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Recent static experiments on twist effects in chiral three-dimensional mechanical metamaterials have been

discussed in the context of micropolar Eringen continuum mechanics, which is a generalization of linear Cauchy

elasticity. For cubic symmetry, Eringen elasticity comprises nine additional parameters with respect to linear

Cauchy elasticity, of which three directly influence chiral effects. Here, we discuss the behavior of the static

case of an alternative generalization of linear Cauchy elasticity, the Willis equations. We show that in the

homogeneous static cubic case, only one additional parameter with respect to linear Cauchy elasticity results,

which directly influences chiral effects. We show that the static Willis equations qualitatively describe the

experimentally observed chiral twist effects, too. We connect the behavior to a characteristic length scale.

DOI: 10.1103/PhysRevB.99.214101

I. INTRODUCTION

In one dimension, the scalar spring constant in Hooke’s

law connects forces and displacements. As a generalization to-

wards three-dimensional continuum mechanics [1], the rank-4

linear Cauchy elasticity tensor C connects the rank-2 stress

tensor σ and the rank-2 strain tensor ǫ. In general, linear

Cauchy elasticity comprises up to 21 independent nonzero

parameters describing possible linear deformations of elastic

bodies in three dimensions [2–6]. For cubic crystals, which

are characterized by four threefold rotational axes, only three

parameters remain [3].

However, linear Cauchy elasticity essentially only grasps

the displacements u(r) of infinitesimally small volume el-

ements (of “points,” associated with position vectors r)

within a fictitious continuum. Linear Cauchy elasticity there-

fore misses certain degrees of freedom in artificial three-

dimensional periodic microlattices or metamaterials, for

which the unit cell has a finite extent rather than being

approximately pointlike such as atoms in an ordinary crystal

of macroscopic size [7,8]. Such missed degrees of freedom

have recently become particularly obvious in chiral three-

dimensionally periodic mechanical metamaterial structures

[see Fig. 1(a)] for which linear Cauchy elasticity fails to de-

scribe any effect of chirality, whereas prominent twist effects

have been observed experimentally in the static case [7]. In

contrast, micropolar Eringen elasticity [see Fig. 1(b)] has been

able to describe these experimental findings [7] as well as

others for achiral media [8]. Cosserat elasticity [9] can be seen

as a special case of Eringen micropolar elasticity.

Cosserat elasticity and micropolar Eringen elasticity

[9,10], micromorphic Eringen elasticity [9,11], strain-gradient

theories [12–14], and yet more advanced approaches [15]

*muamer.kadic@gmail.com

are not the only possible generalizations of linear Cauchy

elasticity though. It is therefore interesting and relevant to ask

which generalizations other than Eringen’s can describe the

effects of chirality observed in recent experiments [7].

In this paper, in Sec. II, we start with the static version of

a generalization of linear Cauchy elasticity following Willis

[16,17]. Aiming at describing recent experiments [7], we

focus on the case of three-dimensional homogeneous cubic

crystals without centrosymmetry, in which case the terms

beyond linear Cauchy elasticity can be parameterized by a

single scalar parameter. In Sec. III, we discuss numerical

solutions. We find that the resulting behavior qualitatively

describes the push-to-twist conversion effects observed in

recent experiments [see Fig. 1(c)] and that it can be connected

to a characteristic length scale. We conclude in Sec. IV.

II. GENERALIZED STATIC LINEAR CAUCHY

ELASTICITY

In the static case, all forces must balance. For simplicity,

we omit external forces in all formulas throughout this paper.

Hence, the divergence of the stress tensor σ = C : ǫ is zero,

∇ · σ = 0. The colon symbol : denotes a double contraction;

the dot · denotes a contraction between two tensors. Linear

Cauchy elasticity reduces to the compact equation

∇ · (C : ǫ ) = 0, (1)

where C is the rank-4 elasticity tensor, with components

Ci jkl (i, j, k, l = 1, 2, 3) in Cartesian coordinates and SI units

of Pa, and ǫ is the dimensionless symmetric rank-2 strain

tensor with components ǫi j = ǫ ji [2]. The strain tensor can

be connected to the gradient of the displacement vector field

u = u(r) with components ui (i = 1, 2, 3) via [2]

ǫ = 1
2
[∇u + (∇u)T], (2)
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FIG. 1. Cuboid beams with volume L × L × 2L, with side length

L = 500 μm, are subject to uniaxial loading along the negative z

direction. In linear Cauchy elasticity, the beam compresses and can

expand or contract laterally, depending on its Poisson ratio (not

depicted). However, a twist is forbidden in linear Cauchy elasticity,

even if the underlying crystal symmetry would allow for a twist.

(a) Finite-element calculation for a chiral metamaterial microstruc-

ture exhibiting a twist behavior [7]. (b) Same as (a), but calculated

using chiral micropolar Eringen elasticity [7]. (a) and (b) are taken

with permission from [7]. (c) Numerical calculations based on gener-

alized linear Cauchy elasticity following Willis. For all three panels,

the effects are calculated within the linear elastic regime and are

magnified tenfold for clarity. The modulus of the displacement vector

field is superimposed on a false-color scale. Parameters in (c) are

C11 = 32.8 MPa, C12 = −6.1 MPa, C44 = 19.4 MPa (in Voigt nota-

tion), and α = 3 GPa/m.

where the superscript T refers to the transposed quantity.

The linear Cauchy elasticity tensor obeys the minor symme-

tries (Ci jkl = C jikl = Ci jlk) and the major symmetries (Ci jkl =

Ckli j) [2]. As a result, the strain tensor ǫ in (1) can equivalently

be replaced by the gradient of the displacement vector ∇u,

i.e.,

∇ · (C : ∇u ) = 0 . (3)

Linear Cauchy elasticity does not describe effects of chi-

rality at all [9]. This fact can immediately be seen by recalling

that all even-rank tensors (such as the rank-2 stress tensor, the

rank-4 elasticity stress tensor, and the rank-2 strain tensor) are

invariant under space inversion operations, r → −r [9]. Thus,

(3) does not change under space inversion, which brings one

from a left-handed to a right-handed medium (or vice versa).

Here, we consider Willis elasticity [16,17] as a candidate

for describing chiral effects. Willis elasticity has been around

for many years [16,17]. The Willis continuum-mechanics

equations have mostly been used in the context of dynamic

effects (or elastic waves) [16–28]. We will use them in the

static regime. We mention in passing that Milton, Briane, and

Willis have proven mathematically in 2006 that the Willis

equations are form invariant under general curvilinear spatial

coordinate transformations [29,30]. However, their discussion

concerning the form invariance of linear Cauchy elasticity

has raised some controversy in the literature [31–33]. Com-

pletely independent of this controversy, linear Willis elasticity

remains an interesting generalization of linear Cauchy elastic-

ity. In the static limit, i.e., for angular frequency ω = 0 and

finite static mass density ρ, Willis elasticity reduces [30] to

∇ · (C : ∇u + S · u) − D : ∇u = 0, (4)

where C = C(r) and the two additional rank-3 tensors S =

S(r) and D = D(r) generally depend on the spatial position r.

In the case of a homogeneous material or homogenized

structure with ∇Si jk = ∇Di jk = 0, which is the focus of

interest in this paper, Eq. (4) reduces to

∇ · (C : ∇u + W · u) = 0, (5)

with the rank-3 tensor W defined by

W = S − D
T, (6)

where the components of the “transposed” tensor are given by

DT
i jk = D jik . (7)

Broken centrosymmetry is a necessary requirement for chi-

rality [3,7,9]. If we nevertheless consider an isotropic medium

or a cubic crystal with centrosymmetry, it follows that W ≡ 0,

just like for any homogeneous rank-3 tensor [3]. W ≡ 0 also

holds true for an isotropic medium without centrosymmetry.

For a cubic crystal without centrosymmetry, we find that the

tensor W , such as any rank-3 tensor [3], reduces to the rank-3

Levi-Civita tensor ε (with components ε123 = ε231 = ε312 =

−ε132 = −ε213 = −ε321 = 1, all other components are zero)

times a scalar factor α, i.e.,

W = α ε. (8)

Here, α has SI units of Pa/m. This allows us to rewrite Willis

elasticity (5) to

∇ · (C : ∇u) − α ∇ × u = 0. (9)

It is instructive to investigate the behavior of (9) under

a space-inversion operation, r → −r. As argued below (3),

C : ∇u = C : ǫ does not change sign, but the ∇ in front does.

In the second term in (9), both ∇ and u do change sign, and

hence the exterior product does not change sign. Therefore,

the relative sign of the first and second term in (9) changes

when performing a space inversion. Thus, (9) is different for a

left- and a right-handed medium, respectively. This behavior

is a necessary condition for a continuum formulation to be

able to describe the effects of chirality in mechanics. Clearly,

if the single parameter beyond linear Cauchy elasticity is zero,

α = 0, Eq. (9) reduces to linear Cauchy elasticity (3). As

usual [1,3], for cubic symmetry (with or without a center of

inversion), the linear Cauchy elasticity tensor C contains three

independent nonzero scalar parameters [3].

We will use (9) for the numerical calculations presented in

Sec. III. To be unambiguous and clear for experimentalists,

we therefore write Eq. (9) out into its three components and

explicitly write out all involved sums, leading to

3
∑

i,k,l=1

[

∂

∂xi

(

Ci1kl

∂ul

∂xk

)]

− α

(

∂u3

∂x2

−
∂u2

∂x3

)

= 0, (10)

3
∑

i,k,l=1

[

∂

∂xi

(

Ci2kl

∂ul

∂xk

)]

− α

(

∂u1

∂x3

−
∂u3

∂x1

)

= 0, (11)
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and

3
∑

i,k,l=1

[

∂

∂xi

(

Ci3kl

∂ul

∂xk

)]

− α

(

∂u2

∂x1

−
∂u1

∂x2

)

= 0. (12)

III. NUMERICAL CALCULATIONS

In what follows, we illustrate the generalized static ho-

mogeneous equation (9) for a cubic three-dimensional chiral

medium by example numerical calculations. To allow for

a direct comparison with micropolar Eringen elasticity, we

reproduce previous continuum results [7] and results of meta-

material microstructure calculations [7] at selected points for

convenience of the reader. To ease this comparison, we also

choose similar parameters as much as possible.

A. Numerical approach

In our numerical calculations, we consider cuboid-shaped

samples with volume L × L × 2L. We apply uniaxial loading

by a rigid stamp along the negative z direction with sliding

boundary conditions at the top, i.e., at the top surface we

have a predescribed and fixed nonzero z component of the

displacement vector, uz �= 0. The components ux and uy can

change freely. The axial strain results from ǫ = ǫ33 = −uz/L.

The uniaxial pressure P exerted at the top is given by P =

n · (C : ∇u − α ∇ × u), where n is the normal vector point-

ing into the negative z direction. On the four sides, we use

open boundary conditions, i.e., n ·(C : ∇u − α ∇ × u)= 0,

with the respective normal vectors n of the four side facets.

On the bottom of the cuboid, we use fixed boundary condi-

tions with u = (0, 0, 0)T, describing that the sample cuboid

is clamped to a substrate. We have used the same conceptual

boundary conditions in our previous work on static Eringen

elasticity [7].

We solve Eq. (9) by using a finite-element approach via

the partial-differential equation (PDE) module of the com-

mercial software package COMSOL MULTIPHYSICS. Herein,

the homogeneous sample cuboid is typically discretized into

104 tetrahedra, corresponding to about 5 × 104 degrees of

freedom. Finer discretization has led to negligible changes

with respect to the results outlined in the following.

In Sec. III B, we will discuss the behavior of the twist

angle and the axial strain of the cuboid sample under uniaxial

loading. The axial strain is defined as the z component of the

displacement vector at the top surface [which is the same for

all positions (x, y, 2L)T], divided by the sample length 2L, i.e.,

by uz(x, y, 2L)/(2L).

The twist angle is defined via the displacement of the

equivalent four corners at the top of the sample cuboid in the

xy plane, which are at positions (±L/2,±L/2, 2L)T before

loading, with respect to the sample center at (0, 0, 2L)T. For

pure twists without further deformations, this definition grasps

the entire sample behavior. If deformations that are more

complex occur in addition, the twist angle resulting from our

definition should be seen as merely a parameter representing

part of the overall behavior.

FIG. 2. (a) Same as Fig. 1(c) with parameter α = 3 GPa/m and

all other parameters fixed as in Fig. 1(c). (b) α → 3.3 α. (c) α →

33 α. From such raw data, the twist angle at the top per axial strain

can be deduced and plotted vs α (see Fig. 3). All deformations are

magnified twofold for clarity.

B. Results and discussion

Figure 1 shows the modulus of the displacement vec-

tor field (on a false-color scale) for uniaxial loading along

the negative z axis of a cuboid-shaped sample with volume

L × L × 2L. All results shown are within the linear elastic

regime, i.e., for axial strains <1%. We choose L = 500 μm

(see N = 1 in [7]), C11 = C22 = C33 (in standard Voigt nota-

tion [9]), C12 = C13 = C21 = C23 = C31 = C32, C44 = C55 =

C66 (all other elements of the elasticity tensor are zero), and

α = 3 GPa/m. The latter value has been chosen to match the

experiments (and hence also the results of the microstructure

calculations and those of Eringen continuum elasticity; cf.

[7]).

The results of Willis generalized linear Cauchy elasticity

in Fig. 1(c) are compared with those of micropolar Eringen

elasticity [7] in Fig. 1(b) and finite-element metamaterial

microstructure calculations [7] in Fig. 1(a). For the details

underlying Figs. 1(a) and 1(b), we refer the reader to the

extensive discussion in [7] and the corresponding supporting

online material. Obviously, Willis generalized linear Cauchy

elasticity, micropolar Eringen elasticity, and the finite-element

microstructure calculations exhibit the same qualitative be-

havior. When replacing α → −α, the direction of the twist

changes from clockwise to counterclockwise in Figs. 1(b)

and 1(c) (not depicted), corresponding to the behavior of the

mirror image of the three-dimensional (3D) microstructure

shown in Fig. 1(a).

In Fig. 2(a), the parameters are the same as in Fig. 1(c),

except that we consider the three choices (a) α = 3 GPa/m,

(b) α → 3.3 α, and (c) α → 33 α. In Fig. 2(b), the twist effect

is simply larger than that in Fig. 2(a). In Fig. 2(c), however,

unusual additional substructures appear in the displacement

field.

Figure 3 emphasizes essentially the same aspect as Fig. 2;

however, we do not depict displacement fields of a sample but

rather plot the calculated twist/strain (defined in Sec. III A)

versus the parameter α for fixed sample side length L. For

small values of α, the twist/strain increases monotonously.

214101-3
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FIG. 3. Twist/strain vs parameter α (lower horizontal scale) as

deduced from raw data such as the ones shown in Fig. 2. The dots

are calculated; the curve is a guide to the eye. Parameters are as

in Fig. 1(c). The upper horizontal scale shows the characteristic

length lc normalized to the sample side length L, lc
L

=
β/C44

L
= α L

C44
,

according to (15). Here, C44 is an element of the elasticity tensor in

Voigt notation, namely, the shear modulus C2323.

However, for larger values of α, we find an unusual non-

monotonous resonancelike behavior (compare [19]), which is

connected to the behavior shown in Fig. 2(c).

This behavior versus the parameter α for fixed sample

side length L is connected to the behavior versus L for fixed

α. Following Refs. [7,9], the effects beyond static linear

Cauchy elasticity should decrease with increasing L. More

specifically, the twist/strain should decrease proportionally

to the surface-to-volume ratio, i.e., decrease ∝1/L. What one

gets from (9) versus L for fixed α is the polar opposite of this

behavior. This can be seen as follows: If we replace the spatial

components xi → ζxi in (9), with some dimensionless scaling

factor ζ , the ratio of the second and first terms in (9) increases

by a factor ζ . This means that the effects beyond linear

Cauchy elasticity would increase with increasing sample side

length L if α was constant. We conclude that α must not

be considered as a constant material parameter, but rather as

an effective continuum-model parameter. We can equivalently

say that the tensor W can be constant and nonzero for a (very)

large homogeneous material, but it is zero in the limit of an

infinitely large homogeneous material.

To arrive at a meaningful material parameter β, we make

the ansatz

α =
β

L2
. (13)

The parameter β has SI units of Pa m. Thus, the ratio

lc =
β

C
(14)

has units of a length. Here, C is a nonzero element of the

elasticity tensor C or a combination of elements. As the twist

effect mainly changes the shape of the specimen but not its

volume, we choose the shear modulus C = C44 = C2323. The

length lc is obviously zero in the Cauchy limit of α = β = 0.

Therefore, it is tempting to interpret lc as a characteristic

length scale in the same spirit as characteristic length scales

in micropolar Eringen elasticity [9]. There, one gets several

different characteristic length scales, all of which are zero in

the Cauchy limit.

To test this ansatz for the characteristic length scale, we

depict as the upper horizontal scale in Fig. 3 the normalized

characteristic length lc/L, which follows from

lc

L
=

β/C44

L
= α

L

C44

. (15)

We find that nonmonotonous behavior in Fig. 3 occurs when

lc becomes comparable to or even exceeds the sample side

length L. Likewise, the characteristic length lc = 1275 μm

in Fig. 2(c) is also larger than the sample side length of

L = 500 μm, whereas lc is smaller by factor of 33 and 10,

respectively, in Figs. 3(a) and 3(b).

FIG. 4. (a) Twist/strain vs sample side length L normalized

by the characteristic length lc on a double-logarithmic scale. The

dependence on the parameter β is implicitly contained in this nor-

malization. The dashed straight line has a slope of −1, corresponding

to the expected asymptotic scaling of the twist angle ∝1/L for fixed

parameter β. (b) Same as in (a), but for the effective Young’s modulus

E on a semilogarithmic scale. All other parameters are as in Fig. 1(c).

The dots are calculated; the curves are guides to the eye.
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Finally, we study the dependence of the behavior on the

sample side length L for fixed parameter β and fixed elements

of the linear Cauchy elasticity tensor C (hence, fixed lc) in

Fig. 4. In Fig. 4(a), we plot the twist/strain versus sample side

length L on a double-logarithmic scale and in Fig. 4(b) the

effective Young’s modulus E versus L on a semilogarithmic

scale. The twist/strain in Fig. 4(a) decreases inversely propor-

tional to L in the limit L ≫ lc (compare dashed straight line).

The Young’s modulus in Fig. 4(b) initially increases until it

reaches a constant level for large values of L. Thereby, linear

Cauchy elasticity, for which the twist is zero and the Young’s

modulus is independent on sample side length, is recovered in

the large-sample limit of L → ∞ in Figs. 4(a) and 4(b)—as it

should.

This overall behavior is qualitatively closely similar to the

one which we have recently found in numerical calculations

on chiral micropolar Eringen elasticity [9] as well as in our

experiments on chiral three-dimensional metamaterials [7], all

of which have been performed under static conditions. How-

ever, the quantitative agreement with experiments is worse

for Willis elasticity than for Eringen elasticity. For example,

the effective Young’s modulus E versus sample side length

L increased by about a factor of ten in [7] before it reached

a constant value, whereas it only increases by about 10%

before it reaches a constant value in Fig. 4(b). Moreover, the

displacement field for the three-dimensional microstructure in

Fig. 1(a), which agrees quantitatively with Eringen elasticity

in Fig. 1(b), shows a somewhat more pronounced minimum

in the middle of the sample top facet for Willis elasticity in

Fig. 1(c).

IV. CONCLUSION

In conclusion, we have considered the static version of

a generalized form of linear Cauchy elasticity, the Willis

equations, for the case of three-dimensional homogeneous

chiral noncentrosymmetric cubic media, which have been

the subject of recently published experimental and numerical

work on mechanical metamaterials. We have found that this

form of generalized static linear Cauchy elasticity grasps the

quintessential qualitative features of recent experiments and

of chiral micropolar Eringen elasticity; however, with just

a single additional parameter. Under the same conditions,

Eringen elasticity comprises nine additional parameters with

respect to linear Cauchy elasticity, three of which directly

influence chiral effects.

Such nonuniqueness of effective medium models is com-

mon for advanced continuum descriptions of materials in

mechanics [34], but also in electromagnetism and optics. It

will be interesting to see in the future inasmuch as Willis elas-

ticity is able to describe more advanced static experiments or

aspects of dynamic wave propagation in experiments on three-

dimensional chiral mechanical metamaterials, and whether or

not distinct qualitative differences with respect to micropolar

Eringen elasticity arise.

ACKNOWLEDGMENTS

We thank Graeme W. Milton, Jensen Li, and Christian Kern

(KIT) for stimulating discussions. We acknowledge fund-

ing by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) under Germany’s Excellence Strategy

via the Excellence Cluster 3D Matter Made to Order (EXC-

2082 390761711), by the Carl Zeiss Foundation through

the “Carl-Zeiss-Focus@HEiKA”, by the Helmholtz program

“Science and Technology of Nanosystems” (STN), and by

the associated KIT project “Virtual Materials Design” (VIRT-

MAT). M.K. acknowledges support by the EIPHI Graduate

School (Contract No. ANR-17-EURE-0002) and the French

Investissements d’Avenir program, project ISITE-BFC (Con-

tract No. ANR-15-IDEX-03).

[1] B. Banerjee, An Introduction to Metamaterials and Waves in

Composites (Taylor and Francis, UK, 2011).

[2] A. Sommerfeld, Mechanics of Deformable Bodies, Lectures on

Theoretical Physics (Academic, Cambridge, MA, 1950) .

[3] A. Authier, International Tables for Crystallography Vol-

ume D: Physical Properties of Crystals (Springer, Dordrecht,

2003).

[4] G. W. Milton, The Theory of Composites (Cambridge University

Press, Cambridge, 2002).

[5] G. W. Milton, M. Milgrom, A. Welters, M. Cassier, and O.

Mattei, Extending the Theory of Composites to Other Areas of

Science (Bookbaby, United States, 2016).

[6] V. Laude, Phononic Crystals: Artificial Crystals for Sonic,

Acoustic, and Elastic Waves, De Gruyter Studies in Mathemat-

ical Physics (De Gruyter, Berlin, 2015).

[7] T. Frenzel, M. Kadic, and M. Wegener, Science 358, 1072

(2017).

[8] Z. Rueger and R. S. Lakes, Phys. Rev. Lett. 120, 065501

(2018).

[9] A. Eringen, Elastodynamics (Academic, Cambridge, MA,

1974), Vol. 2.

[10] D. Bigoni and W. J. Drugan, J. Appl. Mech. 74, 741 (2007).

[11] R. A. Toupin, Arch. Ration. Mech. Anal. 17, 85 (1964).

[12] P. Gudmundson, J. Mech. Phys. Solids 52, 1379 (2004).

[13] G. Futhazar, L. Le Marrec, and L. Rakotomanana-

Ravelonarivo, Arch. Appl. Mech. 84, 1339 (2014).

[14] L. Le Marrec and L. R. Rakotomanana, A continuous model for

the wave scattering by a bounded defective domain, in Mathe-

matical Modelling in Solid Mechanics, edited by F. dell’Isola,

M. Sofonea, and D. Steigmann (Springer, Singapore, 2017),

pp. 107–122.

[15] P. Seppecher, J.-J. Alibert, and F. Dell’Isola, J. Phys.: Conf. Ser.

319, 13 (2011).

[16] J. R. Willis, Wave Motion 3, 1 (1981).

[17] J. R. Willis, Elasticity theory of composites, in Mechanics

of Solids, edited by H. G. Hopkins and M. J. Sewell, The

Rodney Hill 60th anniversary (Pergamon Press, Oxford, 1982),

pp. 653–686.

214101-5

https://doi.org/10.1126/science.aao4640
https://doi.org/10.1126/science.aao4640
https://doi.org/10.1126/science.aao4640
https://doi.org/10.1126/science.aao4640
https://doi.org/10.1103/PhysRevLett.120.065501
https://doi.org/10.1103/PhysRevLett.120.065501
https://doi.org/10.1103/PhysRevLett.120.065501
https://doi.org/10.1103/PhysRevLett.120.065501
https://doi.org/10.1115/1.2711225
https://doi.org/10.1115/1.2711225
https://doi.org/10.1115/1.2711225
https://doi.org/10.1115/1.2711225
https://doi.org/10.1007/BF00253050
https://doi.org/10.1007/BF00253050
https://doi.org/10.1007/BF00253050
https://doi.org/10.1007/BF00253050
https://doi.org/10.1016/j.jmps.2003.11.002
https://doi.org/10.1016/j.jmps.2003.11.002
https://doi.org/10.1016/j.jmps.2003.11.002
https://doi.org/10.1016/j.jmps.2003.11.002
https://doi.org/10.1007/s00419-014-0873-7
https://doi.org/10.1007/s00419-014-0873-7
https://doi.org/10.1007/s00419-014-0873-7
https://doi.org/10.1007/s00419-014-0873-7
https://doi.org/10.1088/1742-6596/319/1/012018
https://doi.org/10.1088/1742-6596/319/1/012018
https://doi.org/10.1088/1742-6596/319/1/012018
https://doi.org/10.1088/1742-6596/319/1/012018
https://doi.org/10.1016/0165-2125(81)90008-1
https://doi.org/10.1016/0165-2125(81)90008-1
https://doi.org/10.1016/0165-2125(81)90008-1
https://doi.org/10.1016/0165-2125(81)90008-1


MUAMER KADIC et al. PHYSICAL REVIEW B 99, 214101 (2019)

[18] G. W. Milton, M. Briane, and J. R. Willis, New J. Phys. 8, 248

(2006).

[19] G. W. Milton and J. R. Willis, Proc. R. Soc. London A 463, 855

(2007).

[20] J. R. Willis, Mech. Mater. 41, 385 (2009).

[21] J. R. Willis, Proc. R. Soc. London A 467, 1865 (2011).

[22] S. Nemat-Nasser, J. R. Willis, A. Srivastava, and A. V.

Amirkhizi, Phys. Rev. B 83, 104103 (2011).

[23] H. Nassar, Q.-C. He, and N. Auffray, J. Mech. Phys. Solids 77,

158 (2015).

[24] Z. Xiang and R. Yao, J. Mech. Phys. Solids 87, 1 (2016).

[25] M. B. Muhlestein, C. F. Sieck, A. Alù, and M. R.

Haberman, Proc. Math. Phys. Eng. Sci. 472, 20160604

(2016).

[26] M. B. Muhlestein, C. F. Sieck, P. S. Wilson, and M. R.

Haberman, Nat. Commun. 8, 15625 (2017).

[27] L. Quan, Y. Ra’di, D. L. Sounas, and A. Alù, Phys. Rev. Lett.

120, 254301 (2018).

[28] Y. Liu, Z. Liang, J. Zhu, L. Xia, O. Mondain-Monval, T. Brunet,

A. Alù, and J. Li, Phys. Rev. X 9, 011040 (2019).

[29] J. R. Willis, Adv. Appl. Mech. 21, 1 (1981).

[30] A. N. Norris and A. L. Shuvalov, Wave Motion 48, 525 (2011).

[31] D. J. Steigmann, Z. Angew. Math. Phys. 58, 121 (2007).

[32] A. Yavari and A. Ozakin, Z. Angew. Math. Phys. 59, 1081

(2008).

[33] A. Yavari and A. Golgoon, Arch. Rational Mech. Anal., 1

(2019).

[34] S. Forest, Theor. Appl. Mech. 28, 113 (2002).

214101-6

https://doi.org/10.1088/1367-2630/8/10/248
https://doi.org/10.1088/1367-2630/8/10/248
https://doi.org/10.1088/1367-2630/8/10/248
https://doi.org/10.1088/1367-2630/8/10/248
https://doi.org/10.1098/rspa.2006.1795
https://doi.org/10.1098/rspa.2006.1795
https://doi.org/10.1098/rspa.2006.1795
https://doi.org/10.1098/rspa.2006.1795
https://doi.org/10.1016/j.mechmat.2009.01.010
https://doi.org/10.1016/j.mechmat.2009.01.010
https://doi.org/10.1016/j.mechmat.2009.01.010
https://doi.org/10.1016/j.mechmat.2009.01.010
https://doi.org/10.1098/rspa.2010.0620
https://doi.org/10.1098/rspa.2010.0620
https://doi.org/10.1098/rspa.2010.0620
https://doi.org/10.1098/rspa.2010.0620
https://doi.org/10.1103/PhysRevB.83.104103
https://doi.org/10.1103/PhysRevB.83.104103
https://doi.org/10.1103/PhysRevB.83.104103
https://doi.org/10.1103/PhysRevB.83.104103
https://doi.org/10.1016/j.jmps.2014.12.011
https://doi.org/10.1016/j.jmps.2014.12.011
https://doi.org/10.1016/j.jmps.2014.12.011
https://doi.org/10.1016/j.jmps.2014.12.011
https://doi.org/10.1016/j.jmps.2015.10.010
https://doi.org/10.1016/j.jmps.2015.10.010
https://doi.org/10.1016/j.jmps.2015.10.010
https://doi.org/10.1016/j.jmps.2015.10.010
https://doi.org/10.1098/rspa.2016.0604
https://doi.org/10.1098/rspa.2016.0604
https://doi.org/10.1098/rspa.2016.0604
https://doi.org/10.1098/rspa.2016.0604
https://doi.org/10.1038/ncomms15625
https://doi.org/10.1038/ncomms15625
https://doi.org/10.1038/ncomms15625
https://doi.org/10.1038/ncomms15625
https://doi.org/10.1103/PhysRevLett.120.254301
https://doi.org/10.1103/PhysRevLett.120.254301
https://doi.org/10.1103/PhysRevLett.120.254301
https://doi.org/10.1103/PhysRevLett.120.254301
https://doi.org/10.1103/PhysRevX.9.011040
https://doi.org/10.1103/PhysRevX.9.011040
https://doi.org/10.1103/PhysRevX.9.011040
https://doi.org/10.1103/PhysRevX.9.011040
https://doi.org/10.1016/S0065-2156(08)70330-2
https://doi.org/10.1016/S0065-2156(08)70330-2
https://doi.org/10.1016/S0065-2156(08)70330-2
https://doi.org/10.1016/S0065-2156(08)70330-2
https://doi.org/10.1016/j.wavemoti.2011.03.002
https://doi.org/10.1016/j.wavemoti.2011.03.002
https://doi.org/10.1016/j.wavemoti.2011.03.002
https://doi.org/10.1016/j.wavemoti.2011.03.002
https://doi.org/10.1007/s00033-006-6047-x
https://doi.org/10.1007/s00033-006-6047-x
https://doi.org/10.1007/s00033-006-6047-x
https://doi.org/10.1007/s00033-006-6047-x
https://doi.org/10.1007/s00033-007-7127-2
https://doi.org/10.1007/s00033-007-7127-2
https://doi.org/10.1007/s00033-007-7127-2
https://doi.org/10.1007/s00033-007-7127-2
https://doi.org/10.1007/s00205-019-01389-2
https://doi.org/10.1007/s00205-019-01389-2
https://doi.org/10.1007/s00205-019-01389-2
https://doi.org/10.2298/TAM0229113F
https://doi.org/10.2298/TAM0229113F
https://doi.org/10.2298/TAM0229113F
https://doi.org/10.2298/TAM0229113F



