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Abstract – In this paper, strain gradient theory is used in developing a mathematical model based on
classical flexural Kirchhoff plate theory that can predict static response of rectangular micro-plates. The
result of this new model is a sixth order differential equation. Order of differential terms in Galerkin
weak form of the equation is reduced so that C2 hierarchical p-version finite elements with second order
global smoothness can be used to solve the problem. With different boundary conditions, the computed
deflection distribution of micro-plates is compared with those of the classical theory, in which length
scale parameters are not present. A series of studies have revealed that when length scale parameters
are considered, deflection of a rectangular plate decreases with increasing the length scale effect; in other
words micro plates exhibit more rigidity than what is predicted by the classic model. Here, deflections are
normalized with respect to results obtained from classical plate theory. Comparison of maximum deflection
values obtained from the extended model for micro plates with those available from the classic plate model
indicates that classical theory overestimates displacement values and the largest error is observed for square
micro plates. The overestimation levels off for plates with aspect ratios greater than three.

Key words: Flexural micro-plates / strain gradient elasticity / hierarchical p-version finite-element
method / higher continuity finite element

1 Introduction

In classical theory of linear elasticity, strain is defined
based on local distribution of the stress field. In this model
nonlocal effects and length scale parameters are not con-
sidered, thus rendering the classical plate theory as in-
appropriate for describing the mechanical behavior of a
micro-structure, e.g. polymeric foams, high-toughness ce-
ramics, high strength metal alloys, granular materials or
porous bones. Behavior of such structures is strongly in-
fluenced by nonlocal effects in the stress field and by sig-
nificance of the internal length scale effects. Experimental
studies have demonstrated the effects of microstructure
on mechanical behavior of micro-plates [1–7]. Microstruc-
tural effects become important when structures, such as
bars, beams or plates have extremely small overall di-
mensions with respect to the internal length scale of their
constitutive material. Structures of this size find applica-
tions in microelectromechanical systems (MEMS) or na-
noelectromechanical systems (NEMS). The load response
of these structures cannot be described properly using the
classic linear elasticity model. For the mentioned cases of
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materials and structures, one has to use generalized or
higher-order theories of linear elasticity; which are char-
acterized by non-locality of the stress field. A compre-
hensive physical description of the length scale parame-
ter is still under discussion, nonetheless the concept has
been successfully applied in modeling a variety of prob-
lems in microstructures. Results obtained from higher or-
der models are also comparable to those obtained from
various homogenization techniques [8]. Mindlin [9] and
Mindlin and Eshel [10] generalized the elastic theory of
microstructured solids. Eringen [11] developed the theory
of micropolar elastic solids in accordance to the Cosserats
theory of elasticity [12]; and couple stress theory is due
to Toupin [13] and Koiter [14]. The general theory of
Mindlin [9] includes three equivalent forms which are de-
fined on the basis of three different expressions for strain
energy density (the first expression involves gradients of
displacements, the second, gradients of strain and the
third, gradients of rotation) and also three length scale
parameters. Couple stress theory is based on the third
expression of strain energy density. Simplified strain gra-
dient theory of Mindlin and Eshel [10] for the case of an
isotropic linear elastic microstructured solid involves five
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elastic constants in addition to the two classical Lamé’s
constants and contains only first-order strain gradients
in the strain energy density expression. A review of the
above-mentioned higher-order theories of elasticity can
be found in the works of Tiersten and Bleustein [15],
Vardoulakis and Sulem [16], Lakes [17]. Papargyri-Beskou
and Beskos [18] investigated the static flexural response
of rectangular micro-plates. Also, Park and Gao [19] ob-
tained a closed form solution of a simple shear problem.
In this paper, static deflection of a rectangular micro-
plate, including one length scale parameter, is investi-
gated by utilizing C2 hierarchical p-version finite-element
setting. Effects of length scale parameter are then studied
for SSSS, CCCC, CCSS, CCFF and SSFF boundary
conditions of rectangular micro-plate and relevant obser-
vations are discussed. Moreover, micro-plates with differ-
ent aspect ratios for several boundary conditions of micro-
plate are studied in detail.

2 Strain gradient elasticity

In order to account for non-local effects that are
present in micro-structures, the relation between stress
and strain fields can be generalized as follows [17, 20]:

σ = f(σ0, ε, g
n, η) (1)

where σ0 is the initial stress, ε is the strain variable, g is
length scale parameter and η is strain gradient.

Simplest possible version of the strain gradient elastic-
ity theory due to Mindlin [9,10] (which has five constants
besides two Lamé’s constants) is a model with just one
constant in addition to the Lamé’s constants. The consti-
tutive equations for this simple model are given as [18]:

σ̃ = τ̃ −∇ · μ̃ (2)

τ̃ = 2με̃ + λtrε̃Ĩ (3)

μ̃ = g2∇τ̃ = 2μg2∇ε̃ + λg2

(
∇tr (ε̃)

)
(4)

Here, σ̃ and τ̃ are the total and the classical Cauchy stress
tensors respectively, Ĩ is the unit stress tensor; ε̃ and tr(ε̃)
are the strain tensor and its trace which are expressed in
terms of the displacement vector u as:

ε̃ = (1/2)(∇u + (∇u)T ) (5)
tr(ε̃) = ∇ · u (6)

Parameter g2 is the volumetric strain energy gradient co-
efficient or simply gradient coefficient with g being the
internal or characteristic length of microstructure grains;
λ and μ are the two classic Lamé’s constants.

Imposing the strain gradient term with length
scale parameter on the conventional elasticity model
as a constraint was first discussed by Farahmand and
Arabnejad [20]. Comparison of experimental results ob-
tained from torsion and bending tests of beams with the-
oretical ones obtained from this and other higher-order

elasticity models have revealed that magnitude of the gra-
dient coefficient g (internal length) is of the same order as
diameter of the basic building block in a microstructure,
e.g., the grain in metals or ceramics, the osteon in bones
or the cell in foams [16, 17, 21–23].

3 Governing equation for flexural bending
of micro plates

Based on the work by Papargyri-Beskou and
Beskos [18], invariant form of the mathematical model in
terms of transverse displacement field, w(x) of a micro-
plate subjected to static loading is [18]:

D∇4w(x, y)−Dg2∇6w(x, y)−q(x, y) = 0 over Ω (7)

where plate’s rigidity D = Eh3

12(1−ν2) . Weak formulation of
Equation (7) yields

∫∫
Ω

(
D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)

− Dg2

(
∂6w

∂x6
+ 3

∂6w

∂x4∂y2
+ 3

∂6w

∂x2∂y4
+

∂6w

∂y6

)

− q

)
v dxdy = 0 ∀v (8)

where, v represents all admissible weight functions, which
for Galerkin formulation becomes v = δw. Repeated ap-
plication of Green’s identity (integration by parts) yields
a symmetric weak form for Equation (8) as follows:

∫∫
Ω

(
D

(
∂2w

∂x2

∂2v

∂x2
+

∂2w

∂y2

∂2v

∂y2
+ 2

∂2w

∂x∂y

∂2v

∂x∂y

)

+ Dg2

(
∂3w

∂x3

∂3v

∂x3
+

∂3w

∂y3

∂3v

∂y3
+ 3

∂3w

∂y2∂x

∂3v

∂y2∂x

+3
∂3w

∂x2∂y

∂3v

∂x2∂y

)
− qv

)
dxdy + BIT = 0 ∀v (9)

where the boundary integral terms resulting from appli-
cation of Green’s identity are:

∮
Γ

D

[
δw

(
∂3w

∂x3
nx +

∂3w

∂x∂y2
nx +

∂3w

∂x2∂y
ny +

∂3w

∂y3
ny

)

− δwx

(
∂2w

∂x2
nx +

∂2w

∂x∂y
ny

)
− δwy

(
∂2w

∂y2
ny +

∂2w

∂x∂y
nx

)]

−Dg2

[
δw

(
(∇∇4w).n

)
−δwx

(
∂4w

∂x4
nx+2

∂4w

∂x3∂y
ny+

∂4w

∂y3∂x
ny

)

− δwy

(
∂4w

∂y4
ny + 2

∂4w

∂x∂y3
nx +

∂4w

∂y∂x3
nx

)

+δwxx
∂3w

∂x3
nx+3δwxy

(
∂3w

∂x2∂y
nx+

∂3w

∂y2∂x
ny

)
+δwyy

∂3w

∂y3
ny

]

(10)
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Fig. 1. Hierarchical C0 finite-element.

In this study, all numerical experiments are conducted
on rectangular micro plates with dimensions of a and b
and thickness of h. Finite element approximation space
employed to obtain the results presented herein is con-
structed from a 100 element uniform mesh of two dimen-
sional C2 p-version elements evaluated at p-level Pξ =
Pη = 5.

In studying micro-plates, boundary conditions are cat-
egorized into two main groups of Classical Boundary Con-
ditions (C.B.C) and Non-Classical Boundary Conditions
(N.B.C). The (N.B.C) for a simply supported micro plate
are expressed as follows [24]

wxx = wyy = wxxxx = wyyyy = wxxyy = 0 at x = 0, a

wyy = wxx = wyyyy = wxxxx = wyyxx = 0 at y = 0, b
(11)

and for clamp boundary conditions (N.B.C) are obtained
as follows [24]

wxx = 0 or g2

(
∂3w

∂x3
+ ν

∂3w

∂x2∂y

)
= 0 at x = 0, a

wyy = 0 or g2

(
∂3w

∂y3
+ ν

∂3w

∂y2∂x

)
= 0 at y = 0, b

(12)

Moreover, the Boundary Integral Terms (B.I.T) also re-
ferred to natural boundary conditions can be divided into
two groups of classical and non-classical terms. Neverthe-
less, the non-classical terms of (B.I.T) vanish along in-
tersegmental boundaries through assembly and also dis-
appear on exterior boundaries of the micro-plate, where
essential boundary conditions are specified. Here, the non
classical terms (N.B.I.T) are:

− Dg2

[
δw

(
(∇ ∇4w).n

)
− δwx

(
∂4w

∂x4
nx + 2

∂4w

∂x3∂y
ny

+
∂4w

∂y3∂x
ny

)
− δwy

(
∂4w

∂y4
ny + 2

∂4w

∂x∂y3
nx +

∂4w

∂y∂x3
nx

)

+ δwxx
∂3w

∂x3
nx + 3δwxy

(
∂3w

∂x2∂y
nx +

∂3w

∂y2∂x
ny

)

+ δwyy
∂3w

∂y3
ny

]
(13)

In the computational procedure where C2 finite-elements
are utilized, the non-classical boundary conditions
(N.B.C), regarding (N.B.I.T=0), are implicitly satisfied.

4 Finite element approximation

The weak form given by (8) requires second order
global smoothness as a minimum for integration to be
valid in the Lebesgue sense; i.e. the trial solution w ∈ W 3,
where the trial space W 3 is defined as:

W 3 =
{

w | ∂kw

∂xi∂yj
∈ L2 ∀ i, j, k s.t. i + j =k i ≥ 0,

j ≥ 0 and k = 0, 1, 2, 3
}

(14)

where

L2 =
{

w |
∫

w2dΩ < ∞
}

(15)

A basis can be formed [25] for trial space W 3 through
tensor product of spaces U3 and V 3 where

U3 =
{

u | ∂ku

∂ξk
∈ L2; k = 0, 1, 2, 3

}
(16)

and

V 3 =
{

v | ∂kv

∂ηk
∈ L2; k = 0, 1, 2, 3

}
(17)

A p-version element with 2nd order global smoothness
was constructed in this manner to approximate the weak
solution.

Starting with one dimensional p-version C0 finite-

element (Fig. 1) which interpolates w as w =
p+1∑
k=1

Nk(ξ)wk

where p is the degree of interpolating polynomial and ba-
sis Nk(ξ) are denoted as

{Nk(ξ)}k=1,p+1 = {N1, N2i , N3} (18)

where

N1 =
1 − ξ

2

N3 =
1 + ξ

2
(19)
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Fig. 2. One dimensional C2 hierarchical finite-element, i = 0, 1, 2 and j = 6, 7, . . . , p where p = Pξ or p = Pη.
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Fig. 3. Two dimensional C2 hierarchical finite-element.

N2i =

⎧⎪⎨
⎪⎩

ξi − 1
i!

if i: even
ξi − ξ

i!
if i: odd

for i = 2, 3, . . . p. A C2 p-version element as shown in
(Fig. 2) can be generated by applying nodal conditions
∂iw(ξ)

∂ξi

∣∣∣
ξ=−1

= φ1i and ∂iw(ξ)
∂ξi

∣∣∣
ξ=1

= φ3i for i = 1, 2 so that

the basis vectors are transformed from C0 to C2. This
transformation results in elimination of four basis func-
tions from the C0 element’s hierarchical node. Degrees of
freedom for C2 element are ∂iw(ξ)

∂ξi where i = 0, 1, 2 at el-

ement end nodes and ∂jw(ξ)
∂ξj

∣∣
ξ=0

where j = 6, 7, . . ., p at
element’s hierarchical node. Now, a two dimensional C2

element can be generated through tensor product of two
orthogonal one dimensional C2 elements; with degree of

polynomial p = Pξ for interpolation in ξ direction and
p = Pη in η direction, Figure 3.

The degrees of freedom at each corner point of this
element are:{

w,
∂w

∂ξ
,
∂w

∂η
,
∂2w

∂ξ2
,

∂2w

∂ξ∂η
,
∂2w

∂η2
,

∂3w

∂ξ2∂η
,

∂3w

∂ξ∂η2
,

∂4w

∂ξ2∂η2

}

(20)
Degrees of freedom at hierarchical nodes are of the form

∂kw
∂ξi∂ηj . Basis functions generated for this element yield
interpolants that are globally smooth up to second order
derivatives; however, because of the tensor product opera-
tion, some terms from the third and fourth derivative sets
appear at element corner nodes. Even though this element
satisfies requirements of the trial space, W 3, nonetheless,
the actual geometry of this element in the physical do-
main is limited to rectangular shapes. The reason for that
is the incomplete appearance of higher derivatives (i.e.
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third order and fourth) as degrees of freedom in corner
points, which makes the transformation of nodal degrees
of freedom from local ξ−η to global x−y space impossible.
Nevertheless, this element is sufficiently smooth for inves-
tigating the effects of length scale on bending behavior of
microstructure plates.

Entries of the element stiffness matrix [K] in terms of
element basis functions are as follows:

Kij =
∫∫
Ω

(
D

(
Ni,xx Nj ,xx +Ni,yy Nj ,yy +2Ni,xy Nj,xy

)

+ Dg2
(
Ni,xxx Nj ,xxx +Ni,yyy Nj ,yyy

+ 3Ni,xyy Nj ,xyy +3Ni,xxy Nj,xxy

))
dxdy

and entries of elements’ load vector are given as are:

fi =
∫∫
Ω

qNi dxdy (21)

5 Numerical experiments

The C2 elements used here are generated through ten-
sor multiplication of two one-dimensional C2 elements
which are not difficult to generate. It is true that higher
continuity elements do not exist in commercial softwares
and their generation/implementation is not a straight for-
ward matter, nonetheless they are needed to solve the
problem at hand. The alternative to using a C2 element
would be to utilize C0 elements with an equivalent differ-
ential formulation. In an equivalent formulation the sixth
order differential equation has to be written as an equiv-
alent system of three second order differential equations.
After applying the weak form to such a system, theo-
retically one would be able to use C0 elements to solve
the system. This approach would triple the problem size
immediately; now one has to deal with three variables
instead of one. Such an approach is used in commercial
packages to solve the fourth order differential equations
for plates and shells; which give rise to numerical diffi-
culties such as shear locking. In a similar manner, one
should expect unseen numerical difficulties when deal-
ing with the equivalent second order differential system.
Based on our experience, solving the stronger system, i.e.
sixth order differential equation using C2 element would
have less computational issues than solving three second
order differential equations which could be cast in dif-
ferent forms [26–28]. In order to verify the implemented
finite element formulation and methodology, the results
are compared to a closed form solution presented in ref-
erence [18]. The solution has been reported for simply
supported boundary conditions [18], for this solution the
unknown displacement field and loading function are rep-
resented using Fourier basis. This type of consideration
satisfies the boundary conditions [29] and the solution is

found as follows [18]

w(x, y) =
∞∑

m=1

∞∑
n=1

Wmn sin
mπx

a
sin

nπy

b

q(x, y) =
∞∑

m=1

∞∑
n=1

Qmn sin
mπx

a
sin

nπy

b
(22)

Then substituting Equation (23) into Equation (6) yields

Wmn =
Qmn

D

[(
m2π2

a2 + n2π2

b2

)2

+ g2

(
m2π2

a2 + n2π2

b2

)3]

(23)
The classical solution is found by letting g = 0 and dis-
placement is obtained as:

Wmn =
Qmn

D

[(
m2π2

a2 + n2π2

b2

)2] (24)

Denoting Wmax as the maximum value of Wmn (Eq. (24))
for n = 1, the value of m for which Wmn becomes max-
imum is found by setting dWmn/dm = 0. Thus, for a
square plate with side length a, and n = m = 1 one ob-
tains Wmax

W c
max

in the form (Ref. [18]) as,

Wmax

W c
max

=
1[

1 + 2π2

(
g
a

)2] (25)

Figure 4 demonstrates the accuracy of the implemented
finite element procedure here for studying the static re-
sponse of micro plates. Figure 5 for the case with CCCC
boundary conditions, drastic decrease in the nondimen-
sionalized maximum deflection is observed; which is in-
dicative of high stiffness due to the inclusion of length
scale parameter. Moreover, minor changes in nondimen-
sionalized maximum deflection are obtained for SSFF
boundary condition.

Study of micro-plates with free boundary conditions
along the boundary with dimension b indicates that
the nondimensionalized maximum deflection Wmax

W c
max

rises
steeply with increasing b/a ratio. All free cases, as to
be anticipated, converge to micro beam solution. Also
note that the rising rate increases with increasing length
scale values. Noting from Figures 6–10 all nondimen-
sionalized maximum deflection curves rise quickly for all
cases and each reaches a steady value for dimension ra-
tios b/a > 3. This feature reflects the diminishing effects
of the constant-length boundaries for b/a > 3. Compar-
ing all boundary conditions, CCCC boundary condition
for micro plate shows the least amount of change due to
variations in micro-plate’s aspect ratio.

6 Conclusion

When internal length scale parameter of a microstruc-
ture is comparable to the length scale of its overall
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Fig. 4. Comparing normalized deflection Wmax
W c

max
variation for different values of length scale ratio ( g

a
)2 obtained from finite-

element method with exact solution given in reference [18].

Fig. 5. Normalized deflection Wmax
W c

max
variation of a square micro plate versus length scale ratio ( g

a
) under different boundary

conditions.

Fig. 6. Normalized deflection Wmax
W c

max
variation of rectangular micro plates with different aspect ratios and for different values of

length scale ratio ( g
a
) under CCFF boundary condition.
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Fig. 7. Normalized deflection Wmax
W c

max
variation of rectangular micro plates with different aspect ratios and for different values of

length scale ratio ( g
a
) under SSFF boundary condition.

Fig. 8. Normalized deflection Wmax
W c

max
variation of rectangular micro plates with different aspect ratios and for different values of

length scale ratio ( g
a
) under CCCC boundary condition.

Fig. 9. Normalized deflection Wmax
W c

max
variation of rectangular micro plates with different aspect ratio and for different values of

length scale ratios ( g
a
) under CCSS boundary condition.
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Fig. 10. Normalized deflection Wmax
W c

max
variation of rectangular micro plates with different aspect ratios and for different values

of length scale ratio ( g
a
) under SSSS boundary condition.

geometry, classical elasticity model fails. Hence, in de-
scribing its mechanical response, higher-order theories are
required to construct proper models. In this paper the
simplest gradient elastic material model, i.e. one con-
stant (internal length scale parameter) in addition to two
Lamé’s constants of the classical elasticity has been con-
sidered and studied. The resulting elastic model which is
based on gradient elasticity and describes the steady state
response of flexural Kirchhoff plates subjected to mechan-
ical loading is a sixth order differential model instead of
the usual fourth order plate bending model. Higher con-
tinuity p-version finite elements were utilized in solving
the resulting sixth order differential equation in the weak
sense. Based on numerical experiments, it is concluded
that increasing the length scale parameter leads to de-
crease in deflection; the behavior is due to higher rigidity
caused by the length scale effects. Variations in aspect ra-
tio of the micro-plate have significant effects on rigidity,
for b/a > 3, however, this effect is related to mere geo-
metrical characteristic of plate and it is significant effect
in all cases except in the case of an all clamped micro
plate.
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Hermann et Fils, Paris, 1909

[13] R.A. Toupin, Elastic materials with couple-stresses, Arch.
Rat. Mech. Anal. 11 (1962) 385–414

[14] W.T. Koiter, Couple stresses in the theory of elasticity, I
& II. Proc. K. Ned. Akad. Wet. B 67 (1964) 17–44

[15] H.F. Tiersten, J.L. Bleustein, Generalized elastic con-
tinua, In: G. Herrmann, R.D. Mindlin (eds.), and Applied
Mechanics, Pergamon Press, New York, 1974, pp. 67–103

[16] I. Vardoulakis, J. Sulem, Bifurcation Analysis in
Geomechanics, Chapman and Hall, London, 1995

[17] R. Lakes, Experimental methods for study of Cosserat
elastic solids and other generalized elastic continua, In:
Continuum Models for Materials with Microstructure,
H.B. Mhlhaus (ed.), Wiley, Chichester, 1995, pp. 1–25

[18] S. Papargyri-Beskou, D.E. Beskos, Static, stability and
dynamic analysis of gradient elastic flexural Kirchhoff
plates, Arch. Appl. Mech. 78 (2008) 625–635



A.R. Ahmadi and H. Farahmand: Mechanics & Industry 13, 261–269 (2012) 269

[19] S.K. Park, X.-L. Gao, Variational formulation of a mod-
ified couple stress theory and its application to a simple
shear problem, Z. Angew. Math. Phys. 59 (2008) 904–917

[20] H. Farahmand, S. Arabnejad, Developing a Novel finite
elastic approach in strain gradient theory for microstruc-
tures, Int. J. Multiscale Comput. Eng. 8 (2010) 441–446

[21] E.C. Aifantis, Strain gradient interpretation of size ef-
fects, Int. J. Fract. 95 (1999) 299–314

[22] G.E. Exadaktylos, I. Vardoulakis, Microstructure in lin-
ear elasticity and scale effects: a reconsideration of
basic rock mechanics and rock fracture mechanics,
Tectonophysics 335 (2001) 81–109

[23] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong,
Experiments and theory in strain gradient elasticity, J.
Mech. Phys. Solids 51 (2003) 1477–1508

[24] S. Papargyri-Beskou, A.E. Giannakopoulos, D.E. Beskos,
Variational analysis of gradient elastic flexural plates un-
der static loading, Int. J. Solids Struc. 47 (2010) 2755–
2766

[25] K.S. Surana, S.R. Petti, A.R. Ahmadi, J.N. Reddy, On
p-version hierarchical interpolation functions for higher
order continuity finite element models, Int. J. Comput.
Eng. Sci. 2 (2002) 653–673

[26] K.S. Surana, A.R. Ahmadi, J.N. Reddy, The k-version of
finite element method for self-adjoint operators in BVP,
Int. J. Comput. Eng. Sci. 3 (2002) 155–218

[27] K.S. Surana, A.R. Ahmadi, J.N. Reddy, The k-version
of finite element method for non-self-adjoint operators in
BVP, Int. J. Comput. Eng. Sci. 3 (2003) 737–812

[28] K.S. Surana, A.R. Ahmadi, J.N. Reddy, The k-version of
Finite Element Method for Nonlinear Operators in BVP,
Int. J. Comput. Eng. Sci. 5 (2004) 133–207

[29] J.N. Reddy, Theory and analysis of elastic plates and
shells, Second Edition, Taylor and Francis, Philadelphia,
2006


	Introduction
	Strain gradient elasticity
	Governing equation for flexural bending  of micro plates
	Finite element approximation
	Numerical experiments
	Conclusion
	References

