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Summary 
The Thomson-Haskell matrix device is used to solve the problem of the 
static deformation of a multilayered spherical Earth model by buried 
sources. The model consists of p -  1 concentric spherical shells plus an 
inner core; each shell as well as the core being homogeneous, isotropic 
and perfectly elastic. The point source is represented as a discontinuity in 
the motion-stress vector across the spherical surface passing through the 
source. Explicit series expressions in terms of layer matrices are obtained 
for the displacements and stresses at any point in the medium for three 
sources: a vertical strike-slip fault, a vertical dip-slip fault and a centre of 
explosion. The singular case corresponding to the Legendre polynomial of 
the first degree (n = 1) has been discussed in detail. 

1. Introduction 

During the last few years, elasticity theory of dislocations has been developed and 
applied by several investigators, e.g. Steketee (1958), Chinnery (1961, 1963), 
Maruyama (1964) and Press (1965). Mansinha & Smylie (1967) computed the 
changes in the products of inertia of the Earth due to rearrangement of masses 
associated with major earthquakes and then calculated their contribution to the 
excitation of the Chandler wobble and the secular polar shift. As a mathematical 
model, they used vertical, rectangular, strike-slip and dip-slip faults in a uniform 
half-space. However, there is no justification for using a half-space model in a problem 
with intrinsic spherical geometry. Ben-Menahem & Singh (1968) made a significant 
contribution by obtaining explicit expressions for the displacements at the free 
surface of a homogeneous non-gravitating sphere due to internal dislocations of 
arbitrary orientation. The numerical results were reported by Ben-Menahem, Singh & 
Solomon (1969, 1970) and Singh & Ben-Menahem (1969). Ben-Menahem & Israel 
(1970) obtained the displacement field at any point within the sphere and then 
calculated the inertia changes due to a displacement dislocation and a centre of 
explosion in a uniform sphere. These authors find that the spherical model of the Earth 
yields higher inertia changes than the corresponding half-space model. 

The aim of the present paper is to generalize the results of Ben-Menahem & Israel 
(1970) for the displacement field due to a point source in a homogeneous sphere. The 
homogeneous sphere has been replaced by a multilayered sphere consisting of p - 1 
concentric spherical shells plus a solid core; each shell and the core being homogeneous, 
isotropic and perfectly elastic. The point source is represented as a discontinuity in 
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the displacement and stress components across the spherical surface passing through 
the source and the Thomson-Haskell matrix technique (Thomson 1950; Haskell 
1953) is applied. Explicit series expressions for the displacements and stresses at any 
point within the sphere are obtained for a vertical strike-slip fault, a vertical dip-slip 
fault and a centre of explosion by using the motion-stress vector obtained in an 
earlier paper (Wason & Singh 1971). 

The sister problem of the static deformation of a multilayered half-space by 
buried sources has been recently solved by Singh (1970). The static deformation of a 
sphere resulting from surface mass loads has been studied by Slichter 8z Caputo 
(1960), Caputo (1961), Longman (1962) and Takeuchi, Saito & Kobayashi (1962). 

2. Formulation of the problem 

Consider the Earth as made up of p- 1 concentric spherical shells plus an inner 
core; each shell as well as the core being homogeneous, isotropic and perfectly elastic. 
Let the ith spherical shell be bounded by the radii r i - l ,  r i (r i - l  < r j ;  i = l , 2 ,  . . . , p )  
with centre at the origin of a spherical polar co-ordinates system (r, 8 , 4 )  and let the 
elastic constants of the shell be Ai, p i  and its density pi (Fig. 1). Evidently, to = 0 
and rp = a, where a is the radius of the Earth. 

In the ith shell the displacement vector ui satisfies the vector NaviBr equation of 
statical elasticity 

(2.1) pi V2 ui + (A, + p i )  grad div ui = 0, 

and one may take (Singh 1970, equations (5) and (6)) 

z-axis t 

\ core I 

FIG. 1. Geometry of the layered sphere and the sources. 
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Static deformation of a multilayered sphere 3 

with 

where N, F and M are the three independent vector solutions of equation (2.1). 
A x ,  i, A2, i ,  B , ,  i r  B2, i, C,, and C2, are six arbitrary constants belonging to the 
ith shell, to be determined by the application of the boundary and source conditions. 

We put 

Pm, n = er Ym, n(e,4), I 

Y,,,, "(0,4) = Pnm(cos O)(cl, cos m4 + p, sin m4). I 
Here a,, 8, are constants and shall be specified later at the time of introducing the 
source. 

On expressing the vectors N, F and M, in terms of the mutually orthogonal surface 
vector harmonics P,,n, B,,, and cm,n (Ben-Menahem & Singh 1968, equations 
(2.13), (2.14), (2.16)), equation (2.3) reduces to the form (the superscript of the 
entities u, x, y, z, A, ,  A,, B,, B,, C, and C2 is mn throughout, unless otherwise 
specified) 

where 

Using equation (2.4) of Ben-Menahem & Israel (1970), the stress vector across 
the surface r = constant corresponding to the displacement vector (2.5) may be 
expressed in the following form (the superscript of the quantities T, X, Y and Z 
is mn throughout, unless otherwise mentioned): 

Ti(r) = Xi(r)Prn, n+ Yi(r>(n(n+ 1>)'Bm, n+zi(r)(n(n+ I))* C , n ,  (2.9) 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/27/1/1/597371 by guest on 16 August 2022



4 Hans R. Wason and Sarva Jit Sin& 

where 

-- xi(r) - 2(n+1)(n+2)r-n-3Al, i+2n(n-i)rn-2Az,i 
Pi 

zi(r) -- - - (n + 2) r - n -  2 cl, + (n - I) rn- 1 cz, i. 
Pi 

(2.10) 

(2.11) 

(2.12) 

Equations (2.5) and (2.9) may be written as follows: 

(2.13) 

From equations (2.6) to (2.8), (2.10) to (2.12), it is obvious that the original 
problem splits into two independent problems represented by equations (2.14) and 
(2.15), referred to as the R- and the L-problem, respectively. The reason is that we 
can satisfy the equations of motion and boundary conditions (as will be seen in the 
following section) by the R-problem and the L-problem independently. One may 
solve these two problems separately and then use equation (2.13) to get the complete 
solution; the two solutions may be called as the spheroidal and toroidal response, 
respectively, of a multilayered sphere to static sources. The counterpart in the 
dynamic case is the separation of Rayleigh and Love wave problems and spheroidal 
and toroidal oscillations. 

3. Formal solution 

(a) Solution of the R-problem 

K is mn throughout, unless otherwise mentioned) by 
We define the column matrices J i  and K ,  (the superscript of the matrices J and 

(3.1) 

(3.2) 

[Ji(r)l = [xi(r),  ~ i ( r ) ,  Xi(r), Yi(r)l, 

[Kil = [A , ,  i, A2, i, Bl, i s  B2, il. 
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Static deformation of a multilayered sphere 5 

From equations (2.6), (2.7), (2. lo), (2.1 I), (3.1) and (3.2), we have 

Ji(r) = Mi"(r) Kj,  (3.3) 

where the elements of the matrix M,"(r) are (omitting the subscript i of 1, and p i ) :  

(12) = nrn-1, 

(22) = r"-i ,  

(14) = Ql(n+l)[n~+(n-2)p]r"+i, 

(24) = Q [(n + 3) 1 + (n + 5) p] r + I,  

(32) = 2n(n- 1) pr"-', 

(34) = 2Q1(n+l)[(n2-n-3)1 
+(nZ-n-2)p]pr", 

(42) = 2(n- 1) pr"-', 

(44) = 2QI [n(n + 2) I 
+ (n2 + 2n - 1) p] pr", 

where 

Qi = 1/[2(2+2~)1. 
Equation (3.3) yields 

K j  = [M,"(r)]-' J j ( r ) ,  (3 f 6) 

where the matrix [M,"(r)]-' is the inverse of the square matrix M,"(r). The elements 
of [M,"(r)]-' are found to be (omitting the subscript i of li  and p j ) :  

(11) = 2Qz[(nZ-n-3)1 
+ (2-n-2) p] r n + Z ,  

(13) = -Qz[nl+(n-2)p]pL-1r"+3, 

(21) = 2Q,[(nZ+3n-1)I 
+n(n+3) p] r - " + l ,  

+(n+3) p] ,u-'r-"+', 
(23) = Q3 [(n + 1) 1 

(31) = 2(n- 1) Q3 r", 

(33) = - Q 3  p-1 P+', 

(43) = - Q z p - l r - ,  

(41) = -2(t~+2) Qz r-"-' ,  

(12) = 2Qz n[n(n+2) 1 
+(n2+2n-1)p]rn+2, 

+ (n+ 5) p] p-' P3,  

+ (n2 - 2) p] r-"+ 

(14) = -Qzn[(n+3)1 

(22) = - 2 ~ ~ ( n + l ) [ ( n ~ - l ) i l  

(24) = Qs(n+ 1)[(2-n)1 
+ (4-n) p] p-' r-"", 

(32) = 2(n2 - 1) Q 3  r", 

(34) = - (n+ 1) Q3 p-' rn+l,  
(42) = 2n(n+2) Qz r-"-' ,  
(44) = nQ2 p-' r-", 

where 

Qz = 1/[(2n+ 1)(2n+3)], 

Q 3  = 1/[(2n- 1)(2n+1)], 

Qz = Qi Qz, Q3 = QI Q 3 .  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/27/1/1/597371 by guest on 16 August 2022
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From equations (3.3) and (3.6), the displacements and stresses at the top and the 

(3 - 9) 

bottom of the ith shell are connected through the relation 

Ji(ri) = N? Ji(ri- I), 

where the layer matrix N? is given by 

N :  = M:(ri)[Mr(ri-l)]-l. (3.10) 

Continuity of the displacement and stress components at the interface r = r i - l  

Ji(ri-1) = Ji-i(ri-1). (3.11) 
yields 

Hence equation (3.9) becomes 

Ji(ri) = NrJi - l ( r i -1 ) .  (3.12) 

Let a point source be situated at the point r = b, 0 = 0. Let the source layer be 
designated as layer s bounded by the radii rs-l, r,. We divide the source layer into 
two spherical shells s1 and s, of identical properties. The shell sl is bounded by the 
radii r = I-,-,, rs,(= b), and the shell s2 by r = rsl, rs2(= r,) (Fig. 1). Due to the 
presence of the source the displacement and/or the stress vector may be discontinuous 
across the spherical surface r = b. 

Let the matrix representation of the source be 

J,,(rs,) - Js, (r,,) = D"". (3.13) 

For a specific source the source matrix D"" is known. 
From equation (3.9) and (3.1 l), we get by iteration 

Jp(rp) = Np" N:- 1 . -. Ns: JS, (rsl), 

Jsl (rsl) = Nsl" N:- l.. . N," Jl (rl). 

(3.14) 

(3.15) 

It may be shown (Haskell 1953) that for the source layer s 

N,,"Nsl" = N,". (3.16) 

Equations (3.13)-(3.16) now yield 

J,(r,) = Up" J ,  (rl) + Vp" D"", (3.17) 

U," = N,"N: -,... N,", (3.18) 

V," = Npn N:- l.. . N,,". (3.19) 

The boundary conditions: (i) that the surface tractions vanish at the surface 
r = a, and (ii) the displacements and stresses are bounded at the origin r = 0, give 
rise to the following equations 

where 

[J,(a)l = [x,(a>, Y,(4, 0,019 (3.20) 

[KII = [O, 4, 1, 0, &, 11. 

Equations (3.3), (3.17), (3.20) and (3.21) result in 

(3.21) 

[x,(a), Yp(a),O,Ol = P,"I LO, 4, 130, &, 11 + [Fpmnl, (3.22) 
where 

E," = UpnMln(rl), (3.23) 

F,"" = Vpn D"". (3.24) 
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Static deformation of a multilayered sphere 

Equation (3.22) is equivalent to the following four equations: 

xp(‘) = (Ep”)12 ’’2, 1 +(Ep”)14 EZ, 1 + (Fp’””)l, 

Y p ( u )  = ’ 2 ,  1 + (Ep”)24 EZ, 1 + (Fp?2, 

1 + (Ep”)34 E Z ,  1 + (Fp’””)3, 

1 + (Ep?44 E2, 1 + (Fp?4* 

= (Ep”)32 

= (Ep”)4Z 

The set (3.26) yields 

7 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

The matrices EYE and FYE are given by equations (3.23) and (3.24) respectively, 
with p replaced by i- 1. Putting the values of A,, and B,, from equation (3.27) 
into equation (3.30), we obtain 

(Ji(ri- 1))q = { [ ( E l -  l)q4 (Ep”)42- (El- l )q2  (Ep”)44I(Fp’””)3 

[(El- i)qz (Ep”134- (El- i)q4 (Ep”)3z](Fp’””h 

+ AWY 1lJ/Ay (4 = 192,3941. (3.32) 

(b) Solution of the L-problem 
The treatment of this problem is exactly similar to that of the R-problem. Hence 

we give below only important results omitting the details of their derivation. Previous 
notation is retained and the subscript L is prefixed to the quantities for distinction 
from the corresponding quantities for the R-problem. 

We define the column matrices 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 
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where the layer matrix LNin is given by 

with 

Hans R. Wason and Sarva Jit Sin& 

LNin = LMin(yi)rLMin(ri-l)l-l, (3.38) 

1 - 1  r n + Z  -Pi 
Pi [LMin(r)]-l = - 1  ,.-n+l ’ 

Using the continuity condition 

L J i ( r i - 1 )  = LJi-l(ri-11, 

equation (3.37) becomes 

LJi(ri) = ~ N i n  L J i -  1 (Ti- 1). 

The source is represented through the relation 

Equation (3.43) is equivalent to the following two equations: 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3 * 44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

C2,1 = - ( L F F M ( L E ~ ” ) z ~ .  (3.49) 

Corresponding to equation (3.29), we now have 

L ~ i ( r )  = LMin(r)LMi”(ri-l)I-’ LJi(ri-  11, 

[LJi(ri-111 = EEl-l l [o ,c~,  11+ [L’T!!II, 

(3.50) 

(3.51) 
where 

with 

(3.52) 

The matrices LE1- and LFY!! are given by equations (3.44) and (3.45) respectively, 
with p replaced by i -  1.  Equations (3.49) and (3.51) give 

( L J i ( r i -  1))q = [(LEp”)zz ( L T !  1)q- (LEY-  1)qZ (LFp”’”)21/ (L~pY229 (q = 1,2). (3 * 53) 

For every n the constants Az,  Bz,  and C z ,  must satisfy equations (3.26) and 
(3.48). For n = 0, we may take A z ,  = Bl, I = Cl, = Cz, = 0. For n = 1, 
however, there arises some difficulty in evaluating the constants. It will be shown in a 
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Static deformation of a multilayered sphere 9 

later section that for n = 1, the two equations of the set (3.26) become identical and 
equation (3.48) is an identity. In order to determine the constants A2, 1, El2, and 
C2, l ,  we need extra conditions consistent with the physics of the problem. These 
have been discussed in Section 5. 

4. Specification of the source 

Equations (3.29) and (3.50) are general expressions for the displacements and 
stresses at any point in the ith layer induced by an arbitrary point source for which 
the source matrices Dm" and LDmn are known. Let the point source be a displacement 
dislocation. The six elementary displacement dislocation sources (kl), in the notation 
of Steketee (1958), are: (kl) = (ll), (22), (33), (23), (31) and (12). For k = 1 the 
corresponding force system at the focus is a combination of a centre of compression 
and an additional double force without moment in the k-direction. For k # 1, it is 
a combination of two coplaner, mutually perpendicular double forces with moments 
in opposite directions. The source (12) is pertinent to a vertical strike-slip fault and 
(23) to a vertical dip-slip fault. 

Wason & Singh (1971, Section 4) obtained the source matrices Dm" and LDmn for 
the six elementary displacement dislocation sources (kl). For easy reference, we 
reproduce below the non-zero components of these matrices. In these expressions y 
stands for Uods/(24nb2), where Uo is the amount of the constant dislocation over 
the fault area dS. 

2(2n+ 1) y 
2, + 2Ps 

(Do3")l = 

where 

3(2n+ 1) y 
Q =  n(n+1> 

a,, is the Kronecker delta and the values of the non-zero constants a,, i?, appearing 
in equation (2.4) for different kinds of sources are (Wason & Singh 1971, equation 
(2.10)) : 

(kl) = (11); a. = -2 ,  a2 = 1. 

(kl) = (22); a. = -2, a2 = - 1 .  

(kl)  = (33); a, = 4. 

(kl) = (23); = 2. 

(kl) = (31); tll = 2. 

(kl) = (12); /3z = 1. 

(4 3) 

Similarly, in the case of a centre of explosion, the non-zero components of the 
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source matrices are (Wason & Singh 1971, Section 5): 

Hans R. Wason and Sarva Jit Sin& 

i (00, = - (2n + 1) Ao/bZ, 

(0'' "), = 4(2n + 1) A0 4 b 3 ,  
(Do* n)4 = -2(2n+ 1) A,  ps/b3. 

(4.4) 

where A. depends upon the strength of the source and is of dimensions L3. In this 
case the sole non-zero constant ct0 = 1. 

We now proceed to calculate explicit expressions for the displacements and 
stresses at any point in the layered medium, for three kinds of sources. 

(I) vertical strike-slip fault (m = 2), 

(11) vertical dip-slip fault (m = l), 

(111) centre of explosion (m = 0). 

We obtain 

ui~l(r) = n=m 2 [Xi(r)Pm,n+yi(r)(n(n+l))'Bm,n +zi(r)(n(n+l))' C n , n ~ ,  (4.5) 

~ i ~ l ( r )  = E [Xi(r>Pm,n+ Yi(r>(n(n+1))*Bm,n+Zl(r)(n(n+l))*~m,n1. (4.6) 
n=m 

The radial functions xi(r), Xi(r), etc. occurring in these expressions are given by 
equations (3.29), (3.32), (3.50) and (3.53). The source terms of equations (3.32) 
and (3.53) are known completely by equations (3.31), (3.52), (4. l), (4.2), (4.4) and 
the following relations: 

Case I 

(4 * 7) 
( F k Z '  'Iq = -2Ps b-' Q(l /k")q47  

@k2* n)q = PS b-' Q ( ~ V k ' ) q z ,  

(4 = 1,2,37 4) 

(4 = 172) 

Equations (4.7)-(4.9) are obtained from equations (3.24), (3.45), (4.1) and (4.4), 
and hold good for every n. However, equations (3.32) and (3.53) do not hold for 
the case n = 1. This singular case is discussed in the next section. 

5. The singular case n = 1 

matrix LNin is of the form 
From equations (3.36), (3.38) and (3.39), we note that for n = 1 the layer 

EN,'] = [bl b2 , (bl, b,, b, are non-zero) 
0 b3 1 
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Static deformation of a multilayered sphere 11 

Similarly, from equations (3.4), (3.7) and (3. lo), we note that the elements of the 
layer matrix N: for n = 1 exhibit the following properties: 

0) 
(ii) 

(iii) 

The product of two matrices of the form (5.1) has the same form. Also the product 
matrix of two matrices having properties expressed by equation (5.2) has the same 
properties. 

We shall now prove the assertion made in the concluding paragraph of Section 3. 
First consider the set (3.26). For n = 1, the two equations in the set (3.26) may be 
written as follows: 

W p 1 ) q 1  (11 - P A  rl ((Up1>,1+ <Up1>,Z) AT; i + - rl 
A1 +2Pl 

+<up'>,, @Al 

+ (Vp'),l (Drn. '11 + <Vp'>,Z (Drn, 9 2  + (V,'>q3 (Drn* l)3 + <V,'),4 Wrn' l)4 

rl +((up1)q4-2(up1)q3)(3A1 +2p1) pll B?: i 

= 0, (q = 3,4). (5.3) 

From equations (3.18), (3.19), (4. l), (4.4) and (5.2), it can be seen that in the set 
(5.3) the first equation (q = 3) is a constant multiple of the second equation (q  = 4), 
i.e. the two equations in the set (3.26) are identical. 

Equation (3.48) for n = 1 reads 

($p1)22 C?; : + (LFpm' l>2 = 0. ( 5  4) 
From equations (3.36), (3.46) and (5. l), we have 

(L4922 = 0. ( 5 . 5 )  

( p P m ,  = 0. (5.6) 

Similarly, equations (3 .49 ,  (3.46), (4. l), (4.4) and (5.1) yield 

Thus equation (5.4) is satisfied for all CT; i. Hence the case n = 1 is singular (Ben- 
Menahem & Singh 1968, p. 439; Caputo 1961, p. 1480). The reason is that when 
n = 1, a part of the displacement field for the L-problem represents a rigid rotation 
and a part of the displacement field for the R-problem represents a rigid translation. 
Consequently, the corresponding stresses are zero and we cannot find the constants 
AT; i, BY; and C?; i from the usual boundary conditions. Therefore, to find the 
solution corresponding to n = 1, i.e. to determine the constants AT; i, B?; and 
Cg; i, we invoke the principles of the conservation of the angular momentum and 
the mass-centre (Ben-Menahem & Singh 1968, p. 443), i.e. we apply the following 
two conditions: 

(i) the angular momentum of the sphere about its centre remains zero; 

(ii) the centre of mass of the sphere is not displaced. 

These two conditions imply that 

and 
j j j r e , x u d z  = 0, 

j j j u d z  = 0, 
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12 

respectively. Here dt = r2 sinOdrdOdb, and the integration is over the volume 
bounded by the sphere. 

The only part of the displacement that gives any angular momentum for a sphere 
is the M vector with n = 1 (Jeffreys 1970, p. 474, para. 3). Similarly, only N and F 
vectors at n = 1 give non-zero contributions to the integral in equation (5.8). Thus, 
to find the values of the integrals in equations (5.7) and (5.8) we need consider only 
the displacement vector at n = 1. 

The displacement vector at any point in the ith shell corresponding to n = 1 is 
given by 

(5 * 9) 
where the radial functions xp ' (u), y p  ( r )  and z? ' (r) ,  can be found from equations 
(3.29) and (3.50). 

Equations (3.29), (3.30), (3.50), (3.51), (5.7) to (5.9) yield, after a lengthy but 
straightforward analysis, 

Q4 C%'i + Qs = 0, (5.10) 

Hans R. Wason and Sarva Jit Singh 

U? ' ( r )  = x,", ' ( r )  P,, + y l '  ' ( r )  J2B,, +z?* ' ( r )  J2Cm, ', 

Q6AT::+Q7BT::+Qs =O, (5.11) 
where 

(5.14) I 
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Static deformation of a multilayered sphere 13 

The matrices on the R.H.S. of the above equation are obtained from the respective 
parent matrices by putting n = 1. 

From equations (3.26), (5.10) and (5 .1  l), we get 

(5.15) I AT: i = [Q7(J'Pm. '>3-Qs(Ep1)341/Ai, 

gm 1 - 
2: i - [QsPp1)3z-Q6(J'Pm. 'h] /Ai ,  

(5.16) 

(5.17) 

6. Discussion 

Recently, observational evidence has been presented in support of the hypothesis 
that earthquakes may excite the Chandler wobble and produce the observed polar 
shift. Mansinha & Smylie (1967) developed a half-space theory while Ben-Menahem & 
Israel (1970) applied spherical theory taking Earth as a homogeneous sphere, to 
investigate theoretically the effect of earthquakes on the rotation of the Earth. 
However, for more accurate determination of the extent to which earthquakes are 
able to maintain Chandler wobble, additional observations and theoretical study of 
more realistic Earth models is needed. In the present paper, a multilayered spherical 
Earth model is taken and the displacement field at any point in the medium induced 
by a displacement dislocation or a centre of compression is obtained. The results 
obtained in the present investigation are being used to calculate the changes in the 
Inertia Tensor, due to a displacement dislocation and a centre of explosion in a 
multilayered sphere, and its effect on the Chandler wobble. The paper will be sub- 
mitted for publication to the Geophysical Journal in due course. 
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