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Static deformation of two welded half-spaces due to dip-slip faulting
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Abstract. Closed-form expressions for the displacements and stresses at any point of either
of two elastic half-spaces in welded contact caused by a dip-slip line source obtained eatlier
are integrated analytically to derive the elastic residual field due to a long dip-slip fault of
finite width. The results are valid for an arbitrary dip of the fault. The variation of the
displacement field with the distance from the fault as well as with the distance from the
interface is studied numerically. It is found that the displacement field is heavily dependent
on the dip angle. Contour maps showing the residual elastic field in the two half-spaces
caused by a vertical dip-slip fault located in one of the half-spaces are also obtained.
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1. Introduction

The elastic residual field of a long strike-slip fauit in a layered half-space has been
calculated by Rybicki (1971, 1973), Chinnery and Jovanovich (1972) and others.
Freund and Barnett (1976) gave a two-dimensional analysis of surface deformation
due to dip-slip faulting in a uniform half-space, using the theory of analytic functions
of a complex variable. Rani et al (1991) obtained the elastic residual field in a uniform
half-space due to various two-dimensional sources, using the Airy function approach.
Singh et al (1992) obtained closed-form analytic expressions for the Airy stress function,
displacements and stresses at any point of either of two homogeneous, isotropic,
perfectly elastic half-spaces in welded contact due to various two-dimensional sources.
Beginning with the expressions for the Airy stress function for a dip-slip line source
given by Singh ez al (1992), analytic integration over the width of the fault yields the
Airy stress function for a long dip-slip fault of arbitrary dip placed in a half-space in
welded contact with another half-space. The expressions for the displacements and
stresses follow immediately. These analytic closed-form expressions are used to study
the variation of the displacement field with the distance from the fault and with the
distance from the interface. Contour maps showing the residual displacement and
stress field in the two half-spaces due to a vertical dip-slip fault located in one of the
half-spaces are also obtained. The modelling of the crustal deformation field should
be done with a model consisting of a layer (representing the lithosphere) overlying a
viscoelastic half-space (representing the asthenosphere). However, analytic closed-form
solution for a dip-slip line source in such a model does not seem feasible. We have,
therefore, considered the problem of a dip-slip dislocation in a model consisting of
two elastic half-spaces in welded contact. This model brings into focus the effect of
a structural discontinuity, but ignores the effect of the free surface. The viscoelasticity
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of the asthenosphere can be taken into consideration by an application of the
correspondence principle of viscoelasticity (Singh and Rosenman 1974; Singh and
Singh 1990).

2. Theory

Let the Cartesian co-ordinates be denoted by (x,, x;,x3) = (x, y,z), with the x;-axis

vertically downwards. Consider two homogeneous, isotropic, perfectly elastic half-

spaces that are welded along the plane x, = 0. The upper half-space (x; < 0) is called

medium I and the lower half-space (x5 > 0) is called medium II, with elastic constants

A1, py and A,, u,, respectively. In the following, the superscript (1) denotes quantities

related to medium I and the superscript (2) denotes those related to medium II.
Consider a plane strain problem paraliel to the x, x;-plane so that

u, =0, 9/0x,=0. (1)
We define the Airy stress function U (Sokolnikoff 1956) through the relations

P22=Upj3, Pa3=—Ups, Ppaa=Up,,, )

V2V2U =0, )

where p,; are the components of stress and U 35 = 8*U/dx}, etc.

As shown by Singh et al (1992), the expressions for the Airy stress function in the
two half-spaces due to a dip-slip line source parallel to the x,-axis and passing through
the point (y,, y,) in the lower half-space (medium II) are:

U = (o, u, bds/m) l:cos 26 {Cl +D tan~! (xz — yz)
2 Y3—X3

_(Dyy3 + Cyx3)(x, —Y2)} + sin26 {(Cl +Dl)lnR

R? 2
+(D1}’3+C1szs)(}’3—x3)}:', @)
U® = (a4, bds/m)| cos 26 (xz—yZ)(x3_Y3)—D tan-1( 222
R? 2 X3+ )3
+C2(x2—y2)(x3—y3) 4C2x3Y3(x2“Y2)(x3+}’3)}
s2 - 54
w32 2_ 2
+sin2(5{—~——(x3 R2y3) —D,lns - 525 ys32+2"3y3)
4C,y3x5(x5 + y3 )
+ 2)3 :19(43 V3) }:I )

where
b = displacement discontinuity (slip),

ds = width of the line source,



Static deformation of two welded half-spaces 271

& = dip angle (figure 1)
(x5, x43) = receiver location,
R*=(x;—;)* + (x5~ y3)%
8§ =(x; ~ y2)* + (x5 + y3)%
B=u/us,

oy =4y + py )4y + 2p),

%y = (A + u3)/(A2 + 2u,),

Cy =2B[a,(1 — B—2/a,)17%,
Cy=(B— 11— B +2B/ay)™",

D, =1+C,,
D, = —(C, +Dy)/2. (6)
Medium I (A]. P]) 0
Medium I (Az Hz) | .
22 P2 \ s)
\\ (51.8)
b
(52,6)
\
+ \
\
X3 \

Figure 1. Two half-spaces in welded contact with a long dip-slip fault in the lower half-space.
The Cartesian coordinates of a point on the fault are (y,,y,) and its polar coordinates (s, 8),
where § is the dip angle and 5, <s<s,.

We put (see figure 1)
()

y2=5c0sd, y;=ssind.

Inserting the values of y, and y; from (7) into (4) and (5) and integrating over s
between the limits (s,,s,), we obtain the following expressions for the Airy stress
function for a long dip-slip fault of finite width L=s, — s;:

Ut = (oczuzb/Zn)[(C1 — D, )(x;c088 — x,sin8){ln R} — C, sin 26 {s}

+(C, + D,)sin26{sInR} +(C; + D, )(x35sin d + x, cos §)
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« dtan-? s——xz'cosé—xgsmé
X, 8in 6 — x5 c08
X, —5c0s8d
~(Cy+D 26{stan~ ! 2 ——
(Cy+Dy)cos {s an (x;,—ssiné)}J

UP? = (a,u, b/1t)|:(x2 sin § — x3c0s8){In R} + (C; + D,)(x; sind — x, cos J)

352

; @

51

x {InS} + (1 + C, + 2D,)sindcos 6 {s} — D, sin 26 {sIn S}

—S§cosd
——D200525{stan‘1(x2——s.—)}
X4+ ssind
s+ x3sind — x, cos
X,8ind + X3 €089

—D,(x;cosd + x5 sin 5){tan‘ ! (

—2C, % 5in 8(x, 5in 8 + x5 08 8) {-Ss—z}] , )
where now ’
R%=(x, —scos 8)? + (x5 — ssin )%,
5% =(x, — scos 8)? + (x5 + ssin J)>. (10)

3. Stresses and displacements

From equations (2), (8) and (9), we get the following expressions for the stresses
1
P = (o p, b/27c)[C1 (5x3¢c088 — 3x,5in ) {F}

— Dy (x;sind + x5 cos 5){}:7} +2D, sin26 {}_:7}

x,—ssiné}

+4C1x3(xzsin5—x3cos6){ R

f— 1 5

52

, 8y

) 1
P = (azzyzb/27t)l:(c1 - Dl){%} — C,(x,c080 + 3x3sin ‘”{F}

—Dy(x3sind — x, cos 6){%} +4C x3(x, €083 + x4 5in 6)

X3 —S§sind
X ————R4

y {s(x3 —ssin&)}_4plsin5{s2(x3 —ssin&)}]

} + 4[D, sind(x, 080 + x38in8) — C; x3]

2

, (12)

5

R4 R‘
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. 1
P = (a1, b/21r)|:(D1 —C)(x;sind + x5 08 6) {F}
— 2D, sin 25{%} +4C, x3(x3c080 — x,sin 6){)63;“&}

R4
+4D, sind(x;cosd — x, sin&{W}]

S2

) (13)

PR = (azuzb/n)[(xz sin & — 3x; cos 6){%} + sin 26 {%}

— ssind)? 1
—2(x,sind — x3C08 5){“—3-%} — D,(x,sind + x; cos ) {g}

1
+ C,(x, sin & — 3x; cos ‘”{F} —3C,sin 25{%}

in 5)2
—2C,(x,8iné — x5 cos 6){@‘1}

S4

+4C,x58in (3%, 5in 6 + 5x5 cos §) {%}

2
+ 8C, sin? §(2x; €os & + x, sin J) {1;7}

o 5)2
— 16C, x4 sin 6(x, sin & + x; cos 6){ﬁ)f%s:m—5)}:|

sz, (14)

51

) 1 C s
P = (azzyzb/n)[(x2 €0s 0 + X5 sin 6){F + ?22—} - {F}

(x3 — ssin d)2 } N 2{s(x3 — ssin §)? }

—2(x, €086 + x3 siné){ R RS

1
+D2(x2cos5—x3sin6){—s—2}—(C2+1)2){%}
(x5 + ssin 9)* (x5 + ssin §)?
_3__37__ +2¢C, _3__37__.._,
5{x3 + ssin )
S4

—2C,(x, €088 + x5sin 6){

s{x, —scosd)

—2C;,x5 sin25{ 5

} + 12C, x4 sin? 6{

+ 16C, x4 sin 8(x, cos & — x3sin 5){

s%(x3 + ssin §)?
SG

s(x3 + ssin §)?
S6

) (15)

St

—16C;,x, siné{
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1 .
PE = (a1, b/n)[(x2 sin § + x; cos &) {7{7} —sin 26 {-I;—z}

— ssin 8)?
+2(x,5in 6 — x5 COS 5){(’"—;—fﬂ} — C,sin 25{%}

1
+(C, + D,)(x,sind + x5 cos 6){§}

. 5 2
+ 2C,(x,sind — x5 cos 6){(x—3+—;$1—)-}

2
— 4C, x4 5in 8(x, sin & + 3x, cos ) {gs;} — 4C,x, sin 65in 20 {%:}

s(x3 + sin 8)? }]
SG

32

+ 16C, x4 sin 6(x, sin 6 + x, cos 5){

(16)

1

Corresponding to the stresses given by equations (11)—(16), the displacements are
found by integrating the stress-strain relations Sokolnikoff 1956; Singh and Garg
1985):

2u b = (oczyzb/21z)|i(C1 —D{—2C,/a,)siné{InR}

—(C, +D,)cosd{tan"! §—X,C080 —x3sind
X,8ind — x3cos d

+(2C1/a1)cos5{tan—1(m>}

X3 —ssiné

52

, (7

51

) (Cyx3 + Dy ssind)(s — x, cos & — x; sin )
+ R?

2uud = (ozzuzb/Zn)l:(Dl —C,+2C,/a;)cos{InR}

_ . _1f85—X;€088 —x;sind
(C1+D1)sm6{tan < X, SN0 — %, 0050

- (2C1/a1)sin5{tan‘1 (ﬂ)}

X, —SC080

ind
+ 2(x,sin 8 — x5 cos 6){9‘@_}%‘_&}]

s2

, (18)

S1

2p,u) = (azyzb/n)[— (1—1/a,)sind{InR} —(C,+ D, — C,/a,)siné{In S}

_ _yf %2 —scosd
(cos 6/a2){tan <ﬂx3 “seind )}
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—(C2/az)c08 9 {tan’l (ﬁ:ﬁﬂ)}

X3+ ssind

+D2cosé{tan“1<s+x35in5—x2cos5>}

X,8ind 4 x3cosé

+ {(x3 — 550 8)(x, €086 + X3 siné—s)G—z + %)}

+ 2C, x4 sin? 5{%} + (2/03) C, sin 6(x, cos & — x, sin 8) {gsi}

2

— (2/a;)C,sin {;—2-} +4C,x,5ind

19)

51

y {s(x3 + ssin §)(xysind — x, cos & + 5) }:I
S4

2u,u) = (azuzb/n)l:(l —1/a;)cos 6{ln R} +(D, + C, — C,/a;)cos 6 {In S}

. —1( X3 —ssind
+ (sin 5/a2){tan (xz _scosé)}

+(C,sin 5/“2){tan'1<_xa_+_mn_‘s>}

Xy — 5COSJ

+D, sin&{tan'l(s+x3 siné—xzcos6>}

X,8ind + x3c088

— (x,5in & — x5 €08 8) {xi“ —ssind + Calxs + ssmé)}

R? s?

+ 2C, sin d(x, sin d + 2x5 cos ) {ESE}

—(2/03)C, 5in 6(x, sin 6 + x5 cos d) {%}

s(x3 + ssin &) }:l 52

—4C, x4 5sin 6(x, sin d + x4 cos 6){
$1
We have verified that the stresses and the displacements given in equations (12)—(20)
satisfy the necessary continuity conditions

1) . (2 1) _ (2 1) _ ,,(2 1) _ L, (2
PH=pR, PHB=pF, uP=uf, u)=u

at x;=0.

The results for the displacements and stresses in a uniform half-space can be obtained
as a particular case on putting u, =0. From equation (6), we note that this implies
p=0,C,=—1,C, =D, =D, =0. It has been verified that the results obtained on
putting g, =0 in equations (14)—(16), (19) and (20) coincide with the corresponding
results of Rani and Singh (1992) for a uniform half-space.
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4. Numerical results

For numerical computations we assume Poissonian (i.e. 4; = y;) half-spaces so that
oy =0, =2/3,
Ci=—-3B/2+B)
D, =38/(1+2B).

We define the following dimensionless quantities

Y= XZ/L, Z=X3/L,
UD =W, UP=uPp,
PP =(L/ub)p), PP =(L/p,b)p?, @1

where b is the magnitude of the dislocation (slip). Thus, Y is the dimensionless distance
(horizontal) from the fault, Z is the dimensionless distance from the interface (Z <0
for medium I and Z > 0 for medium II), U, and U, are, respectively, the dimensionless
horizontal (parallel to the fault) and vertical (down) displacements and P,,, P,,, P,
are dimensionless stresses.

We study numerically the displacement field at the interface (x; =0) for a long
dip angle & for u,/u, = 1/2. From these figures we note that the displacement field
and 3 show the variation of the dimensionless horizontal (U,) and vertical (U;)
displacements at the interface with the distance from the fault for three values of the
dip angle & for u,/u, =1/2. From these figures we note that the displacement field
changes significantly with the change in the dip angle. For é = 90°, U, is symmetric

=1/2

€
8
o
2
o 90°
: .
€
= o
g 6Oo./
I

_0'2 I 300

-04 1 | {

-2L -L 0 L 2L 3L

Distance from the foult

Figure 2. Variation of the horizontal displacement (U,) at the interface with the distance
from the fault for u,/u, = 1/2 for three values of the dip angle J: 30°, 60° and 90°.
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Figure 3. Variation of the vertical displacement (U, positive downward) at the interface
with the distance from the fault for u,/p, = 1/2 at dip angles 30°, 60° and 90°.
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Figure 4. Variation of the vertical displacement (U ,) at the interface with the distance from
the fault for 8 = 30°. The curve u, /u, = 0 is for a uniform half-space and the curve y, /u, =1
is for a uniform unbounded medium.

while U, is antisymmetric about the origin. For dip angles other than 90°, the
displacement field is asymmetric, the degree of asymmetry depending upon the dip
angle. Figures 4 and § display the variation of the vertical displacement (U ;) at the
interface for 6 = 30° and 60°, respectively, for four values of the ratio of the rigidities
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Figure 5. Variation of U, at the interface with the distance from the fault for & = 60°.
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Medium I 2
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\j
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Figure6. Geometry of a long vertical dip-slip fault occupying the region x, =0, L < x; < 2L
of medium II.

of the two half-spaces, namely, u, /u, =0, 1/2,1 and 2. The case u, /u, = 0 corresponds
to a uniform half-space and the case u, /u, =1 to a uniform unbounded medium.
We next consider a long vertical dip-slip fault of width L, assuming é = n/2,s, = L,
s, =2L (figure 6). Figure 7 shows the variation of the dimensionless horizontal
displacement (U,) with the distance from the interface at two epicentral locations,
y= L/10, L, for pu,/u, =1/2. Similarly, figure 8 shows the variation of the vertical
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Figure 7. Variation of U, with the distance from the interface (x;) for u,/u, =1/2 at two
epicentral locations: y = L/10, L. Negative values of x, refer to medium I, positive values
refer to medium II.
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Figure 8. Variation of U, with the distance from the interface (x,) for u,/u, = 1/2 at two
epicentral locations: y = L/10, L.

displacement (U,) with the distance from the interface. From these figures we note
that the variation of the horizontal displacement is significant in the range 0 < z < 3L,
especially near the fault (y= L/10). Similarly, the vertical displacement varies
significantly in the range 0 < z < 3L for y = L/10. While the horizontal displacement
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is maximum near the fauit ends, the vertical displacement is maximum near the middle
of the fault.

Contour maps in vertical planes perpendicular to the length of the fault for the
displacements U ,, U and stresses P,;, P are given in figures 9 to 12 for u, /u, = 1/2.
The contour values for the isolines are indicated. Solid lines denote positive values
and broken lines denote negative values. Nodal lines are also drawn. These maps
exhibit the variation of the elastic field around the fault in the two media.
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