
Static Dataflow with Access Patterns:
Semantics and Analysis

Arkadeb Ghosal*, Rhishikesh Limaye*, Kaushik Ravindran*, Stavros Tripakis**
Ankita Prasad*, Guoqiang Wang*, Trung N Tran*, Hugo Andrade*

* National Instruments Corp., Berkeley, CA, USA, {firstname.lastname}@ni.com
** University of California, Berkeley, CA, USA, stavros@eecs.berkeley.edu

ABSTRACT
Signal processing and multimedia applications are commonly
modeled using Static/Cyclo-Static Dataflow (SDF/CSDF)
models. SDF/CSDF explicitly specifies how much data is
produced and consumed per firing during computation. This
results in strong compile-time analyzability of many use-
ful execution properties such as deadlock absence, channel
boundedness, and throughput. However, SDF/CSDF is lim-
ited in its ability to capture how data is accessed in time.
Hence, using these models often leads to implementations
that are sub-optimal (i.e., use more resources than neces-
sary) or even incorrect (i.e., use insufficient resources). In
this work, we advance a new model called Static Dataflow
with Access Patterns (SDF-AP) that captures the timing of
data accesses (for both production and consumption). This
paper formalizes the semantics of SDF-AP, defines key prop-
erties governing model execution, and discusses algorithms
to check these properties under correctness and resource con-
straints. Results are presented to evaluate these analysis
algorithms on practical applications modeled by SDF-AP.

Categories and Subject Descriptors: C.3 [Special-
purpose and Application-based Systems]: Signal pro-
cessing systems
General Terms: Theory, Algorithms, Experimentation
Keywords: Dataflow, semantics, access patterns

1. INTRODUCTION
Static Dataflow (SDF) is a model of computation to spec-

ify, analyze, and implement multi-rate computations that
operate on infinite streams of data [13]. An SDF model
is represented as a directed graph of computational actors
interconnected by FIFO channels. The SDF semantics re-
quires that the number of tokens consumed and produced by
an actor per firing is fixed and pre-specified. This guarantees
decidability of key model properties: existence of deadlock-
free and memory-bounded infinite computation, through-
put, latency, and execution schedule [1, 13]. The expres-
siveness of the SDF model in naturally capturing stream-
ing applications, coupled with its strong compile-time pre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7 2012, San Francisco, Califiornia, USA
Copyright 2012 ACM 978-1-4503-11199-1/12/06 ...$10.00.

dictability properties, has made it popular in the domains of
multimedia, digital signal processing, and communications.

While the standard SDF model is untimed, it is a common
practice to associate worst-case execution time (WCET) mod-
els to analyze the timing behavior of applications [7, 12, 14,
15, 20]. These timing annotations enable static analysis of
SDF models and mapping solutions to specific platforms un-
der resource and performance constraints. Worst-case tim-
ing models have been applied to capture execution behavior
of SDF actors for software and hardware implementations.

However, these timing models suffer a key deficiency: they
lose information about the precise timing of consumption
and production of tokens by an actor during a firing cycle.
The problem is particularly evident when SDF models are
used to capture hardware implementations. Many hardware
IP blocks require that data tokens be delivered to them at
precisely specified clock cycles from the start of execution.
This loss of timing information in SDF models results in sub-
optimal analysis and implementations that conservatively
estimate the resources needed.

For example, consider a design connecting a producer P
to a consumer C. P produces 1 token per firing and exe-
cutes in 1 time unit, and C consumes 8 tokens per firing
and executes in 8 clock cycles. Suppose that the IP block
implementing C requires 8 tokens to be delivered in 8 con-
secutive cycles. Unfortunately, the SDF timing model is not
sufficiently expressive to capture this behavior. The seman-
tics of SDF assumes that an actor cannot start firing until
sufficient tokens are present at the inputs. As a result, if the
above example is modeled with SDF, C cannot start firing
until after P completes eight firings. Therefore, a buffer of
size at least 8 must be added between P and C; C may start
its execution only after the buffer has collected 8 tokens from
P . While this is a valid implementation, it is sub-optimal in
terms of allocation of buffer resources. In contrast, a better
implementation can exploit knowledge about the behavior
of C and determine that a buffer of size one is sufficient.

Cyclo-Static Dataflow (CSDF) [2] is a generalization of
SDF that appears to resolve the problem. CSDF “breaks” a
firing into finer-grained phases, and specifies consumptions
and productions of tokens for each phase. But CSDF still
relies on the same basic hypothesis as SDF, i.e., that an
actor will wait until sufficient tokens have accumulated at
the input channels before beginning a phase. Unfortunately,
this hypothesis violates requirements related to the precise
timing of token accesses. In the example above, C requires
that it receive 8 tokens in 8 consecutive clock cycles once
it commences firing. CSDF cannot capture this constraint
and as a result can lead to incorrect implementations [19].

656

stavros
Typewritten Text
At Design Automation Conference (DAC) 2012. Copyright ACM.

For example, consider an alternate producer P ′ with an ex-
ecution time of 2. Then a CSDF model would conclude that
a buffer of size 1 between P ′ and C is sufficient, but this
would violate the timing requirement of C.

It may be argued that the requirement of precise timing
of tokens is artificial, since actors can be stalled or turned
off. Actors implemented in software can easily be disabled
or context switched. For hardware IP blocks, there is typi-
cally a “clock enable” signal that regulates their execution.
Setting this signal to “false” freezes the actor when inputs
are unavailable. However, this solution is not satisfactory
in practical designs. The area overhead due to the enable
logic is undesirable. Also, any logic that regulates the clock
contributes additional delay to timing-critical paths. The
increased distribution of “clock enable” signals further ad-
versely impacts the achievable frequency. Hence, it is impor-
tant to capture precise timing of token accesses to generate
resource optimal implementations. Both SDF and CSDF
models are not equipped for this.

To remedy the expressiveness problems of SDF/CSDF, a
new model, called SDF with Access Patterns (SDF-AP), is
introduced informally in [19]. SDF-AP strikes a balance be-
tween the analyzability of SDF/CSDF while accurately cap-
turing the interface timing behavior. The latter is achieved
by specifying access patterns that capture the precise timing
behavior of token productions and consumptions. The orig-
inal motivation for SDF-AP comes from modeling hardware
IP blocks, where access patterns are precisely characterized
and presented as timing diagrams. Nevertheless, the tim-
ing extensions that access patterns provide are general and
applicable to actors implemented in software as well.

The goal of [19] is to justify that choosing the right model
is important for generating correct and non-defensive imple-
mentations from high level component abstractions. It infor-
mally introduces the SDF-AP model and advocates a gen-
eral methodology based on Finite State Machines to reason
about performance and resource trade-offs. However, [19]
does not define the semantics of the SDF-AP model. It also
does not develop analysis methods to reason about model
properties. This paper closes this gap. Our main contri-
butions are: (a) a formal definition of the SDF-AP model
with its operational semantics, (b) formal definitions of key
model properties, such as executability and throughput, (c)
algorithms for efficient static analysis of these properties,
and (d) case studies to evaluate these algorithms.

2. RELATED WORK
Real-time streaming applications are widely deployed on

embedded platforms. Model-based design is a well-tested
approach for the implementation of these systems. A com-
prehensive survey on concurrent models of computation can
be found in [11]. Prior research has shown that dataflow and
its variants are sufficiently expressive enough to capture the
task and data parallelism in streaming applications. SDF
and CSDF models enable compile time analysis of key exe-
cution properties, e.g., absence of deadlocks and consistency
of execution rates, via efficient algorithms [1,12,13]. Recent
variants like Heterochronous Dataflow (HDF) [6], Scenario
Aware Dataflow (SADF) [18], and Core Functional Dataflow
(CFDF) [7] extend SDF/CSDF with specifications for con-
trol. Design frameworks like Ptolemy-II [5], SDF3 [17], and
OpenDF [8] deliver hardware and software implementations.

Though SDF/CSDF models have many advantages, they

are limited in their ability to capture precise timing infor-
mation of data production and consumption. This is partic-
ularly evident when dataflow models are targeted for hard-
ware implementations. Prior efforts are conservative in their
implementation of the glue logic to stitch SDF actors in
hardware [4,8–10]. SDF-AP is introduced in [19] to remedy
that deficiency. Model properties like consistency, absence
of deadlock, bounded execution, and throughput need to be
checked before the model can be implemented. There are
existing techniques to check the properties for SDF/CSDF
models. However, they cannot be directly used for SDF-AP
models due to differences in semantics. In this paper, we
present the formal semantics of SDF-AP models and algo-
rithms to efficiently check key model properties.

3. SDF-AP: SYNTAX AND SEMANTICS
An SDF-AP model consists of actors connected over chan-

nels. Actors read tokens from incoming channels and write
to outgoing channels. Once an actor has fired, it consumes
(resp. produces) a fixed number of tokens from (resp. to) in-
put (resp. output) channels over the execution time. An
actor associates each channel with a pattern represented
as a binary word of length equal to the execution time of
the actor. The pattern denotes whether the actor reads
(resp. writes) a token or not from (resp. to) the incoming
(resp. outgoing) channel at a particular cycle in the execu-
tion. The access pattern can be provided by the user or
derived from the timing diagrams accompanying the docu-
mentation of the IP block [19]. Given the application do-
main and hardware implementation, we will restrict reading
and writing of at most one token per channel at any clock
transition. Nevertheless, the model semantics can be easily
generalized to allow multiple tokens to be read or written.

Fig. 1 shows an SDF-AP model with a build stream actor,
bs, which takes two input streams and merges them in one.
Actor bs is fed by two source actors i1 and i2: i1 generates
1 token every 2 cycles, and i2 generates 3 tokens every 4
cycles. At each firing, bs consumes 2 tokens produced by i1,
and 4 tokens produced by i2, and places them in a merged
stream of 6 tokens at the output (tokens from i1 preceding
those of i2). Actor bs is connected to a sink actor o. The
net token count and respective pattern are shown separated
by “:”, e.g., “3:1101” on c2 denotes that i2 produces 2 tokens
with the pattern 1101 on channel c2. Channels c1, c2, c3
connect i1 with bs, i2 with bs, and bs with o, respectively.

3.1 Syntax
An SDF-AP model is a pairM = (aset, cset), where aset

is a set of actors, and cset is a set of channels. For the exam-
ple in Fig. 1, aset = {bs, i1, i2, o}, and cset = {c1, c2, c3}.

Figure 1: SDF-AP model for build stream actor in-
teracting with two sources and one sink

An actor a ∈ aset is a tuple (ic, oc, it, ot, et, cp, pp) where
ic ⊆ cset (resp. oc ⊆ cset) is the set of input (resp. out-
put) channels of a, it (resp. ot) is a map it : ic → N (resp.

657

ot : oc → N) mapping each input (resp. output) channel to
the total number of tokens read from (resp. written to) that
channel per firing of a1, et ∈ N is the time in clock cycles it
takes to complete one firing of a, cp (resp. pp) is a map of
input (resp. output) channels to consumption (resp. produc-
tion) patterns. The pattern cp (resp. pp) maps each input
(resp. output) channel to a binary word of length et, i.e.,
cp : ic→ Bet and pp : oc→ Bet. The i-th letter of the word
is denoted as cp(c, i) (resp. pp(c, i)). The sum of the 1’s
in cp(c) (resp. pp(c)) equals the input (resp. output) token
count for the channel it(c) (resp. ot(c)). For source actors,
ic = ∅, it = cp = ∅2; for sink actors, oc = ∅, ot = pp = ∅.

A channel c ∈ cset is a unique id, and must appear exactly
once in the input channel set of an actor, and exactly once in
the output channel set of an actor. This ensures no dangling
channels and no non-determinism in channel access.

3.2 Semantics
The operational semantics of an SDF-AP model M =

(aset, cset) is defined as a state transition system. A state
of the system tracks the number of tokens on each chan-
nel, the set of running instances of each actor, and for each
instance, the number of clock cycles it has been executing.
Formally, a state s is a pair (γ, υ) where γ : cset → Z is
a channel quantity [16] (we allow negative values for token
counts, see below for the interpretation), and υ : aset →
MS(N+0×{w, r,⊥}) maps each actor to a multiset of pairs
of the form (η, κ) ∈ N+0×{w, r,⊥}. If υ(a) = ∅ then actor a
has no active (i.e., running) instances currently. Otherwise,
each pair (η, κ) ∈ υ(a) represents an active instance of a: η
denotes the number of clock cycles the instance has been ex-
ecuting, and κ is a flag denoting the stage the instance within
the current clock cycle. There are three possible stages: be-
ginning of clock cycle ⊥ (idle stage), reading r, and writing
w. The meaning will become clear in what follows.3 A state
s is called stable if ∀a ∈ aset, ∀(·, κ) ∈ υ(a), κ = ⊥. The
initial state s0 = (γ0, υ0) where ∀a ∈ aset, υ0(a) = ∅, and
γ0 maps each channel to a given number of initial tokens.
The initial state (which gets modified with different set of
initial tokens) determines the behavior of the model.

Following [16], we define operations on channel quan-
tities. If γ1, γ2 are channel maps from sets of channels
cset1, cset2, with cset2 ⊆ cset1, then γ2 � γ1 if ∀c ∈ cset2,
cset2(c) ≤ cset1(c). The operation γ1 + γ2 is defined as
pointwise addition. If γ2 � γ1, then the operation γ1− γ2 is
defined as pointwise subtraction. We will use γ = 0 to de-
note that token counts on all channels are 0, γ ≥ 0 to denote
that all channels map to N+0, and γ ≤ β where β ∈ N+0

to denote that channel counts are bounded by β. For ac-
tor a and i ∈ {1, ..., et(a)}, we define the following channel
quantities: γRa,i (resp. γWa,i) maps every input (resp. output)
channel c of a to cp(c, i) (resp. pp(c, i)). For source actors,
γRa,i = 0 and for sink actors, γWa,i = 0, for all i.

A transition δ = (s, l, s′) of M from state s = (γ, υ) to

1We denote integers by Z, natural numbers (without 0) by
N, N ∪ {0} by N+0, and binary numbers by B = {0, 1}.
2∅ and ∅ denote empty set and empty mapping, respectively.
3 The definition of state is inspired by the definition used
in [16], but differs in several respects. In particular, the flag
κ is necessary to track read and write activities at each clock
cycle. This is not an issue in [16] since in CSDF reads and
writes occur at the beginning and at the end of firings and
not at arbitrary times during a firing, as in SDF-AP.

state s′ = (γ′, υ′) labeled with label l, also denoted s
l→ s′,

can be any one of those shown in Table 1. s′ is called a
successor of s. A transition labeled begin(a) adds a new in-
stance of a to the set of active actor instances. The clock
counter of the new instance is initialized to 0 and the in-
stance is idle (i.e., not ready to read or write). A transition
labeled end(a) removes an instance of a from the set of ac-
tive instances, provided the instance has finished its firing,
i.e., its clock counter has reached et(a). A transition la-
beled clock marks the beginning of a clock cycle: all active
actor instances increase their clock counter by 1 and move
from the idle stage ⊥ to the reading stage r. A transition la-
beled read(a) (resp. write(a)) corresponds to a reading from
(resp. writing to) its input (resp. output) channels. Once
it has read, an actor instance moves from reading stage r to
writing stage w. Once it has written, it moves back to stage
⊥, until the beginning of the next clock cycle.

Note that read transitions may result in channel capacities
becoming negative. This is because no precondition on hav-
ing enough tokens in the channel is imposed for taking a read
transition. Similarly, nothing prevents writing, which means
that no a-priori bounds on channel size are imposed. This
approach makes the semantics easier to formalize. We iden-
tify below situations where a negative token count models
non-executable vs. transient behaviors as well as distinguish
between bounded and unbounded executability.

Also note that reads and writes occur asynchronously be-
tween actor instances (i.e., different instances interleave)
while for a given instance, the read always occurs before the
write. The latter is done to model causality where a consum-
ing actor needs to wait till a producing actor places a token
in the channel. A synchronous semantics is also possible,
where all actors read simultaneously, then write simultane-
ously, to complete a clock cycle. The synchronous semantics
results in far fewer transitions than the asynchronous seman-
tics. However, the synchronous semantics does not allow to
distinguish between non-executable and certain executable
models (see discussion on Figure 2 in Section 4).

An execution trace τ is an infinite sequence of transitions

τ = s0
l1→ s1

l2→ s2 · · · , where s0 is the initial state. Any sub-

sequence τ ′ = si
li+1→ · · · ln→ sn for some i, n ∈ N+0 and i ≤ n

is a sub-trace. The set of traces ofM is denoted traces(M).
The set of states visited along a trace τ is denoted states(τ).
Refer to Supplemental Section S1 for traces from the run-
ning example. A state s is called reachable from initial state
s0 if s ∈ states(τ) for some trace τ . Note that our seman-
tics guarantees that any reachable state s has a successor
state s′. State s is a post clock transition (PCT) state if

s′
clock→ s for some state s′. Given a PCT state s, a stable

state s′ is a next stable state of s, denoted NSS(s), if there

exists a sub-trace τ ′ = s
l1→ · · · ln→ s′ (for some n ∈ N) such

that none of the labels l1, l2 · · · ln are of the types begin(a),
end(a) or clock for all actors a ∈ aset. Our semantics guar-
antees that for any PCT state s there is a unique next stable
state NSS(s) (refer to Supplemental Section S2 for formal
reasoning). A PCT state s corresponds to the beginning of
a clock cycle, and NSS(s) corresponds to the end of that
cycle. If s = (·, υ) is a PCT state where ∀a ∈ aset, υ(a) = ∅,
then s is a stable state, and is a next stable state of itself.
This corresponds to a situation when no actor has fired, and
hence no read transition is enabled.

Given a trace τ , all(τ) is the set of traces generated by

658

Table 1: State Transitions (transition δ = s
l→ s′, s = (γ, υ), s′ = (γ′, υ′))

Type Label l Precondition Action

begin fire begin(a) s is stable υ′(a) = υ(a)] {(0,⊥)}, υ′(a′ 6= a) = υ(a′)
end fire end(a) s is stable, and (et(a),⊥) ∈ υ(a) υ′(a) = υ(a) \ {(et(a),⊥)}, υ′(a′ 6= a) = υ(a′)
clock clock

s is stable @(γ, υ)
end(a)−→

∀a ∈ aset, if υ(a) = ∅, then υ′(a) = ∅
else each (i,⊥) ∈ υ(a) is updated to (i+ 1, r) ∈ υ′(a)

read read(a) (i, r) ∈ υ(a) γ′ = γ − γRa,i, υ′(a) = υ(a) \ {(i, r)}] {(i, w)}, υ′(a′ 6= a) = υ(a′)

write write(a) (i, r) ∈ υ(a) γ′ = γ + γWa,i, υ
′(a) = υ(a) \ {(i, w)}] {(i,⊥)}, υ′(a′ 6= a) = υ(a′)

model M = (aset, cset), actors a, a′ ∈ aset, and] and \ denote multiset union and difference

combining τ with all possible sub-traces between all the PCT
states of τ and their corresponding NSS states. all(τ) can
be seen as a set of traces, but also as a transition system,
which is a part of the transition system of the model. The
set of states in all(τ) is denoted as states(all(τ)).

SDF-AP actors are auto-concurrent, i.e., multiple in-
stances of an actor can execute simultaneously. However
this may not be feasible in practice due to restrictions like
finite resources, IP block properties etc. Such constraints are
captured through initiation interval ii ∈ N+0 which specifies
the minimum time between two firings of an actor. If ii ≥ et,
then actor execution cannot be concurrent; otherwise actors
can execute in parallel. If ii is specified for an actor, then
enabling condition of a begin fire transition should check
that the state is stable, and ensure that a minimum of ii
clock cycles has passed after the latest firing of the actor.

4. MODEL PROPERTIES
Interesting properties for standard SDF/CSDF models

are deadlock/livelock-freedom (can the model execute with
some/all actors firing infinitely often?), boundedness (can
the model execute forever with finite buffers?), etc. In this
section we define properties similar in spirit for SDF-AP.

Definition 4.1. A trace τ is live if both
begin(a)−→ ∀a ∈ aset

and
clock−→ appear infinitely often in τ .

The semantics of SDF-AP allows token counts to be neg-
ative. Hence, every model has live traces. In reality buffers
cannot have negative token count. However, there is an in-
teresting situation where a trace models an implementable
behavior, even though the trace visits states with negative
token counts. Consider a channel c whose token count be-
comes −1 between a PCT state s and NSS(s). This implies
a situation c is empty and an actor writes to c while another
actor reads from c at the same clock cycle. If the read hap-
pens before the write (our asynchronous semantics allows
that) c will have a (transient) negative token count of −1.
This scenario can however be implemented with a fast buffer
that allows writing and reading a token in the same cycle. A
model that can be executed without a fast buffer is strongly
executable, otherwise, it is weakly executable.

Definition 4.2. An SDF-AP model M is weakly exe-
cutable if there exists a live trace τ ∈ traces(M) such
that ∀s = (γ, ·) ∈ states(τ), γ ≥ 0. M is strongly exe-
cutable if there exists a live trace τ ∈ traces(M) such that
∀s = (γ, ·) ∈ states(all(τ)), γ ≥ 0.

We distinguish between executability and bounded exe-
cutability. The former only captures problems of negative
token counts (i.e., deadlocks or livelocks in standard SD-
F/CSDF parlance). Bounded executability is stronger and
requires in addition ability to execute with bounded buffers.

Definition 4.3. An SDF-AP model M is bounded
weakly (resp. strongly) executable if ∃β ∈ N+0 and
live trace τ such that (1) M is weakly (resp. strongly)
executable with respect to τ , and (2) ∀s ∈ states(τ)
(resp. states(all(τ))), γ(s) ≤ β.

Figure 2: Liveness, Executability and Boundedness

Fig. 2(a) is not executable as any trace generated will al-
ways have negative token counts on channels. Note that the
synchronous semantics would be unable to detect the dead-
lock, as the channel counts are 0 at all stable states. With
an initial token in one of the channels (Fig. 2(b)) the model
is strongly executable. Similarly Fig. 2(c) is not executable.
However with a token on channel c65, the model (Fig. 2(d))
is weakly executable for the following reason. Consider a
cycle when a5 fires (with the token from c65) and a6 is idle;
a5 consumes 1 token and produces 1 token, i.e., token count
on c65 and c56 are 0 and 1, respectively. In the next cycle
a5 can continue executing as it does not need any token, and
a6 starts firing by consuming the token from c56; at the end
of the cycle, token count on c65 and c56 are 1 and 0, respec-
tively. In the following cycle, a5 consumes 1 token from c65,
and produces 1 token on c56. Actor a6 (in the second cycle of
its execution) consumes the token and continues execution.
Note that this scenario is possible as the token produced by
a5 can be consumed by a6 in the same cycle thus making the
model weakly executable. Fig. 2(e) is strongly executable as
a7 has execution time of 1, and hence can wait indefinitely
between firings until required amount of token has been gen-
erated in the incoming channel. Fig. 2(b), (d) and (e) are
bounded. Fig. 2(f) is strongly executable but not bounded.

We define throughput for bounded executable traces and
models. Throughput Γ(M, a, τ) of an actor a, for a bounded
executable trace τ of a modelM, is the average rate of firing
of the actor a in τ . In a model, one is typically interested
in the throughput of certain actors, e.g., certain sources or
sinks. We assume that a is such a fixed actor for given model
M, and we denote Γ(M, τ) = Γ(M, a, τ) to be the through-
put of the model for the trace τ . The optimal throughput
of the model is then Γ(M) = maxτ∈T{Γ(M, τ)}, where T
is the set of all bounded executable traces of the model.

659

5. ALGORITHMS FOR STATIC ANALYSIS
We now show that bounded strong executability is decid-

able by providing algorithms to check the property. As we
are concerned with strong executability, synchronous seman-
tics suffice, with the benefit of making analysis efficient.

5.1 Boundedness
A model is bounded if it can be executed without termi-

nation using buffers with finite capacity. In SDF models,
bounded execution is verified by proving that the model is
sample rate consistent [13]. An SDF model is sample rate
consistent if there exists a fixed non-zero number of firings
for each actor, called the repetitions vector, such that exe-
cuting these firings reverts the model to its original state.

The concept of sample rate consistency can be applied
to check boundedness of SDF-AP models. If the underlying
SDF model is sample rate consistent, then there exists a non-
zero repetitions vector r : aset→ N such that the number of
tokens produced and consumed on each channel is balanced,
i.e. ∀c ∈ cset, r(a)ot(c) = r(a′)it(c), where a and a′ are the
producing and consuming actors of c. The repetitions vector
provides a recipe for a non-terminating periodic execution
of the SDF-AP model in bounded memory.

5.2 Bounded Executability
The concept of bounded executability can be translated to

the model being bounded and deadlock free. An SDF model
is deadlock free if it can be executed without interruption for
one full iteration (in which each actor fires as many times as
specified in the repetitions vector). The algorithmic solution
is to compute a self timed schedule for one iteration (in which
an actor fires as soon as all its input tokens are available) [1].

However, for SDF-AP models, the underlying SDF being
deadlock free is a sufficient but not necessary condition. For
SDF-AP models, it may be necessary to fire an actor before
all tokens are available. Consider the SDF-AP model in
Fig. 2(d). The underlying SDF model is deadlocked. But
in the SDF-AP model, a5, which has a consumption access
pattern of [101], can begin firing and consume the initial
token. Hence, the SDF-AP model is bounded executable
though the underlying SDF model is deadlocked.

We formalize the problem of checking bounded executabil-
ity of SDF-AP models. The objective is to determine
start times for actor firings that respect data dependence
and access patterns. Let r be the repetitions vector of
a bounded SDF-AP model M. An actor a must pro-
duce r(a)ot(c) tokens on output channel c ∈ oc in one it-
eration. For each token, we associate a firing index fp
and time offset op to characterize when it is produced:
∀a ∈ aset, c ∈ oc(a), n ∈ N, fp(a, c, n) = dn/ot(c)e,
and op(a, c, n) = θ(pp(c), (n mod ot(c)) + 1), where θ :
{pp(c)} × {1..ot(c)} → N+0 is the offset from the start
of a firing when a token is produced. E.g., given pattern
pp = [11001] for an actor that produces 3 tokens in 5 cycles,
θ(pp, 1) = 0, θ(pp, 2) = 1, θ(pp, 3) = 4. We similarly char-
acterize the firing index fc(a, c, n) and offset oc(a, c, n) at
which a token on an input channel is consumed by substi-
tuting ot(c) by it(c) and pp(c) by cp(c) in the prior equations.

We present a constraint system to determine if an SDF-
AP model is bounded executable. The variables are the
start times of actor firings: x(a, i) ∈ Z, ∀a ∈ aset, ∀i ∈
{1 . . . r(a)}. The dependencies in start times are encoded as

(γ0(c) is the number of initial tokens on channel c):

∀c ∈ cset, ∀n ∈ {γ0(c) + 1, . . . , r(a)ot(c)}
x(a, fp(a, c, n− γ0(c))) + op(a, c, n) + 1 ≤

x(a′, fc(a′, c, n)) + oc(a′, c, n)

These constraints are all of the form x1 − x2 ≤ k, where
x1 and x2 are variables and k is a constant. Such a sys-
tem of difference constraints can be solved by encoding it as
a problem of finding shortest paths in a weighted directed
graph [3]. The Bellman-Ford algorithm is applied to solve
the shortest path problem. Two outcomes are possible: (a)
Bellman-Ford returns the delay of the shortest path to each
vertex, or (b) Bellman-Ford detects a negative cycle proving
that the constraint system is infeasible. Outcome (a) cor-
responds to the SDF-AP model being bounded executable.
The shortest path delays correspond to valid start times for
all actor firings in one iteration. Outcome (b) proves that the
SDF-AP model is not bounded executable. Thus, this trans-
lation to a well-known graph theoretic problem provides an
effective mechanism to check bounded executability.

The number of constraints is equal to the total number of
firings in one iteration, which is exponential in the worst case
in the number of actors in the model. However, the problem
of checking whether an SDF model deadlocks also incurs
the same complexity [12]. As our experiments show, this is
a feasible solution method for practical SDF-AP models.

5.3 Throughput and Buffer Sizing
We address the problem of checking if a bounded ex-

ecutable SDF-AP model meets a specified throughput Γ.
The constraint formulation can be extended to solve this
problem. Intuitively, the throughput constraint is an upper
bound on the time between successive firings of an actor.
This can be expressed as a difference equation of the form
x(a, i+1)−x(a, i) ≤ 1/Γ. The constraint system can still be
solved as a shortest path problem. The optimal throughput
of the model can be computed by a binary search over the
range of feasible values for Γ.

Further, the constraint formulation can be repeatedly ap-
plied explore buffer sizes for channels to meet a specified
throughput. The buffer size of a channel can be encoded as
a back edge with initial tokens corresponding to the size [16].
The solution approach is a search algorithm in which an
outer loop fixes buffer sizes and the constraint formulation
is analyzed to check throughput of each configuration. One
direction of future work is to find efficient heuristics to guide
exploration of buffer sizes for SDF-AP models.

6. EXPERIMENTAL RESULTS
We evaluate the benefits of the SDF-AP model on several

streaming applications (see Table 2). The first seven appli-
cations are SDF models of realistic FPGA implementations
consisting of streaming hardware IP blocks. We compute the
access patterns for the IP blocks from the cycle-level timing
information in their datasheets. The other applications are
benchmarks from the SDF3 [17] analysis tool. For our exper-
iments, we choose different amounts of buffer space for each
application, and determine throughput (an average rate of
firing of the actors) and latency (total duration of a single
iteration of the model) using: (1) traditional SDF analysis
using eager, self-timed symbolic simulation [16], and (2) our
SDF-AP analysis using difference constraints.

660

Table 2: Throughput and latency analysis for different applications for given buffer spaces

Name
#Actors, Firings/ Optimal Thro- Buffer Throughput (Hz) Latency (µsec) Run-time (seconds)

#Channels Iteration ughput(Hz) Space SDF SDF-AP SDF SDF-AP SDF SDF-AP

OFDM Tx 2msps 11, 14 585 833
14210 496 833 2051 1251 0.86 0.16
15760 833 833 1314 1249 0.70 0.14

OFDM Tx 5msps 11, 14 585 2083
14210 783 2083 1309 537 0.70 0.11
17928 2083 2083 594 535 0.67 0.11

OFDM Tx 25msps 9, 12 6723 6250
13858 1590 6250 682 205 0.99 0.23
27294 6250 6250 282 203 0.97 0.22

OFDM Rx Full 46, 66 107054 1667
8350 390 422 2684 2362 40.18 378.9
52716 1437 1573 760 699 39.65 308.9
53584 1437 1667 734 697 39.85 305.65

OFDM Tx Full 17, 22 40400 1667 3572 510 1667 1994 658 9.69 25.29
ZeroPad 600 4, 4 2 48804 7 - 48804 - 20 0.01 0.003

Van de Beek 19, 28 28164 39032

12820 662 685 1510 1480 7.78 54.30
21059 36141 39032 77 52 6.39 0.32
12059 - 39032 - 52 0.18 0.34
11112 - - - - 0.15 11.25

MP3Decoder 14, 18 911 27
9264 17 27 66103 37017 0.16 0.28
10500 27 27 54344 37497 0.15 0.27

H263Decoder 4, 3 1783 15
596 14 15 68243 64831 0.15 0.01
600 15 15 65361 65361 0.12 0.01

H263Encoder 5, 5 201 120
299 54 120 18548 8347 0.02 0.03
301 81 120 12409 8314 0.02 0.05

Table 2 summarizes the results. For each model, we spec-
ify the number of actors, channels, firings per iteration, and
optimal throughput (assuming unbounded buffers). The
throughput is relative to a sink actor which has a repetition
count of one. Then for each model, throughput and latency
analysis is done by bounding the buffer space. Rest of the
columns compare throughput, latency and CPU run-time
for the two models. We observe that in all cases SDF-AP
models have higher throughput and lower latency. In two
cases, the SDF model is deadlocked (denoted by“-”), though
the SDF-AP model is not.

While run-time for a majority of examples is better for
the SDF-AP model, there are instances for which the run-
time is worse than the underlying SDF model. The SDF-AP
analysis uses a novel algorithmic method based on difference
constraints, which can be further optimized for better per-
formance. Independent of how efficiently SDF-AP can be
analyzed, the main value lies in its expressiveness which al-
lows to obtain better throughput and latency than SDF.

7. CONCLUSIONS
The SDF-AP model aims to strike a balance between the

analyzability of SDF-like models while accurately capturing
the interface timing behavior by including access patterns.
In this paper, we formalize the SDF-AP model, discuss its
operational semantics, and define executability and bound-
edness properties. We also present algorithms to check these
properties. The experimental results validate their perfor-
mance. As future work, we will develop an analysis frame-
work to automatically reason about these properties, and
further investigate the effectiveness of SDF-AP as an ab-
straction for hardware synthesis.

8. REFERENCES
[1] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Dataflow

Graphs. Kluwer Academic Press, Norwell, MA, 1996.

[2] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete.
Cyclo-static data flow. In IEEE Intl. Conf. Acoustics, Speech,
and Signal Processing, 1995.

[3] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001.

[4] M. Edwards and P. Green. The Implementation of Synchronous
Dataflow Graphs Using Reconfigurable Hardware. In FPL, 00.

[5] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong. Taming Heterogeneity
- The Ptolemy Approach. Proc. of IEEE, 91(1):127–144, 2003.

[6] A. Girault, B. Lee, and E. Lee. Hierarchical finite state
machines with multiple concurrency models. IEEE Trans.
Computer-Aided Design, 18(6):742–760, 1999.

[7] C.-J. Hsu, M.-Y. Ko, and S. S. Bhattacharyya. Software
Synthesis from the Dataflow Interchange Format. In Intl.
Worksop on Software and Compilers for Embedded
Processors, 2005.

[8] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier,
M. Wipliez, and M. Raulet. Synthesizing hardware from
dataflow programs. J. Signal Process. Syst., 2009.

[9] H. Jung, H. Yang, and S. Ha. Optimized RTL Code Generation
from Coarse-Grain Dataflow Specification for Fast HW/SW
Cosynthesis. J. Signal Process. Syst., 52(1):13–34, 2008.

[10] R. Lauwereins, M. Engels, M. Adé, and J. A. Peperstraete.
Grape-II: A System-Level Prototyping Environment for DSP
Applications. Computer, 28(2):35–43, 1995.

[11] E. A. Lee. Concurrent models of computation for embedded
software. Technical Report UCB/ERL M05/2, EECS
Department, University of California, Berkeley, Jan 2005.

[12] E. A. Lee and D. G. Messerschmitt. Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Processing.
IEEE Trans. on Computers, 36(1):24–35, 1987.

[13] E. A. Lee and D. G. Messerschmitt. Synchronous Data Flow.
Proc. of the IEEE, 75(9):1235–1245, 1987.

[14] O. M. Moreira and M. J. G. Bekooij. Self-Timed Scheduling
Analysis for Real-Time Applications. EURASIP Journal on
Advances in Signal Processing, 2007(83710):1–15, April 2007.

[15] P. Poplavko, T. Basten, M. Bekooij, J. van Meerbergen, and
B. Mesman. Task-level Timing Models for Guaranteed
Performance in Multiprocessor Networks-on-Chip. In CASES,
2003.

[16] S. Stuijk, M. Geilen, and T. Basten. Throughput-buffering
trade-off exploration for cyclo-static and synchronous dataflow
graphs. IEEE Trans. Computers, 57(10):1331 –1345, 2008.

[17] S. Stuijk, M. C. Geilen, and T. Basten. SDF3: SDF For Free.
In Proc. of ACSD, 2006.

[18] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten,
S. V. Gheorghita, and S. Stuijk. A scenario-aware data flow
model for combined long-run average and worst-case
performance analysis. In Proc. of MEMOCODE, 2006.

[19] S. Tripakis, H. Andrade, A. Ghosal, R. Limaye, K. Ravindran,
G. Wang, G. Yang, J. Kornerup, and I. Wong. Correct and
non-defensive glue design using abstract models. In Proc. of
the CODES+ISSS, 2011.

[20] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit. Efficient
Computation of Buffer Capacities for Cyclo-Static Dataflow
Graphs. In Proc. of DAC, 2007.

661

S1: Supplemental Section 1
The SDF-AP model M of the example introduced in Sec-
tion 3 is M = (aset, cset) where aset = {i1, i2, bs, o} and
cset = {c1, c2, c3}. The actors are defined as follows:

• i1 = (∅, {c1},∅, {c1 7→ 1}, 2,∅, {c1 7→ 01})
• i2 = (∅, {c2},∅, {c2 7→ 3}, 4,∅, {c2 7→ 1101})
• bs = ({c1, c2}, {c3}, {c1 7→ 2, c2 7→ 4}, {c3 7→

6}, 6, {c1 7→ 110000, c2 7→ 001111}, {c3 7→ 111111})
• o = ({c3}, ∅, {c3 7→ 6},∅, 6, {c3 7→ 111111},∅)

In the running example, there are no initial tokens. So
the initial state s0 = (γ0, υ0) where γ0 = ({c1 7→ 0, c2 7→
0, c3 7→ 0}, and υ0 = {i1 7→ ∅, i2 7→ ∅, bs 7→ ∅, o 7→ ∅}).

Figure 3 shows a possible sub-trace with one complete fir-
ing of actor i1. The start state remains the same as above.
For the rest of the states, only the token count for c0 and the
instance information for i1 change; hence only those values
have been shown. The trace starts with a begin(i1) tran-
sition which adds one instance of actor i1 to the instance
information in state s1. A clock transition updates the in-
stance of i1 to read stage. i1 being a source actor, no token
is consumed, and the read transition between states s2 and
s3 does not change token counts. A write transition for i1
from state s3 does not change token count as the output
pattern for i1 is 01, and one clock cycle has passed after the
begin fire transition. A clock transition from s4 increases
the execution time info for running instance of i1 to 2. A
read transition from s5 does not change any token count,
but a write transition from s6 produces one token on chan-
nel c1, and the token count for the channel is updated to 1.
An end transition at state s7 removes the running instance
of i1. Figure 4 shows a possible sub-trace where both i1
and i2 fires. The start state s0 remains the same. In the
remaining states, only the token counts for c0 and c1, and
the instances for i1 and i2 change.

S2: Supplemental Section 2
Lemma 8.1. Any reachable state has a successor state.

Proof. Consider a reachable state s which does not have
a successor state. Given that s is reachable, there must

be a transition s′′
l→ s for some transition label l. If s is

stable (i.e., either l = begin(a)|end(a) for some a ∈ aset,
or l = clock but none of the actors are executing, or
l = write(a) with no further write transitions possible), then
a begin fire transition, or an end fire transition (if precondi-
tion is met), or a clock transition (if no end transitions are
enabled) are possible from state s. If l = read(a)|write(a)
and s is unstable, then at least one read or write transi-
tion is enabled at s; if s is stable, then see above. Hence at
least one transition is enabled at s, and thus s must have a
successor state.

Theorem 8.2. For any PCT state s, NSS(s) is unique.

Proof. Let PCT state s = (γ, υ) has multiple next stable
states. The possible scenarios are discussed below.

Scenario 1 : If ∀a ∈ aset, υ(a) = ∅, then s is a NSS(s) by
definition. Hence NSS(s) is unique for this scenario.

Scenario 2 : If υ(a) = {(e, r)} (e ∈ N), and ∀a′ ∈ aset \
{a}, υ(a′) = ∅, then a possible sub trace from s is τ ′ =

s
read(a)→ s′

write(a)→ s′′. The first stable state in the trace is

s′′ and is NSS(s). There are no other transitions possible
for s and s′. Hence NSS(s) is unique for this scenario.
Without loss of generality, the same argument can be made
for any other actor a′ ∈ aset \ {a}.

Scenario 3 : If υ(a) = {(e, r), (e′, r)} (e, e′ ∈ N), and
∀a′ ∈ aset \ {a}, υ(a′) = ∅, there are several possible sub
traces starting from s. We will first consider the traces
where all read transitions precede all the write transitions.

Consider the trace τ : s
read(a)→ s1 = (γ1, υ1)

read(a)→ s2 =

(γ2, υ2)
write(a)→ s3 = (γ3, υ3)

write(a)→ s4 = (γ4, υ4) where
υ1(a) = {(e, w), (e′, r)}, υ2(a) = {(e, w), (e′, w)}, υ3(a) =
{(e,⊥), (e′, w)}, and υ1(a) = {(e,⊥), (e′,⊥)}. The channel
quantity is computed as γ4 = γ + γRa,e + γRa,e′ − γWa,e − γWa,e′ .
The states s1, s2, s3 are unstable, and s4 is a NSS(s). Note
that different order of the two reads and the two writes (but
all reads preceding all writes) will lead to three other traces
starting from s; all of which will have three unstable states
(excluding s) and one stable state at the end. The value
of υ in the stable states will be identical to υ4. And given
that ordering of addition and subtraction does not matter,
the channel quantities for the stable states will be identi-
cal to that of γ4. Next we will consider the traces where the
reads and writes are interspersed. Without loss of generality,

consider the trace τ ′ : s
read(a)→ s′1 = (γ′

1, υ
′
1)

write(a)→ s′2 =

(γ′
2, υ

′
2)

read(a)→ s′3 = (γ′
3, υ

′
3)

write(a)→ s′4 = (γ′
4, υ

′
4) where

υ′
1(a) = {(e, w), (e′, r)}, υ′

2(a) = {(e,⊥), (e′, r)}, υ′
3(a) =

{(e,⊥), (e′, w)}, and υ′
4(a) = {(e,⊥), (e′,⊥)}. The channel

quantity is computed as γ′
4 = γ + γRa,e − γWa,e + γRa,e′ − γWa,e′ .

The states s′1, s
′
2, s

′
3 are unstable, and s′4 is a NSS(s). Using

the same logic as above, s′4 = s4. Note that if the order of
the read-write combination is changed, there will be a new
sub trace with three unstable state followed by a stable state.
However the value of channel quantity and execution map
at the unstable state will be identical to s′4 and thus to s4.
Hence NSS(s) is unique under this scenario, but there are
many possible sub traces between the states s and NSS(s).
The argument remains the same, if more than two instances
of the actor is executing, or actor a is replaced by any other
actor a′ ∈ aset \ {a}.

Scenario 4 : If a, a′ ∈ aset, υ(a) = {(e, r)}, υ(a′) = (e′, r)}
(e, e′ ∈ N), and ∀a′′ ∈ aset \ {a, a′}, υ(a′′) = ∅, then the
argument above can be extended to show that there are
multiple possible sub traces starting from s. In each such sub
trace, there are three unstable states (excluding s) followed
by a stable state. The four states are generated by two read
transitions and the two corresponding write transitions. The
transitions can be interspersed in any order, but the channel
quantity and the execution map would be identical for the
stable state along all of the sub traces implying that NSS(s)
is unique for this scenario.

The arguments discussed for the last three scenarios can
be extended for arbitrary number of active actors with ar-
bitrary number of instances.

Corollary 8.3. For a trace τ , the set of stable states of
τ is identical to the set of stable states in all(τ).

Proof. Every PCT state s has an unique NSS(s)
(Lemma 3.3). This implies that generating sub traces be-
tween s and NSS(s) do not affect any state before s or any
state after NSS(s). States on sub traces between s and
NSS(s) are all unstable. Hence generating the sub traces
neither adds nor removes any stable state.

662

Figure 3: A sub trace with one complete firing of actor i1

Figure 4: A sub trace where actors i1 and i2 fire

663

