless, there is a transformation rule that reactivates the component
(e.g., T2 in the case of CFu).

The interaction behavior of the upstream filter component is captured
using two transformation rules, where m ranges over M. Looking at the
second rule first, we see that T2 models the iterative communication
behavior of CFu. T1 is an instantiation of a general interelement commu-
nication rule that describes pairwise input/output communication between
processing elements. A different instantiation of this same rule is found in
the component CHAM for CFd. A generic version of the rule is found in the
component CHAMs for AD and GZ, where simple variable n ranges over N.
Because M involves metavariables, the molecule m appearing in rule T1

will range over a set that is not precisely defined until after an instantia-
tion of the metavariables through a suitable configuration substitution. In
other words, once CFu has been configured to interact with its environ-
ment, m will range over a set that depends on the syntax of components
with which it interacts. In the Compressing Proxy example, CFu interacts
with only one other component, the adaptor, and therefore m will range
over a set of molecules built by using AD as the other processing element in
the component CHAM syntax.

The initial molecule for CFu is quite simple. It indicates that the
component starts out in a state in which it is waiting to output data. The
second transformation rule would have to be applied to this solution before
it could actually carry out a communication. The set of final molecules for
CFu is also simple, consisting of just one molecule equivalent to the initial
molecule. This reflects the iterative nature of CFu.
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The CHAMs for the other three components follow a similar structure
and share similar rules. The critical issue for this example is the interac-
tion behaviors of gzip and the adaptor, so we explain them a bit further.

In the specifications of gzip and the adaptor, the syntaxes include a set
E. The elements of E are used by AD and GZ as markers to indicate that
they are in a position to end their data transfer, if appropriate; endi
denotes “ending input,” while endo denotes “ending output.” Both compo-
nent CHAMs share transformation rule T2, which governs the iteration of
the input and output behaviors involving markers endi and endo. Both
also share rule T3, which represents how the component synchronizes with
its environment to end iterative input or output communication. In rule T3,
the variable n ranges over N.

GZ has associated with it two additional rules for ending communication,
T4 and T5. These rules capture the fact that gzip can independently
terminate its input and output, respectively, without synchronizing with its
environment, as it would through T3. Intuitively, the first situation can
arise when an internal buffer is full, while the second can arise when an
internal buffer becomes nonfull. Note that this is exactly the root of the
problem between gzip and its adaptor; the adaptor assumes that termina-
tion of input and output with gzip is always synchronized.

Rule T6 of the gzip component CHAM describes a simple iterative behavior.
The iterative behavior of the adaptor, on the other hand, is more complex,
actually changing structure with rule T5 of AD. In particular, it is character-
ized by a phased behavior in which the component switches from a mode of
accepting raw data and then passing the data along (presumably to gzip, but
in fact to any other component for which it is acting as an adaptor), to a mode
of receiving data (again, presumably from gzip but also from any adapted
component) and then passing the data on down the stream.

5.2 Configuring a System CHAM

As mentioned above, when component CHAMs are integrated to form a system
CHAM, a certain amount of configuration must occur. For instance, in the
Compressing Proxy example, the metavariables for communication channels
used in the component CHAMs are instantiated according to the channel
numbers in the diagram of Figure 1, resulting in actual connections being
established between the components. Thus, the substitution would cause the
symbolic channel r1 of the upstream filter and the symbolic channel r3 of the
adaptor to be identified, and correspond to the channel labeled “1” in Figure 1.
The substitution for a metavariable F appearing in a component CHAM
indicates the other components with which the modeled component interacts.
For instance, F1 of CFu would be replaced by AD. The complete substitution
for metavariables in the configured Compressing Proxy system is given by the
following set of substitution pairs:

$ ~F1 5 AD!, ~F2 5 AD!, ~F3 5 CFd u CFu u GZ!, ~F4 5 AD!,

~r1 5 1!, ~r2 5 4!, ~r3 5 1!, ~r4 5 2!, ~r5 5 3!, ~r6 5 4!, ~r7 5 2!, ~r8 5 3! %
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A CHAM specification that does not contain metavariables is said to be
ground.

The syntax for a system CHAM, ¥S, is given by

OS 5 OC1
ø OC2

ø . . . ø OCn

where ¥C1
. . . ¥Cn

are the syntaxes of the component CHAMs after a
suitable configuration substitution is given for the metavariables. For
instance, in the system CHAM for the Compressing Proxy example, the
resulting set P is as follows:

P<5 CFu u CFd u AD u GZ

We refer to any molecule that contains as a syntactic subterm an element
of the set P as a component molecule.

Once a suitable configuration substitution has been applied, the transfor-
mation rules of the system CHAM are obtained in the following way. If the
right-hand side of a rule t in a component CHAM C only involves C
component molecules, then t can be simply added to the system CHAM.
Otherwise, let us assume that t involves i other components. Then t can be
added to the system CHAM only if there exists in the other i component
CHAMs a rule that subsumes or is subsumed by t. In this case, the
molecule variables range only over the i component molecules. In our
example, each component CHAM contains a rule, labeled T1, that either
subsumes or is subsumed by the rule T1 of all other component CHAMs.
This means that all four components agree on the interaction protocol,
although with different degrees of specialization. In fact, a rule that
involves other component molecules in its right-hand side dictates, through
that rule, a state change in another component. This can only be accepted
at a global system level if the other components exhibit the same intended
behavior. For example, consider the rule T2 shared between AD and GZ.
The rule is added to the system CHAM with the constraint that the
variable m can only range over {AD,GZ}.

A certain amount of simplification could be performed on the resulting
set of rules. For example, the specialized rules labeled T1 in the component
CHAMs for CFu and CFd are subsumed by the rule T1 of the other two
component CHAMs. Such simplifications are not, however, formally re-
quired.

The initial solution of the system CHAM is simply formed as a union of
the initial molecules of the component CHAMs once a suitable configura-
tion substitution has been applied. Creating the set of final solutions is a
bit more complicated. In particular, it is derived from the cross product of
the set of final molecules of each component CHAM, and in general
contains a subset of the cross product. The Compressing Proxy example is a
degenerate case, since the component CHAMs each have only a single final
molecule. Clearly, a solution in which all the molecules represent final
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states of their corresponding components must be a final solution for the
system as a whole.

Of course, the configuration activity described here is not guaranteed to
result in a “correct” system, which is the purpose of the checking mecha-
nism that we develop in Section 6. The mechanism works by comparing the
assumptions made in a component CHAM to the actual specified behavior
of other component CHAMs with which it has been configured to interact.

5.3 Deriving Actual and Assumed Behaviors

In order to check for compatibility between components, we need represen-
tations of the actual behavior, AC, of a component, and assumed behavior,
AS, of the external context. For each component, we derive AC and AS from
its component CHAM once a suitable configuration substitution has been
applied. Following a common hypothesis in the automated checking of
properties of complex systems [Inverardi and Priami 1996], our approach
assumes that these representations of dynamic behavior can be finite. The
model for both representations is a finite, directed, rooted graph, where
both nodes and arcs are labeled. Formally,

G 5 ~N, A,so: A 3 N,ta: A 3 N,m:N 3 M ø 1,l: A 3 L!

where N is the set of nodes; A is the set of arcs; 1 is the set of natural
numbers; M is the set of node labels taken from the CHAM molecule set;
and L is the set of arc labels taken from a set that is obtained from the
syntax of the components, plus two special labels t and a. In the Compress-
ing Proxy example, labels are in the set L 5 {t, a} ø C ø E. The label t
can appear only in AC graphs, while the label a can appear only in AS
graphs. In addition to these sets, so is the source node function; ta is the
target node function; m is the node-labeling function; and l is the arc-
labeling function. Finally, the graphs are enriched with a relation on arcs
called and, where and # 3( A), the powerset of A.

AC graphs model behaviors in the following intuitive manner. Nodes
represent states of the component and, therefore, are molecules. The root
node is the initial state of the component. Note that in the current
formulation we do not allow dynamic creation of components. Each arc
represents a possible transition into a new state by using a transformation
rule of the component CHAM. The label on the arc is the part of the
component molecule that is required in the rule in order to match. If no
other molecule should occur in the transformation, then the label of the arc
is t—that is, the transition can occur without interaction with the external
context. An example of such a transformation is rule T4 of GZ.

Definition 1 (AC Graph for a Component CHAM). AC graphs are defined
constructively as follows:

—The root node is associated with the initial molecule of the component
CHAM.
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—Let n be a node, and let mn be the molecule associated with the node n.
Then n has a child node ni if and only if there exists a rule r whose
application to a solution s requires mn to be in s. The labels and the and
relation are constructed as follows.
—The molecule associated with ni is the molecule obtained by modifying

mn with r.
—The arc from n to n i is labeled t if r can be applied to a solution that

contains only mn.
—The arc is labeled l if l is the part of the molecule mn required to

match the rule r.
—If the application of r results in more than one component molecule,

then all the arcs connecting n to a node labeled with a component
molecule are identified as and arcs. ‚

Informally, and arcs identify alternative subgraphs for the same compo-
nent. As discussed below, this corresponds to a concurrent (i.e., multi-
threaded) behavior of a component. With respect to proving the absence of
deadlock, it is sufficient to show that there is at least one “active”
alternative subgraph in every derivation.

AS graphs are intuitively the counterpart of AC graphs. They model the
assumed behavior of the external context. For each AC graph, therefore,
there is a corresponding AS graph that models the behavior of the context
required to perform all the derivations modeled by the AC graph. Since in
general the context can be provided by several components, an AS graph
refers to the behavior of more than one component. It is structured as a
graph because, at each step of the actual behavior, a molecule should be
present in the context such that the expected transformation in the AC
graph can take place. Informally, if AC nodes represent states of a
component, AS nodes represent states of the other components that permit
a reaction to occur in a solution. Thus, the number of nodes in an AS graph
must be the same as the number of nodes in an AC graph. Moreover, there
must be a correspondence between a node in an AC graph and a node in an
AS graph, since they together describe a subsolution reaction.

Given an AC graph for a component CHAM we can define the correspond-
ing AS graph.

Definition 2 (AS Graph for a Component CHAM). Let Gac be an AC
graph for some component CHAM, then the corresponding AS graph, Gas,
is constructed as follows:

—Gas has as many nodes as Gac.
—The root node of Gas is associated with the root node of Gac.
—Let m be a node in Gas, and let n be the associated node in Gac. Then if n

has an outgoing arc to a node n1 labeled l (l Þ t) due to the application of
a rule r, then m has an outgoing arc to the node corresponding to n1
labeled with the conjunction of the labels required by r to be applied.
Each such label corresponds to the part of a molecule required in the
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context to perform the reaction by r. If the outgoing arc in Gac is labeled
t, then the outgoing arc from m is labeled a.

—if n has and arcs, then m also has corresponding and arcs. ‚

The intuitive meaning of the a label in AS graphs is that of abstracting
away from requirements on actual behaviors. That is, an a transition
means a do not care requirement that can be matched by any sequence of
transformations in the actual behavior graph AC. Actually, by construction,
one of the purposes of a arcs is to model t cycles—that is, the fact that a
certain molecule can be “spontaneously” offered infinitely many times in
the context. The other use of a arcs is to label and arcs when the
transformation in the actual behavior graph has not required any context.

AC and AS graphs for the component CHAMs of the Compressing Proxy
example appear in Figures 2, 3, and 4.

6. CHECKING ASSUMPTIONS

Our primary goal is to provide a way for an architect to check that a given
configuration of components results in a correct system. In essence this
means comparing the assumptions on the external context made by one
component to the actual behavior exhibited by the components with which
it interacts. To date we have concentrated on deadlock freedom as the
correctness criterion and have developed an algorithm that performs the
check.

The checking algorithm makes use of an equivalence relation between AC
graphs and AS graphs. Informally, the goal of the check is to find a way to
match components. This means that all the component’s assumptions have
to be fulfilled by some other component’s actual behavior. In general, of
course, multiple actual behaviors can contribute to fulfilling the assump-
tions of a single component. In our example, this is true for the adaptor
component.

Fig. 2. AC and AS graphs for the upstream (top) and downstream (bottom) filters.
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If the check succeeds, then the system is deadlock free. If the check
fails, then it means that there is no way to satisfy the assumptions of a
component—that is, some component will block along some derivation in
any possible match of components. Of course, this is not enough to conclude
that the whole system blocks, but in a conservative framework it indicates
a potentially erroneous situation.

6.1 Equivalence

The checking algorithm is built upon a notion of equivalence that allows us
to compare AC graphs with AS graphs. It works by attempting to put

Fig. 3. AC and AS graphs for gzip.

Fig. 4. AC and AS graphs for the adaptor.

Static Checking of System Behaviors • 259

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 3, July 2000.



corresponding nodes and arcs into relation. Since an AS graph can be
fulfilled by more than one AC graph, we try to put one AS graph in relation
with more than one AC graph. The idea is that all the nodes and arcs of the
AS graph must be “covered” by the relation, and, moreover, it should not be
possible for an actual behavior to avoid providing the required interaction.
Therefore, our equivalence is inspired by the familiar Milner bisimulation
[Milner 1989].

Why do we need a form of bisimulation? An AS graph should be
completely satisfied by one or more AC graphs, which means that every-
thing the AS graph requires must be provided by the context. So, there
should exist AC graphs that behave according to the needs of the AS
graph—that is, they should simulate the assumed behavior. If an AC graph
exists that simulates a portion of the AS graph behavior, then it should also
be the case that the AC graph cannot do less than required by the AS
graph. Otherwise there is the risk that the AC graph can take execution
paths that are not guaranteed to provide the required context. Thus, we
need bisimulation, wherein the AS graph must also simulate the AC graph.
For example, consider the case in which the AC graph has two arcs leaving
a given node, one labeled b and the other g, while the AS graph only needs
g. Then if we only require that the AC graph simulates the AS graph, it is
possible that the AC graph can take the b branch and never satisfy the
assumption.

Now, why do we need something different from the usual bisimulation?
Because we have to take into account two problems unique to our setting.
The first is that, in general, more than one AC graph is needed to fulfill the
assumptions recorded in an AS graph. For example, the assumptions made
by the adaptor component of the Compressing Proxy must be satisfied by
the actual behaviors of three components in the external context: the
upstream filter, gzip, and the downstream filter. Thus, we have to under-
stand when there is only a portion of the AS graph that is satisfied by, and
therefore simulated by, some AC graph. The other problem we encounter is
when we check that the AS graph is simulating the AC graph behavior. In
this case, we have to take into account the possibility that the AC graph is
an and graph, and, therefore, there can be a different thread providing the
required context.

Notice that we need a notion of equivalence for verification purposes
only. Our aim is to be able to compare two behavioral descriptions in a
meaningful way with respect to the property we want to check. Therefore,
the chosen equivalence does not imply an observational semantics at the
level of the architectural language. Actually, one could go a bit further in
this reasoning, where the choice of equivalence depends on the property of
interest. Given a particular property, one can think of our method as
parametric with respect to the equivalence. The way in which AS graphs
and AC graphs are compared can be changed without modifying the overall
technique. For deadlock freedom, bisimulation is adequate. For a different
property, another equivalence could better fit the analysis.
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In our formulation of the equivalence relation, we make use of a predi-
cate R on nodes that is true when a node can be considered a root. A root is
a node that is an origin of a computation—that is, whose reachability does
not depend on the context, but is always guaranteed. The initial molecule
for a component is, in general, a root. In Figures 2 and 3, the roots are
indicated by circled nodes. Nodes that are reachable through t arcs are also
considered roots, since a t arc means that there is no constraint imposed by
the external context. To simplify the figures, we do not circle the nodes that
are roots due to t arcs.

We call an arc recursive when from the root node there exist infinite
paths that contain that arc. A recursive arc in an AS graph indicates an
assumption that the behavior should be offered an indeterminate number
of times, while a recursive arc in an AC graph indicates that the behavior
occurs an indeterminate number of times. Clearly, a recursive arc in an AS
graph requires a corresponding recursive arc in an AC graph.

We introduce the following definitions.

Definition 3 (Unavoidability). Let Gac be an actual behavior graph and
n1 . . .nn be nodes in Gac. We say that a node nk is unavoidable from a node
n i, denoted as n i f nk, if there exists a path from ni to nk, and for all such
paths n i 3

a1
ni11 3

a2
n i12 3

a3 . . . nk21 3
ah

nk each step nr 3
ar

nr11 has either
ar 5 t or R(nr11). ‚

By definition, any root node R(n) is reachable from anywhere—that is, it is
unavoidable.

In the following we use the notation nk [ . to mean that there exists a
node mh such that nk . mh. That is, the node nk already appears in a pair of
the relation .. Furthermore, we assume that in the graphs there are no
nodes with outgoing arcs having the same label. This is a hypothesis that
allows us to simplify the presentation of the equivalence and can be easily
removed.

Given this background, we can now define what it means for an AS graph
to be in relation with an AC graph.

Definition 4 (Relation between AS and AC Graphs). Let Gac be an actual
behavior graph, n1 . . . nn be nodes in Gac, Gas be an assumption graph,
m1 . . . mm be nodes in Gas, and g [ L\ {t, a}. Two nodes are related, ni . mj

—if m j 3
g

m j11, then either (ni 3
g

n i11 and ni11 . m j11), or (n i f nk and
nk [ .), or n i has no outgoing arcs; if m j 3

a
m j11, then m j11 . ni.

—if n i 3
g

n i11, then either (m j 3
g

m j11 and n i11 . m j11), or there exists a
nk such that (R(nk) and nk . m j); if ni 3

t
ni11, then either (n i11 . m j), or

(m j 3
a

m j11 and ni11 . m j11), or (n i f nk and nk [ .).

The nodes in Gas that are in relation are called covered nodes. Nodes with
no outgoing arcs are covered by definition. If all the nodes of Gas are
covered, then Gas is completely covered; otherwise it is partially covered.
We extend this notion of coverage to arcs by saying that an arc is covered
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when both its source and target nodes are covered. Analogously we say that
the corresponding arcs in the symmetric Gac are covered.

Gac . Gas if and only if there exists a node nk such that R(nk), and nk is
in relation with some Gas node and, for each covered recursive arc in Gas,
the source and target nodes of that arc are in relation with source and
target nodes of a correspondingly covered recursive arc in Gac. ‚

The definition above allows us to compare AC and AS graphs. The two
differences with respect to the standard notion of bisimulation are reflected
in the definition, as follows.

The first difference appears in the first part of the definition, where we
are checking that an AC graph properly simulates a given AS graph. In
fact, we have to detect that an AC graph covers only a portion of the AS
graph. When an AC graph performs a t move, then this means that the
component can change state autonomously, without interacting with the
environment. If this happens, we only require that the node reached by the
AC graph is in relation with some reachable node of the AS graph. This
allows us to use the AC graph to partially fulfill the needs of an AS graph.
As we discuss below, the AC and AS label structures are modified during
the checking process so that it is possible to take into account partial
successful matching. Note that this problem does not arise when we try to
simulate an AC graph with an AS graph, since in fact we only have to check
that the AC graph does not perform more actions than what is required by
the AS graph.

The second difference with standard bisimulation is captured in the
second part of Definition 4, which deals with the simulation of an AC graph
by an AS graph. In our view, this corresponds to checking that the AC
graph will always provide the portion of assumptions that it matches. This
means that there should not exist any AC behavior that does not provide
the matched context. In other words, all the possible AC behaviors must
provide the given context.

6.2 Checking Algorithm

We can now define the checking algorithm. To do so, let us first define the
notion of substitution.

Definition 5 (Substitution). A substitution is a set of pairs ( AC, AS)
such that the first element of any pair only occurs once in the set. We
denote the empty substitution as e and denote a generic substitution as s 5
[AC1/AS1, . . . , ACn/ASn]. ‚

Given a configuration G— that is, a set of ground components—s(G) is the
system built out of the components in G and checked according to the
associations in the substitution s.

Definition 6 (Checking Algorithm). Let G 5 {C1, C2, . . . , Cn} be a
configuration and s be an empty substitution:

(1) If there are no AS graphs in G, then Check(G) 5 (true,s) and terminate.

262 • P. Inverardi et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 3, July 2000.



(2) Try to find a pair ACCi
. ASCj

. If no pair is found, then Check(G) 5
(false,s) and terminate.

(3) Let s 5 s ø ( ACCi
/ASCj

).
(4) Obtain a new graph AC9Cj

by labeling as root nodes all the nodes that
are reachable from the root through covered arcs (i.e., the predicate R is
true on those nodes).

(5) If ASCj
is completely covered, then remove ASCj

from G and go to step 1.
Otherwise, obtain a new graph AS9Cj

that reflects the partial match by
labeling all covered arcs with a and go to step 2. ‚

Note that the method for selecting a pair of candidate AC and AS graphs in
step 2 is not important for the purposes of this discussion. It is sufficient
that, for a given configuration, the algorithm either terminates successfully
on any one series of selections or terminates unsuccessfully on all series of
selections. We address this point further in Section 6.3 as part of our
discussion of complexity.

Let us see how we can apply these definitions to the Compressing Proxy
example. We start by creating a configuration G 5 {GZ, AD, CFu, CFd}.
This configuration follows the diagram of Figure 1 and, of course, contains
several assumption graphs. We then select a pair (AC,AS) to put in
relation. Assume it is the pair ( ACCFu

, ASAD). This pair successfully puts
in relation the two nodes of ACCFu

with two of the nodes in ASAD, as shown
on the left side of Figure 5. We obtain as a result a partially covered
assumption graph for the adaptor, AS9AD. If we next select the pair
( ACCFd

, AS9AD), then both the nodes of ACCFd
match two nodes of AS9AD, as

shown in the middle of Figure 5, resulting in a further matched assumption
graph for the adaptor, AS 0AD. Next, we select the pair ( ACGZ, AS 0AD),
attempting to match the actual behavior of gzip with the remaining,
uncovered part of the assumption graph of the adaptor. In this case, we are
not able to relate all nodes in ACGZ to the nodes in AS 0AD. This is indicated

Fig. 5. Mismatch in actual and assumed behavior leading to deadlock.
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in Figure 5 by the large cross. The algorithm tries to find other pairs, but it
is easy to see that it will not be able to match AS 0AD, since its assumption
could only be provided by gzip. Hence the algorithm, after all the possible
attempts, will terminate at step 2.

It is worth noticing that the mismatch occurs exactly where the deadlock
in the system appears. In particular, we cannot satisfy the assumption
made by the adaptor in which it requires an endi from the context. Thus,
the adaptor will be blocked, not producing an endo, which in turn will
cause gzip to block, thus achieving a state of deadlock.

Let us more precisely define what we mean by deadlock.

Definition 7 (Deadlock). Let S be a system with reaction rules T and
final solution set F. We say that S is in deadlock if there exists a
terminating computation S0 3 S1 3 . . . 3 Sn, Sn [y F and there exists
an mj [ Sn such that (mj, mi11, . . . , mi1k) 3 Sr. ‚

Notice that this definition characterizes a global deadlock; the last part of
the definition avoids the possibility that the deadlock is caused by all
components either reaching a final state or reaching an internal deadlock
state (i.e., a local deadlock). We do this because it is global deadlock that is
of interest to us here.

An important point is that it can never be the case that an AC arc
becomes covered because the starting and ending nodes are covered when
there exists no other AC graph performing the complementary transition.
In particular, if the situation arises where an arc has starting and ending
nodes that are roots, then this means that a partial match should have
been performed such that a node became a root because the corresponding
node in the AS graph has been covered—that is, it has been put in relation
with a node in another AC graph. Due to the equivalence definition, which
preserves the branching structure of the graphs, and due to the simplifica-
tion hypothesis, which prevents graphs from having nodes with outgoing
arcs labeled the same, the arc between the two covered nodes must have
been followed.

Let us now state the correctness of our algorithm.

PROPOSITION 1. Let G be a configuration. If Check(G) 5 (bool, s) succeeds,
i.e., bool 5 true and s Þ e, then G is deadlock free. ‚

PROOF. The proof is by contradiction.
Let us assume G is not deadlock free. Therefore, there should be a

terminating computation S0 3 . . . 3 Sn, and Sn [y F. This means that
there exists a molecule mi [ Sn, describing the state of the component Ci,
such that mi does not represent a final state and is not inert. This means
that there exists a rule Tj that can be applied to a suitable solution S 5 mi,
mi11, . . . , mk. By construction, in the AS graph associated with Ci, there
should exist a node m i corresponding to mi, since mi represents a reachable
state from the initial solution of Ci. Furthermore, from m i there is an arc
due to the application of rule Tj labeled with l 5 mi11, . . . , mk and
leading to the node mi1p.
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By hypothesis we are considering a given configuration s(G). Therefore,
there should exist an iteration in the checking algorithm that led to s(G)
and covers the portion of the AS graph containing the arc from m i to m i1p.
Now, by definition of equivalence, there should exist an AC graph of a
component Cr whose root n j is in relation to the root m i2h of an outer tree
that includes mi. The AC graph is then supposed to provide the required
context l when needed by the AS graph—that is, when the component Ci
reaches the state mi. In fact, by definition of equivalence, it cannot be the
case that the arc becomes covered because the starting and ending nodes
are covered when there exists no AC graph performing the corresponding
transition. Thus, the only possibility is that the component Cr does not
provide the required context because either it has that behavior but it does
not provide it an infinite number of times, or it blocks before reaching it.

Now we proceed by induction on the distance of the m i node from the node
m i2h, and show that actually the context has to be available.

Base Case: h 5 0. This means that m i . n j. By definition there exists
an arc in the AC graph from which an arc labeled l exits, and the reached
nodes are in the equivalence. Therefore, due to the fact that n j is a root, the
only possibility for a solution to block containing the molecule mi is that
the AS graph is recursive on the arc labeled l, while the corresponding arc
in the AC graph is not. This is clearly not possible, since the equivalence
would have failed.

Inductive Case: h 5 n 1 1. This means that there exists a path from
m i2h to m i such that all the nodes lying on the path are in relation with
some AC graph node. Let us consider the predecessor of m i in the path,
m i21. Then mi21 has to be in relation with some nx. Now, we have only to
guarantee that from nx a node n i equivalent to m i is eventually reached. By
the inductive hypothesis, we know that the AC graph actually provides the
context to AS until the node m i21. This means that the two components are
progressing together until those nodes. Now, since mi21 and nx are in
relation, and from m i21 the node m i is reachable, the only possibility is that
from nx a node n i equivalent to mi cannot be reached. Due to the definition
of equivalence and to the fact that we are considering the AC graph
covering the portion of the AS graph containing the arc from m i to mi1p,
this is possible only if ni is a node satisfying the root condition, and,
therefore, it could be directly placed in relation to m i. The proof then
proceeds as in the base case, resulting in a contradiction. e

The adaptor can be modified to eliminate the deadlock by introducing
parallelism into its behavior, as discussed in Section 4. The modified compo-
nent CHAM for the adaptor is shown in Table II. It replaces the phased
behavior of the adaptor with nonblocking reads and writes. Figure 6 shows the
AC and AS graphs obtained from the modified specification of the adaptor.

Let us now show how the matching process succeeds with the new specifica-
tion for the adaptor. The process is shown in four parts. In Figure 7, the
algorithm matches the two AC graphs of the filters with part of the AS graph
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for the adaptor. The result is a partial match for the adaptor, where the partial
match will be reflected both in the AS graph, by changing the matched label to
a, and in the AC graph, by showing the root condition on the covered nodes. In
Figure 8, the algorithm matches the AC graph of the adaptor with the AS
graph for gzip. Note that this step would not have been possible without the
earlier match involving the filters, which had the effect of moving the root
condition in the AC graph of the adaptor to a point where it could match gzip

Table II. Modified Component CHAM for the Adaptor

Fig. 6. AC and AS graphs for the modified adaptor.

Fig. 7. Successful match of filter AC graphs against adaptor AS graph.
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assumptions. In Figure 9, the algorithm matches the AC graph of gzip with
the remaining assumptions of the adaptor. Finally, in Figure 10, the filter
assumptions are matched with the AC graph of the adaptor. At this point, the
assumptions of all four components have been satisfied.

6.3 Complexity

The algorithm presented above is designed to prove deadlock freedom of a
system without building a complete finite-state model of the system. Thus,
it attacks one of the main problems found in the practical use of known
verification techniques, namely explosion in the size of the state space. In
our approach, we only build finite representations of the individual compo-
nents, which for each such component consists of equivalent-sized repre-
sentations for its actual behavior and the assumed behavior of its context.
Furthermore, the assumptions are automatically derived from the actual
behavior, and used in the algorithm to check behavioral compatibility.

One of the main problems found in the practical use of known verification
techniques is the size of the state space. Hence, we comment both on the
algorithmic complexity and on the state space size of our proposal.

To check for deadlock freedom using standard approaches based on
nondeterministic finite-state machines and reachability analysis, a global
state space of the system is built, and then a full search for deadlock is
performed. The size of the state space of a system composed of N concur-
rent components each of size O(K) is O(KN). Here we are assuming that all
components are of comparable size; the reasoning for components of differ-
ent sizes would be similar. To avoid the problem of building the whole state
space at once, techniques such as “on-the-fly” algorithms have been devel-
oped. However, in the worst case (i.e., if no deadlock is found) the whole
state space must still be analyzed, which for reachability analysis has a
time complexity of O(KN).

Our approach has the advantage that it dramatically reduces the state
space to O(KN), since the algorithm simply uses the AC and AS graphs for
each of the N components. The state space constructed is not a cross

Fig. 8. Successful match of adaptor AC graph against gzip AS graph.
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product of the graphs for each component. Instead what is constructed is
just the single AC and AS graphs, which are much smaller in size. The
algorithm needs 2N graphs of size K each, which leads to an O(KN) state
space.

The worst-case time complexity of our algorithm is O(N!(K2log(K))),
which is comparable to the worst case of standard reachability. Let us
explain the reasoning that leads to this time complexity result.

The algorithm works by selecting a pair of AC and AS graphs and then
checking them for compatibility. The check is similar to bisimulation, and
in fact a standard bisimulation-checking algorithm can be used (see Defini-
tion 4). For purposes of this discussion, we assume that we can use a
variant of the well-known Paige-Tarjan algorithm [Paige and Tarjan 1987],
which has complexity O(Elog(K)), where K is the number of states, and E
the number of arcs in the graph. Actually, E is bounded by K2, and so a
bound for our case is O(K2log(K)).

As we mention in Section 6.2, the order in which the graphs are
compared is not important in explaining the functionality of the algorithm.
However, that selection process has a significant impact on the complexity
of the algorithm. In particular, we have the possibility of backtracking; if a
particular choice of order results in an unsuccessful termination, then the

Fig. 9. Successful match of gzip AC graph against adaptor AS graph.

Fig. 10. Successful match of adaptor AC graph against filter AS graphs.

268 • P. Inverardi et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 3, July 2000.



algorithm must try a different order. Given that there are N AS graphs and
that we do not check an AC graph against its own AS graph, the algorithm
will backtrack at most (N 2 1)! times. This worst-case behavior happens
only if every possible order results in an unsuccessful termination—that is,
the case in which the algorithm returns “false.”

Finally, each AC graph is put in relation to an AS graph exactly once.
Since we have N AC graphs, this occurs N times during the analysis of a
system.

Thus, in the worst case, the overall complexity of the algorithm is
O(N((N 2 1)!)(K2log(K))); N to put in relation all AC graphs, (N 2 1)! for
all possible backtrackings, and (K2log(K)) to perform bisimulation on each
candidate AC/AS pair. Simplifying the expression we get O(N!(K2log(K))).

We would expect the typical time efficiency of the algorithm to be much
better than the worst-case estimate of its complexity. In fact, in practice,
the case of all possible backtrackings would not be very common, even
using a random selection of candidate pairs. Moreover, although not
explored in this paper, we foresee several heuristics that could improve the
running time of the algorithm. These heuristics would be used to select
“best” candidate AC and AS pairs, defining the order in which the graphs
are checked, and hence dramatically increasing the efficiency of the algo-
rithm. One simple example of such a heuristic is to use the signature of the
graphs (i.e., the set of labels used in the graphs) to filter the set of
candidates, since for an AC and an AS graph to be in relation it must be the
case that the set of labels of the AC graph is included in the set of labels of
the AS graph; AC graphs whose signatures are not included would not be
considered. This reasoning is more complicated in the presence of and
subgraphs, but the general intuition holds. When the components of a
system behave differently from one another—by far the typical situation in
practice—these and other such heuristics might prove to be extremely
effective, while not being very hard to compute from an algorithmic point of
view.

7. CONCLUSIONS AND FUTURE WORK

We have presented a method to statically check behavioral properties of a
system at the architectural level. At this level, the properties of interest are
mainly dynamic properties related to the coordination of components; a
component has a potential behavior, but in order to be successfully inte-
grated into an architecture, it expects the context to behave in some
particular way. We introduced the notion of assumptions to formalize
what a component expects from other components. In other words, in order
to work together, components must agree not only on the actual behaviors
(e.g., agree on communication protocol, port naming, and the like) but also
on the assumptions they make about each other.

The checking algorithm uses the assumptions and actual behavior to
verify that any differences cannot produce a deadlock situation. Clearly,
this work needs to be generalized. We have introduced the basic concepts,
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and we have presented an algorithm to check a particular problem in a
particular situation. The case study of the Compressing Proxy shows that
the algorithm can be useful in a real context. However, other properties of
interest should be analyzed and algorithms developed to perform verifica-
tion of those properties.

The idea of associating assumptions with components may have interest-
ing consequences besides deadlock checking. In general, when components
are assembled together to form a system, the verification performed is
based on type checking of the interfaces. As mentioned in Section 2, some
work has been done in checking the dynamics of components. But the
notion of checking assumptions against actual behavior may lead to a
general way of verifying that the assembly of a system, at the architectural
level, is correctly done. The information in the interfaces, besides opera-
tions (or ports), types of the operations, and even potential behavior, might
be enriched by the assumptions that the components make on how the
context behaves. These considerations give additional motivation for gener-
alizing the results presented here.

Our method is not limited to deadlock detection; it could be used as the
basis for checking other safety and liveness properties as well. For exam-
ple, a safety property that could be verified might be one related to proper
access to shared resources. Suppose that there is a shared information
resource that must be accessed in a particular way, such as by first
initializing it, and then by querying and modifying it in some restricted
order. This particular access protocol would be captured by the assump-
tions of the shared resource. The other components of the system would be
required to respect this protocol. In general, one might have many shared
resources with different protocols, and want to check for compatibility of all
the accesses at once, since one access may depend on the others.

Using our method it is also possible to check for liveness properties. For
instance, it might be possible to check whether each sender of a message in
a message-based system always receives the corresponding acknowledg-
ment for that message. The alternating bit protocol would be a small
example of the application of this property.

These are just two of the possible properties that could be examined
using the work described here, but further investigation is required in
order to demonstrate how this would be realized. Notice that our method is
more useful when global properties of the system are checked, because in
those cases there is a clear advantage to building partial graphs as opposed
to building the whole state space.

Driven by our case study we have defined the graphs and the equivalence
based on a one-to-one communication between components. This can be
seen in the transformation rules, whose left-hand-side arity is at most two.
In general, more than two components can be involved in a communication
and/or synchronization. Thus, both the structure of the AC and AS graphs
and the definition of the equivalence have to be generalized. In terms of the
graphs, this can be done by simply extending the definition of the labeling
to be “set of labels.” Similarly, the matching algorithm can be extended by
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modifying the portion of the equivalence that chooses a label from the set
and by extending the notion of covered arc. A similar need for generaliza-
tion applies to situations in which a nondeterministic point in an AS graph
should match more than one AC graph. The algorithm as defined here is
not able to perform the match, but we are currently working on extensions
to the algorithm that address this weakness.

Another point worth mentioning is that we are able to prove that a
certain configuration is “legal” only if it is possible to find a suitable way to
match AS graphs with AC graphs. The matching algorithm as we have
defined it is incremental. In fact, in our example, the successful matching
can be found only by following a particular order in the processing. This is
not surprising, since we want to be able to prove system-level dynamic
properties by checking component-level adequacy. The strength of our
approach is that we record partial successful matches in the graph struc-
ture, thus being able to easily accommodate the eventual checking of
multiway communications and synchronizations.

As a last comment we would like to stress again that the technique we
propose in this paper should not be seen as an alternative technique to
more traditional model-checking techniques. Our intention is to propose it
as a suitable complementary technique that, although incomplete, can be
very effective in terms of its state space properties.
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