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1. INTRODUCTION

Collective systems are often designed such that constituent nodes are each given a
local objective to pursue and the system-wide behavior is a product of the actions
and interactions of the nodes [Di Marzo Serugendo et al. 2011; Wooldridge 2001].
In pursuing local objectives, nodes are typically endowed with a common algorithm
or behavioral strategy. However, nodes are often located in different areas, having
different views of the world, and are subject to different experiences. In these cases,
adopting different algorithms from each other may enable them to better achieve their
own local objectives. It has also been shown that such heterogeneity among nodes can
lead to better achievement of system-wide objectives [Campbell et al. 2011; Anders
et al. 2012], especially when nodes can adapt independently in response to uncertainty
and changes in the environment during the system’s lifetime [Salazar et al. 2010].

In this article, we study the effect of heterogeneity among nodes in a distributed
smart camera network. Smart cameras are fully computationally capable devices en-
dowed with a visual sensor and typically run computer vision algorithms to analyze
captured images. While standard cameras can only provide plain images and videos,
smart cameras can preprocess these videos and provide users with aggregated data
and logical information. In surveillance applications, smart cameras are used to pro-
vide an operator with data such as location, speed, and direction of an object, which
could, for example, be a vehicle, person, or ball. This is referred to as object tracking.
Since smart cameras are designed to have a low-energy footprint, their processing ca-
pabilities are also low. Therefore, typically each object of interest is tracked by only
one camera at a time. Communication between cameras allows the network as a whole
to track objects in a distributed fashion, handing over object tracking responsibili-
ties from camera to camera as objects move through the environment. Previous work
[Esterle et al. 2014] showed that by endowing cameras with self-interested agents,
which traded responsibilities for tracking objects in an artificial market, the net-
work as a whole could achieve an efficient allocation of objects to cameras, without
any central coordination or a priori knowledge of the network topology. The cameras
use pheromone-based online learning to determine which other cameras they trade
with most often. This leads to a local neighborhood relationship graph, also called the
vision graph. This learned vision graph represents adjacencies between cameras’ fields
of view and enables them to selectively target their auction invitations, achieving
high levels of tracking performance while reducing communication and processing
overhead.

Six different behavioral strategies were used by camera nodes, which determined
the level of marketing activity they undertook, given the learned vision graph. Some
strategies incurred higher overheads but typically obtained higher levels of track-
ing performance; other strategies obtained the opposite results. However, the tradeoff
realized by each strategy was found to be highly scenario dependent; as camera po-
sitions varied and object movements differed, the relative benefits of the strategies
were greatly influenced. Additionally, cameras often operated inefficiently since the
homogeneous deployment of strategies forces a one-size-fits-all approach, despite local
differences in the vicinities of the cameras. As we have preliminarily demonstrated
[Lewis et al. 2013], in this article we show further that by permitting heterogeneity
between cameras in terms of their strategies, more Pareto-efficient global outcomes can
be obtained. In addition, in this article, we show that restricting individual cameras to
a single strategy for their entire lifetime can also be inefficient. By endowing cameras
with mixed strategies, where they select a strategy randomly at each decision point
according to a fixed probability distribution, further Pareto efficiency can sometimes
be obtained, relative to the static heterogeneous case.
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Although heterogeneity can improve global efficiency, given the virtually limitless
possibilities for camera network deployments and accompanying environmental dy-
namics, identifying by hand the most appropriate configuration at a particular point
in time is not feasible. To overcome this problem, we propose using online learning
algorithms, specifically multiarmed bandit problem solvers (e.g., Auer et al. [2002]),
within each camera to learn the appropriate strategy for each node during runtime.
These so-called bandit solvers balance exploitation behavior, where a camera achieves
high performance by using its currently known best strategy, with exploration, where
the camera explores the effect of using other strategies to build up its knowledge. By
employing bandit solvers in each camera, we are able to obtain global outcomes that
are comparable with the exhaustively calculated Pareto-efficient frontier arising from
static heterogeneity. In some cases, the adaptive nature of the online learning algo-
rithms extends the Pareto-efficient frontier arising from the best static heterogeneous
configurations. In many more cases, online learning algorithms extend the Pareto-
efficient frontier arising from the best mixed strategy configurations. We also find that,
typically, outcomes arising from online learning are more evenly spread across the biob-
jective space than those arising from a broad sample of mixed strategies. This is due
to their ability to adapt to feedback during runtime, which enables greater flexibility
for an operator wishing to select an outcome reflecting his or her preference between
the considered objectives. These results highlight an important role for heterogeneity
in general, and for adaptive heterogeneity in particular, in the design and deployment
of decentralized computational systems such as distributed smart camera networks.

The rest of the article is structured as follows. In Section 2, we summarize recent
work investigating heterogeneity and interagent variation in self-organizing systems.
We then provide a background to distributed smart camera networks and the object
handover problem and discuss the state of the art in this area. In Section 3, we for-
mally introduce the problem studied and detail relevant aspects of the smart camera
case study. In Section 4, we show how network-level heterogeneity can improve global
system performance by analyzing the effect of static predetermined heterogeneity. In
Section 5, we extend our analysis to the case where cameras employ mixed strategies,
based on stationary probability distributions, and show that these perform well, occa-
sionally improving Pareto efficiency further. In Section 6, the online learning approach
is introduced and evaluated. While the previous sections introduce the various forms
of heterogeneity using visual representations of results from the simulation environ-
ment, Section 7 presents results from a real camera network deployment, and Section 8
presents full quantitative results over all presented scenarios, evaluated for statistical
significance. We conclude the article and discuss future work in Section 9.

2. RELATED WORK

In this section, we first present and discuss recent advances in the understanding of
the role of heterogeneity and variation in self-organizing systems, with a particular
focus on multiagent software systems. Second, we provide a background to the case
study used to investigate heterogeneity in this article: the object handover problem in
distributed smart camera networks. We survey the state of the art in approaches to
tackling this problem and describe the recent socioeconomic handover approach used
as a basis for work in this article.

2.1. Heterogeneity and Variation in Self-Organizing Systems

Nature provides numerous examples of heterogeneity (or variation or diversity) en-
abling populations to successfully self-organize to achieve their objectives [Campbell
et al. 2011]. When using self-organization to engineer decentralized collective systems,
differences between system components can also be an important factor in enabling
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the collective to obtain high performance [Prasath et al. 2009; Campbell et al. 2011].
Heterogeneity in sensor networks may take on various forms. Some of those that may
be imagined include variation of hardware between nodes, differences in behavior,
and diverse parameters or objectives. In engineering such systems, the challenge is to
find self-organization algorithms that give rise to optimal forms of such heterogene-
ity, which in turn lead to high performance at the global level. Prasath et al. [2009]
highlight two key issues:

(1) Whether heterogeneity allows optimization beyond that possible in the homoge-
neous case

(2) What algorithms to use to achieve near-optimal heterogeneous networks

Campbell et al. [2011] investigated the effect of interagent variation on a multiagent
task allocation problem, showing that such variation creates more possible organi-
zations (configurations) of the system. This larger configuration space provides more
possibilities, some of which may enable a collective system to better achieve its goal.
The heterogeneity considered by Prasath et al. [2009] is in terms of the out-degree
and wireless communication radius of nodes. They permit only two possibilities for
each node’s configuration and compare the effect of using three different cooperative
algorithms for determining node types, benchmarking the outcomes against ideal best
possible outcomes. Rojković et al. [2012] present a technique for assigning roles to dif-
ferent nodes in a sensor network, which is compared with the near-optimal solution
found by a genetic algorithm with global knowledge. Nakamura et al. [2009] reactively
assign roles for data routing to different sensor nodes based on events to save energy
during idle periods. Römer et al. [2004] propose the adaptation of nodes’ roles based
on their location and purpose. This adaptation is done using a predefined set of rules
that are the same for all nodes in the network. In smart camera networks, Dieber
et al. [2011] adapt the number of cameras in the network, changing their settings and
the tasks being assigned to the cameras. They use a combination of an expectation-
maximization algorithm and evolutionary algorithm to satisfy predefined constraints.
Finally, Nebehay et al. [2013] study the role of variation not between camera nodes, but
as a characteristic of components within the object tracker in a single smart camera.

Salazar et al. [2010] highlight the importance of dynamic heterogeneous configura-
tions for sensor networks deployed in uncharted environments, that is, in scenarios
about which there is a lack of a priori information. They argue that, in response to
environmental changes over time, nodes should be able to reconfigure themselves ac-
cording to local events, possibly in different ways from each other. Anders et al. [2012]
also study the effect of interagent variation on the performance of a self-organizing
system in an uncertain environment. They found that in two algorithms, one based
on schooling fish and the other on honey bees, the performance of the algorithms ob-
tained a higher performance with heterogeneity. Their results suggest the presence of
a critical threshold, a particular amount of variation required to ensure near-optimal
solutions. They also found that in some cases, too much variety could lead to negative
effects such as oscillatory behavior or slower arrival at the solution.

2.2. Distributed Tracking and Socioeconomic Handover

In this article, we study the role of heterogeneity in self-organizing smart camera
networks. These systems are sensor networks in which various computer vision tasks,
such as object tracking, can be distributed among a group of cameras. When making
the transition from object tracking in a single camera to an entire network of cameras,
the responsibility for tracking has to be handed over between the cameras as the
object moves. This handover process has to ensure that the next camera keeps track of
each object as it moves between fields of view [Erdem and Sclaroff 2005]. To overcome
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the handover problem, various approaches have been proposed, all of them varying
in the assumptions made for the camera network, the available resources, and the
possibilities in distributing data and processing [Li and Bhanu 2009].

The main three assumptions found in prior work are (1) a priori knowledge about the
scenario, (2) central coordination, and (3) a requirement for overlapping fields of view.
Most early approaches such as presented by Quaritsch et al. [2007] or by Möller et al.
[2008] facilitate predefined specific regions in the field of view (FOV) of each camera
where the handover takes place. Other approaches presented by Makris et al. [2004],
Detmold et al. [2007], and Javed et al. [2003] employ central components, collecting
information from all cameras to determine how to allocate the tracking of objects of
interest. Those not requiring a central component often rely on object correspondence
in overlapping cameras (e.g., Cheng et al. [2007], Mandel et al. [2007], and Morioka
et al. [2010]). While none of these approaches selects the optimal camera for tracking
among all cameras in the network, the approaches by Li and Bhanu [2011] and Qureshi
and Terzopoulos [2008] assign tracking responsibilities to the optimal camera based
on user-defined objectives. Nevertheless, they require central coordination and rely on
overlapping fields of view, respectively.

Only recently, Esterle et al. [2014] presented a novel approach that removes all
three assumptions. Their approach enables an autonomous and allocatively efficient
assignment of object tracking responsibilities to cameras over time, without the need for
a priori scenario knowledge or calibration. A decentralized market mechanism is used
(Vickrey auctions are proposed) to determine the allocation of objects to cameras, and
social knowledge associated with trading is learned online using artificial pheromones.
At the same time, this social knowledge is used to better target the cameras’ marketing
effort and hence improve the efficiency of the entire system. We use this approach in this
article as a domain in which to study the space of heterogeneous and dynamic behavior
of a collective. Therefore, we further elaborate on the approach in this section.

Since the computational resources of smart cameras in a network are limited, typi-
cally only a single camera is responsible for tracking each object at a given time. This
also applies when multiple cameras “see” the object at the same time. Cameras could
simply track any object within their FOV. In cases with cameras having overlapping
FOVs, this would result in objects being tracked by two cameras simultaneously and
therefore in wasted resources from a network-wide perspective. Thus, the network has
to coordinate the tracking responsibility for a given set of objects among the available
cameras. When a camera has the responsibility for tracking an object, it is said to
“own” that object. When a camera owns an object, the owning camera may also sell
it to another camera, which corresponds to the handing over of tracking responsibil-
ities from camera to camera. In this model, “selling” an object implies handing over
responsibility for tracking it to another camera. Selling is determined by the outcome
of a Vickrey auction, hosted by the selling camera, where cameras that can see the
auctioned object place bids at a level equal to a utility value associated with that object
by the camera. This utility is in turn equal to a chosen measure of the confidence or
ability of the camera to track the object in question, given its image data.

In Esterle et al.’s simulation study, utility is the inverse of the Euclidean distance
between the object and the camera. In their real camera network scenarios, they use
a visual tracking algorithm to determine the correlation between a defined model of
the object of interest and the object within the FOV of the camera. This returns a
confidence value, which is interpreted as utility. We adopt the same metrics in this
article. However, while the approach presented by Esterle et al. relies on a measure-
ment of tracking quality, it is not important exactly how this is calculated, as long
as it is equally defined for all participating cameras and confers a level of confidence
of having correctly identified the object. In both cases, Esterle et al. assume perfect
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reidentification and tracking capabilities as well as lossless communication of the em-
ployed cameras.

A successful trade between cameras indicates that an object has moved from the
FOV of one camera to another. The amount of utility bid in the auction is transferred
from the buyer to the seller. By observing the trading behavior, the cameras learn,
at runtime, a vision graph describing the spatial relationships between their FOVs.
By using the learned vision graph to inform their communication behavior, Esterle
et al. showed that cameras are able to reduce their communication overhead without
significantly sacrificing tracking performance. Nevertheless, depending on how the
vision graph is being exploited for advertising objects within the network but also
how objects move around in the environment, situations may occur where an object is
not tracked by any camera even though it is visible to at least one camera. However,
this will be inherent to any approach that uses online learning. Further details of the
auction-based handover mechanism are presented by Esterle et al. [2014] and are not
directly relevant to the research questions studied in this article. The crucial aspect
of this approach to this article is the choice of communication behavior employed by
cameras, which determines how objects are advertised, based on social information
learned at runtime. It is therefore this behavior, and its effect, that we will focus on for
the remainder of this article.

3. PROBLEM STATEMENT

In this article, we are concerned with questions on the role of heterogeneous, dynamic,
and adaptive behavior in collective systems. We use Esterle et al. [2014] multicamera
system described in Section 2.2 as a case study, providing insight into configuration
options that arise. Specifically, we study the role of such variety in agent communica-
tion behavior by means of both the simulation and physical deployment of a network
of smart cameras. In this section, we describe the problem and research questions
considered in this article.

3.1. Configuration Degrees of Freedom

In our case study, cameras coordinate with each other through auctions for tracked
objects. Cameras participate in auctions following auction invitations, which are sent
(or not) to other cameras selectively, based on the selling camera’s marketing strategy. In
previous work [Esterle et al. 2014], camera networks were evaluated when the cameras
employed one of six possible marketing strategies for selecting which other cameras
to invite to participate in an auction. Two auction initiation schedules combined with
three communication policies give six possible marketing strategies to choose from.
The auction initiation schedules are as follows:

(1) ACTIVE, in which a camera initiates an auction for each object it owns every time it
calculates the tracking performance associated with the object

(2) PASSIVE, in which a camera initiates an auction for an object it owns when that
object is about to leave its FOV

A camera combines one of the previous auction initiation schedules with one of the
following communication policies:

(1) BROADCAST, which communicates the invitation to all available cameras in the net-
work. This approach ensures all cameras that can see the object can participate
(and hence buy the object) but generates a high overhead since it also includes
cameras that will not respond, since they cannot see the object.
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(2) STEP, which communicates the invitation to a camera if the strength of the link
to that camera in the vision graph is above a certain threshold (indicating recent
trading activity), otherwise inviting that camera with a very low probability.

(3) SMOOTH, which communicates the invitation to a camera with a probability based
on the ratio between the strength of the link between the two cameras and that of
the strongest link in its vision graph. This favors cameras with which the selling
camera has traded more frequently.

However, in previous work [Esterle et al. 2014], the same marketing strategy (e.g.,
ACTIVE SMOOTH) was employed by all the cameras in the network for the lifetime of
a deployment. In this article, we consider the cases where (1) all cameras need not
employ the same strategy as each other, (2) each camera may vary the strategy it uses
over time randomly, and (3) each camera may learn independently which strategy to
use during runtime and hence vary its strategy over time in response to environmental
feedback. Following the terminology of game theory [Binmore 2007], we refer to the case
when a camera uses a single strategy as a pure strategy. Conversely, when a camera’s
marketing strategy is determined at each decision point during runtime according to
a probability distribution, we refer to this as a mixed strategy. In the third case, when
a camera’s marketing strategy is determined at each decision point during runtime by
an online learning algorithm, we refer to this as an adaptive strategy.

However, regardless of whether the cameras use pure, mixed, or adaptive strategies,
at any given point in time, each camera’s instantiated behavior will be one of the
six marketing strategies described earlier. We therefore refer to the set of marketing
strategies employed by the cameras across the network at a given point in time as
the configuration of the network at that time. Based on the variation in the employed
marketing strategies across the network, we may describe two types of configurations:

(1) Homogeneous: A network configuration where all cameras use the same marketing
strategy

(2) Heterogeneous: A network configuration where at least two cameras use different
marketing strategies

3.2. Metrics

While cameras in the network make decisions based on local information, in common
with Esterle et al. [2014], we are primarily interested in performance at the global
level. This consists of two network-level measurements:

(1) Tracking performance, the achieved tracking performance (i.e., utility value) during
a small time window for each object actually tracked (by the camera that owns it),
summed over all objects

(2) Number of auction invitations, the number of invitation messages sent by all cam-
eras as a result of auction initiations, during a small time window, a proxy for
communication and processing overhead

In the simulation study, a camera’s utility for an object (and hence its measure of
tracking performance) is simply the inverse Euclidean distance between the camera
and the object. In the real camera system, it is the confidence output of the employed
SURF-based computer vision algorithm [Bay et al. 2008]. In practice, the exact method
used to calculate tracking performance is unimportant and we have previously explored
various methods, based on a range of computer vision techniques. The number of
auction invitations is simply a count of the invitation messages sent by all cameras.

While these measurements report instantaneous performance, we are interested in
the online performance of the network over time. Hence, each metric is the summation
of the respective set of measurements over the lifetime of the deployment. We therefore
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have two conflicting objectives: to maximize the tracking performance while minimizing
the number of auction invitations. By considering these objectives separately, we are
able to obtain results in a two-dimensional objective space that represent different
points on the tradeoff between the two. An operator may then choose between different
configurations leading to Pareto-efficient outcomes, based on their relative preference
between the objectives.

3.3. Research Questions

We have refined Prasath et al.’s [2009] key issues for engineering heterogeneity in
self-organizing systems to fit the context of our smart camera network case study. Our
research questions are therefore as follows:

(1) Do heterogeneous configurations enable outcomes that are more Pareto efficient
than those possible in the homogeneous case?

(2) How can a decentralized network of self-interested smart cameras self-organize to
a Pareto-efficient configuration, given a particular scenario?

3.4. Evaluation Scenarios

For the purposes of our evaluation, a scenario consists of a set of cameras with associ-
ated positions and orientations, along with a set of objects and their movement paths
through the environment. In this article, we simulate and evaluate configurations
within 11 qualitatively different scenarios using our open-source CamSim1 software.
We also acquired video feed data from a real smart camera network, which gives us a
12th scenario. All simulated scenarios are depicted in Figure 1, while the snapshots
from the video-based scenario and associated tracking performance data are shown
in Figures 2(a) and 2(b), respectively. A summary of all scenarios is given in Table I.
In the simulated scenarios, each object typically moves at an arbitrary but consistent
speed through the environment. In those scenarios with random movement patterns,
it is not possible to predict the duration of each object’s visibility to each camera, since
the location and angle of entry are not known and vary randomly over time. Addition-
ally, for the scenarios with randomly generated camera layouts, cameras have different
FOVs. However, for the scenarios with predefined movement paths, the length of time
objects are visible is consistent and known. These are 11 time steps in scenario 9, 18
time steps in scenario 10, and between 14 and 23 time steps in scenario 11. In the real
camera deployment, the objects to track were people moving at a slow walking speed.

In the simulation, the small time window used for calculating performance metrics
(as described in Section 3.2) corresponds to a discrete time step and is synchronized
across all cameras in the network. In our real deployment, the small time window
corresponds to a single processed frame for the respective camera. In this case, the
time windows of different cameras might not coincide with each other.

Unless otherwise stated, in all experiments reported in this article, each scenario
was run for 1,000 discrete time steps. Due to stochasticity, 30 independent runs were
conducted for each evaluation.

4. PARETO EFFICIENCY OF HETEROGENEOUS NETWORKS

Despite previous work describing six available marketing strategies [Esterle et al.
2014], they were only studied in the case when all cameras in each network used
the same strategy, that is, when all the networks were homogeneous. In this section,
we relax this unnecessary restriction, considering the case when individual nodes
(cameras) in a network can use different pure strategies from each other to govern

1CamSim is available at https://github.com/EPiCS/CamSim. All scenarios are available from the repository.
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Fig. 1. The scenarios tested with our simulation tool CamSim. A dot represents a camera, and the associated
triangle represents its FOV. Blue arrows indicate the predefined movement paths.

Fig. 2. Left: shots from five participating cameras tracking a single person. Right: tracking performance of
each camera during the run. The performance has been smoothed using a moving average filter, where each
data point is averaged over the previous five data points.

how they advertise their auctions. Permitting this heterogeneity in the network design
enables nodes to specialize to their local situation and has the effect of permitting a
wider range of global outcomes than was possible in the homogeneous case. As will
be shown in this section, this can lead to the global performance of the network being
strictly better in terms of both the considered objectives, thus extending the Pareto-
efficient frontier.
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Table I. Summary of Scenarios Used in Our Study

ID
No. of

Cameras
No. of

Objects
Object

Movement Time Steps
No. of Possible
Configurations

1 2 4 Random 1,000 36

2 3 11 Random 1,000 216

3 3 4 Random 1,000 216

4 3 4 Random 1,000 216

5 7 9 Random 1,000 ∼2.7 × 105

6 7 9 Random 1,000 ∼2.7 × 105

7 7 9 Random 1,000 ∼2.7 × 105

8 7 9 Random 1,000 ∼2.7 × 105

9 5 3 Predefined 1,000 7,776

10 9 1 Predefined 1,000 ∼1.0 × 107

11 16 5 Predefined 1,000 ∼2.8 × 1012

12 5 1 Predefined 7,120 7, 776

Note: A random object movement path means that each object moves in a straight line
until it reaches the border of the simulation area and bounces back with a randomly
chosen vector. A predefined object movement path means that each object follows a
predetermined path through the simulation area.

Fig. 3. Results for a baseline scenario (scenario 1) with two overlapping cameras. The original Pareto frontier
when homogeneity is enforced is depicted by the dashed line. The solid line indicates the newly extended
Pareto frontier when heterogeneous configurations are permitted.

However, heterogeneity itself does not necessarily lead to better outcomes. It is
also possible that nodes specialize wrongly, leading to a strictly worse global outcome
than was possible in any homogeneous case. Indeed, when considering all possible
heterogeneous configurations for a given network, the number of configuration points
increases greatly compared to the homogeneous-only case.

4.1. A Baseline Scenario

We first consider scenario 1, a baseline scenario with two cameras and four objects.
Figure 3 shows the mean global performance on the two objectives, calculated over 30
independent runs. Each point represents the global outcome from one configuration
κ over 1,000 time steps, in terms of both metrics: its total network-wide tracking
performance π and the number of auction invitations ι within the entire network. As in
previous work [Esterle et al. 2014], all measured values of the different configurations
are adjusted to a common scale. This normalization of the tracking performance and
auction invitations are done by the maximum achievable values, denoted πmax and ιmax,
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respectively. Intuitively, πmax and ιmax are always obtained in a given scenario by ACTIVE

BROADCAST, since this strategy always communicates to every other node at every time
step, ensuring that the camera with the highest tracking performance always owns
the object, but at the cost of maximal communication. This was confirmed in all our
experiments. The normalized values are given by

πnorm(κ) =
π (κ)

πmax

(1)

and

ιnorm(κ) =
ι(κ)

ιmax

. (2)

By enforcing homogeneity, as was done previously [Esterle et al. 2014], we have six
possible deployment options. The outcomes from these homogeneous configurations are
depicted as squares. In this scenario, despite the six possible homogeneous configura-
tions, there are only two extreme observed outcomes in the objective space, one favoring
each objective. This is because, in some very simple scenarios, some strategies give rise
to the same communication behavior as each other; homogeneity does not permit any
more balanced outcomes in this case. However, allowing the cameras to adopt different
strategies from each other introduces new possibilities. When heterogeneous config-
urations are included, there are 36 possible deployment options. The heterogeneous
configuration outcomes are depicted as crosses.

Outcomes a and b in Figure 3 extend the Pareto-efficient frontier, indicating new
efficient configurations for tracking objects within the network. Additionally, both of
these points lie on the newly extended Pareto frontier, since for each, no other outcome
is better on both objectives. It is therefore clear from this example that heterogeneous
configurations can lead to additional efficient outcomes.

4.2. More Complex Scenarios

In this section, we consider more complex scenarios. We evaluated all six homoge-
neous configurations in all scenarios, and all possible heterogeneous configurations
in scenarios 1 through 9. Due to the large number of cameras in scenarios 10 and
11, an exhaustive evaluation of all heterogeneous configurations was computationally
infeasible.

Figure 4 compares outcomes from heterogeneous and homogeneous configurations in
one medium-sized and one large scenario, scenarios 4 and 9. In these more complex sce-
narios, heterogeneous configurations led to many more outcomes in the objective space.
In each case, the extension of the Pareto-efficient frontier brought about by heterogene-
ity is also apparent. However, it is also clear that the outcomes of many heterogeneous
configurations are dominated, and many are strictly worse than the original outcomes
from the homogeneous cases. Indeed, in all evaluated scenarios, when heterogeneous
configurations of cameras are allowed, we observed system-wide outcomes that both
dominate and are dominated by outcomes from homogeneous configurations. In all
cases, heterogeneity extended the Pareto-efficient frontier.

5. PARETO EFFICIENCY OF MIXED MARKETING STRATEGIES

In Section 4, we showed the potential benefits of heterogeneity. However, we restricted
the heterogeneous configurations studied to static heterogeneity: those configurations
arising from cameras’ varying use of pure strategies. Cameras were initialized with
different pure strategies from each other but did not change their strategies during
runtime. In this section, we consider the dynamic heterogeneous case, when cameras
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Fig. 4. Performance for scenario 4 and scenario 9 showing homogeneous and heterogeneous assignment of
strategies. The results have been normalized by the maximum value of the ACTIVE BROADCAST strategy and
are averages over 30 runs with 1,000 time steps each.

use mixed strategies. At each decision point in time, each camera selects one of the six
pure marketing strategies according to a stationary probability distribution associated
with that camera. In this case, we may consider heterogeneity at two levels. First, for
any distribution with a nonzero probability over more than one pure strategy, random
selection will likely induce a heterogeneous configuration. Second, cameras may have
different probability distributions from each other, governing their mixed strategies.
This introduces a second level of heterogeneity.

We therefore refer to configurations where all cameras have the same distributions as
mixed, and as heterogeneous mixed if at least two cameras have different distributions
from each other. To select distributions, we implement a Monte Carlo approach and
select random probabilities for the selection of each pure strategy at each point in time.
For mixed strategies, each camera received the same distribution. For heterogeneous
mixed, each camera used an independent random number generator with its own (likely
different) distribution.

5.1. A Baseline Scenario

We begin by studying mixed and heterogeneous mixed strategies in scenario 1. We
compare our findings with the results of homogeneous and static heterogeneous config-
urations, which were described in Section 4.1. Figure 5 shows the outcomes from 100
uniformly sampled distributions for all cameras (mixed strategies) in the network as
well as from 100 randomly selected distributions for each camera separately (heteroge-
neous mixed strategies). As the figure shows, enabling dynamic heterogeneity, simply
by cameras altering their behavior randomly, results in performance outcomes that
extend the Pareto-efficient frontier compared to static heterogeneously and homoge-
neously assigned pure strategies. Section 8 confirms this result quantitatively.

5.2. More Complex Scenarios

This pattern is repeated across the range of scenarios tested. Figure 6 shows that in
both scenarios 4 and 9, we observe that outcomes arising from the randomly sam-
pled mixed and heterogeneous mixed strategies are typically Pareto superior to those
arising from both the static homogeneous and static heterogeneous cases. This per-
haps surprising result suggests that dynamic configurations (i.e., those which change
over time, in this case even through random behavior) can outperform the best static
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Fig. 5. Performance for scenario 1 showing homogeneous, heterogeneous, mixed, and heterogeneous mixed
assignment of strategies. The results have been normalized by the maximum value of the ACTIVE BROADCAST

strategy and are averages over 30 runs with 1,000 time steps each.

Fig. 6. Performance for scenario 4 and scenario 9 showing homogeneous, heterogeneous, mixed, and meta-
mixed assignment of strategies. The results have been normalized by the maximum value of the ACTIVE

BROADCAST strategy and are averages over 30 runs with 1,000 time steps each.

heterogeneous configurations, even with the absence of any deliberate scenario-specific
pattern to the dynamics. Indeed, it is further surprising that the mixed and hetero-
geneous mixed strategies in no scenario generated outcomes that were at the less
efficient region of the point cloud arising from the static heterogeneous configurations.
Dynamics, even in the absence of any runtime adaptation or advance calibration, have
provided increased Pareto efficiency. As Section 8 discusses, this pattern is replicated
across the majority of the evaluation scenarios studied in this article.

5.3. Generalizing Mixed Strategy Behavior

In order to obtain some intuition behind what is being observed here, consider that for a
given scenario, there must exist at least one (dynamic) configuration whose outcome is
nondominated, that is, lies on the Pareto-efficient frontier. Therefore, given sufficient
advance knowledge, we could specify a nonempty set for a given scenario, in which
each element is a sequence of marketing strategies for every camera at each point in
time, which gives rise to a Pareto-efficient global outcome. As a simple example, we
might find that for the first 10 time steps of a scenario with two cameras, there are
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Table II. Example Optimal Strategy Sequences for the First 10 Time Steps of a Two-Camera Scenario

Camera 1: ASm ASm ASm ASt ASt AB AB AB ASm PSt

Camera 2: PB PB PB ASt ASt AB AB PB PSm PSm

Note: AB = Active Broadcast; ASm = Active Smooth; ASt = Active Step; PB = Passive Broadcast;
PSm = Passive Smooth; PSt = Passive Step.

four possible Pareto-optimal sets of strategy sequences for the two cameras to follow.
An example of such a sequence might be as shown in Table II.

Unfortunately, determining such an optimal set of strategy sequences, even in trivial
scenarios, is infeasible, and hence the previous is just an example. Generally, the
number of possible strategy sequence sets depends on the number of cameras, the
number of strategies, and the length of time to be considered. More precisely, the size
of the space is sct, where s is the number of pure strategies available, c is the number of
cameras, and t is the number of discrete time points at which to select a configuration.

As an example, even with two cameras, six pure strategies, and 10 time steps, this
works out as 3.6 × 1015 possible strategy sequence sets to be evaluated. And due to
stochasticity in the environment (due to the uncertain presence and movement of
objects) and strategies, such evaluations should be run several times to obtain statisti-
cally meaningful results. This is clearly infeasible to evaluate exhaustively, though it is
likely that such a space has some structure, which may be able to be exploited through
black-box search techniques. However, this infeasibility implies that we are not able to
compare the outcomes of our techniques against the true optimal solution in any case
(e.g., as is typically done in regret calculations in reinforcement learning), as deter-
mining such an optimum is not possible in practice. We therefore rely on comparisons
between the various feasible approaches that are presented.

Of particular interest here is that the optimal behavior of the cameras will also
likely be codependent, implying that we can analyze their behavior game theoretically.
For example, if camera 1 follows the strategy sequence in Table II, then camera 2’s
optimal strategy is also that described in Table II. This is also the case in reverse; that
is, the cameras operating in this fashion would be in a Nash equilibrium [Binmore
2007]. However, if camera 1 deviates from the strategy sequence in Table II, then
the strategy sequence for camera 2 in Table II may no longer be optimal. Indeed,
an increased reward may be able to be obtained by following a different sequence.
This codependency of strategy sequence optimality contributes an additional layer of
complexity to the problem of strategy selection at the local level. More specifically, it
ensures that the problem faced in the online learning of such a sequence is subject to
changes over time.

Given the existence of an (unknown) optimal strategy sequence, the key question
in the design of an optimal heterogeneous configuration becomes: how can the system
obtain global performance near to that obtained by the optimal set of strategy se-
quences? Given that scenarios are unknown and unpredictable, how well can different
approaches for the selection of strategies at runtime approximate the optimal set of
strategy sequences? In Section 4, we explored the simple approach of choosing a static
pure strategy profile for the set of cameras. In this section, we explored the approach
of employing mixed strategies based on stationary probability distributions to perform
this approximation. We showed that by sampling across the range of possible mixed
strategy distributions, we were able to obtain highly Pareto-efficient outcomes.

However, both these approaches suffer from a critical drawback when considering
their implementation in a given camera network deployment. Specifically, in order to
obtain a particular preferred outcome on the Pareto-efficient frontier, for example, one
that favors reducing communication overhead or one that balances communication and
tracking performance objectives equally, we would need to know a mapping between
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(mixed) strategy distributions across all cameras and their corresponding outcomes in
the objective space. Such a mapping would need to be determined offline in advance, and
would require a priori knowledge of the scenario, including object movements, camera
positions, and dynamics of the network itself. The lack of precisely this information is
a key assumption and motivator of the online socioeconomic approach studied in this
article, and hence violating this assumption in order to select an appropriate mixed
strategy profile would not be appropriate. In other words, if such information was
indeed available in advance, then other offline calibration methods may be pursued
instead of the one studied in this article. For this reason, we do not pursue this offline
analysis further. In order for a strategy profile selection technique to be of practical use
within this online scenario, where scenario information is not known in advance, such
a mapping from (mixed) strategy distributions to outcome positions would have to be
highly robust to differences between scenarios. There is no evidence that this is the
case; indeed, due to the complex interactions between the effects of different strategies
observed here and in prior work [Esterle et al. 2012, 2014], this is unlikely to be true.
This means that a new mapping would have to be learned for each specific deployment,
which is tantamount to performing offline calibration. It is also unclear how this might
generalize to the case when new or different base strategies are available, as might
generally be the case. Therefore, in the following section, we instead develop and explore
online learning as an alternative approach, where the assumptions of no advanced
scenario knowledge can be maintained.

6. DECENTRALIZED ONLINE LEARNING OF PARETO-EFFICIENT CONFIGURATIONS

Section 4 showed that by permitting heterogeneous configurations of nodes, global
outcomes may be obtained that are more Pareto efficient than in the homogeneous
case. Section 5 further showed that in addition to heterogeneous configuration, dynamic
configurations, those where cameras change their strategies during runtime, can lead
to a further increase in Pareto efficiency. In Section 5.3, we discussed the difficulties
in choosing a particular static or dynamic heterogeneous configuration at any point in
time, in order to achieve a desired efficient global outcome, in a particular scenario.

This could be tackled as an offline search problem, as part of multicamera calibration.
However, doing so would assume that we know the characteristics of the scenario
in advance, including camera placement and orientation, expected object movement
patterns, and any runtime failures or additions (such as studied in Esterle et al. [2012]).
Therefore, we instead tackle this problem by extending the idea followed in our previous
work, where individual cameras learn behaviors online during runtime.

In this manner, a camera’s strategy selection is made autonomously using a learning
technique at the local level, which provides adaptation at runtime based on feedback
from locally observed metrics: in this case the number of auction invitations sent by
the node and its tracking performance (as opposed to the equivalent metrics for the
network as a whole). We are then interested in observing the effect of this parallel local
learning within cameras on the metrics at the network level.

This purely online approach ensures that the deployment of a multicamera system
remains simple and does not require advance calibration. By using online learning,
in this section we show that camera networks are able to achieve Pareto-efficient
outcomes, tunable according to the operator’s preference, without the need to consider
the nature of the deployment scenario in advance.

6.1. Learning Efficient Configurations Using Bandit Solvers

From the perspective of an individual camera, its task is to select a marketing strat-
egy from those available, at each point in time, such that it maximizes its expected
tracking performance while minimizing its auction overhead, over time. As described
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in Section 5.3, there will exist an ideal sequence of marketing strategies for each cam-
era, such that the network as a whole achieves Pareto efficiency; however, each camera
cannot know this sequence in advance. Furthermore, as cameras learn, the learning
problem facing the other cameras changes in response. We therefore consider that a
camera is faced with a nonstationary online algorithm selection problem [Gagliolo and
Schmidhuber 2011]. Our approach is to consider this as a variant of the multiarmed
bandit problem [Auer et al. 2002]. This problem is analogous to being faced with n slot
machine arms, where each pull of an arm returns a random reward drawn from an
unknown distribution associated with that arm. Given m total arm pulls, the task is
to select which arms to pull such that the total reward obtained is maximized. If the
player knew the distributions behind each arm, then he or she could simply select the
best arm for every pull. However, since the distributions are unknown, he or she must
sample from each arm in order to learn its reward distribution. The multiarmed bandit
problem therefore encapsulates the classic exploration versus exploitation dilemma.
However, some of the assumptions present in the classic multiarmed bandit problem
formulation may not be appropriate in this setting. First, the reward distributions are
usually assumed to be stationary over time, and second, it is assumed that the bounds
on the obtainable rewards are also known. Neither assumption can be made in our
case.

Nevertheless, the bandit framework is a useful model, where each marketing strategy
can be considered an arm of a bandit. Each camera node can choose to use one strategy
(i.e., pull an arm) at each time step and can receive a resulting reward derived from
its local metrics. In this way, a camera learns which strategy performs well in its
current situation within the scenario and exploits that knowledge to maximize its
performance. There are a number of so-called bandit solving algorithms to be found
in the literature. In this article, we consider three well-known bandit solvers: the
simple EPSILON-GREEDY [Sutton and Barto 1998]; UCB1, which is known to perform well
in stationary problems [Auer et al. 2002]; and SOFTMAX [Sutton and Barto 1998]. Of
these, EPSILON-GREEDY requires an ǫ value to determine the amount of exploration, UCB1
requires no parameters, while SOFTMAX uses a temperature value to govern how an
arm’s expected reward influences its probability of selection.

Epsilon-greedy [Sutton and Barto 1998] is perhaps the simplest bandit solver. First,
we try each action (or arm) j, recording the reward obtained. Thereafter, the arm with
the greatest average reward x̄ j is selected with probability 1 − ǫ; with probability ǫ,
a random arm is chosen. Each time an arm is chosen, the average reward associated
with that arm, x̄ j , is updated according to the obtained reward.

The SOFTMAX action selection method [Sutton and Barto 1998] aims to improve upon
EPSILON-GREEDY by varying arm selection probabilities according to the estimated value
of each arm. The technique selects an arm according to a probability p( j) associated
with each arm j, determined by Equation (3). The method uses a “temperature” pa-
rameter T , which determines the uniformity with which arms with different expected
rewards x̄ j get selected, with lower T making selection focus on arms with high x̄ j :

p( j) =
ex̄ j/T

∑n
k=1 ex̄k/T

. (3)

For the UCB1 strategy [Auer et al. 2002], which uses confidence bounds, we first try
each arm j and record the reward x̄ j arising from that arm, setting nj to 1. Thereafter,
we select an arm with the index as given by Equation (4), updating the average reward
x̄ j observed from each arm, as well as the number of times nj an arm j has been tried
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so far. The total number of arms tried so far is given by n:

argmax
j

x̄ j +

√

2 ln n

nj

. (4)

In applying bandit solvers to algorithm selection at the local level in a self-organizing
system, we must define local reward functions, such that the global system’s objectives
are achieved. In this case, this is further complicated by the presence of multiple ob-
jectives at the global level and corresponding multiple metrics locally at each node.
A common approach to the definition of a reward function in multiobjective learning
is scalarization of multiple reward signals into a single reward value, although the
choice of scalarization technique can have a significant impact on the ability of the
learning algorithm to properly explore the Pareto frontier [Vamplew et al. 2008]. Var-
ious scalarization methods have been proposed [Van Moffaert et al. 2013a, 2013b];
however, at this stage we are more concerned with the overall effect of decentralized
online learning of marketing strategies and leave the question of which scalarization
technique should be preferred as an item for future research. Additionally, preliminary
experiments showed that the choice of bandit solver algorithm had a far greater effect
on the outcome than the choice of scalarization technique.

Therefore, in this article, we use the usual linear combination approach to scalariza-
tion of the local metrics:

reward = α × total camera utility − (1 − α) × auction invitations, (5)

where total camera utility is the camera’s total utility value as found in previous work
[Esterle et al. 2014], which sums the tracking performance of (i.e., the utility obtained
from) all objects tracked by this camera, plus the camera’s balance of payments from all
trading activity during this time step. The number of auction invitations sent by this
camera at this time step is denoted by auction invitations. α allows us to change the
camera’s preference in favor of either maximizing tracking performance or minimizing
the number of auction invitations. Therefore, α may be used as a handle with which to
guide local learning such that outcomes at the global level favor appropriate regions of
the Pareto-efficient frontier.

Figure 7(a) shows the outcomes in scenario 1 when configurations learned using ban-
dit solvers are compared with static homogeneous and heterogeneous configurations.
For EPSILON-GREEDY, ǫ values of 0.1, 0.01, and 0.001 were tried. In all scenarios, with
1,000 time steps, ǫ = 0.1 obtained the most Pareto-efficient outcomes and is therefore
used in all results in this article. Outcomes are shown for EPSILON-GREEDY, UCB1, and
SOFTMAX, the latter with temperature values 0.1 and 0.2. For each bandit solver, results
are shown when α is varied between 0 and 1 in intervals of size 0.05.

The results in Figure 7(a) clearly show that configurations found with bandit solvers
provide many more outcome points in the objective space than were possible in the
static homogeneous and heterogeneous cases, and that many of these outcomes are
highly Pareto efficient. Even though we presented the static heterogeneous configura-
tion outcomes exhaustively, bandit solvers were able to obtain system-wide outcomes
that extend the Pareto-efficient frontier obtained in the static heterogeneous case.

As with mixed strategy outcomes as presented in Section 5, dynamic configurations
arising from online learning, even with no advance scenario knowledge, can outperform
even the best static heterogeneous configurations.
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Fig. 7. Performance for scenario 1 showing homogeneous and heterogeneous assignment of strategies as
well as assignments done by bandit solvers. In (b), results from mixed and heterogeneously mixed strategies
are also shown. The results have been normalized by the maximum value of the ACTIVE BROADCAST strategy
and are averages over 30 runs with 1,000 time steps each. Additionally, in (b), the bandit solvers’ reward
functions normalized the number of auction invitations by distribution at runtime (see Section 6.2).

6.2. Camera-Level Normalization by Distribution

Section 6.1 showed how bandit solvers can be used within cameras in order to select
marketing strategies during runtime, appropriate to the scenario and the node’s pref-
erences between objectives (in this case its α value). We also showed that by varying
the α value, global outcomes ranged over the Pareto-efficient frontier. However, it is
also clear from Figure 7(a) that the results from the bandit solvers cluster toward the
lower left of the Pareto front, while outcomes in the upper right are more thinly spread.

This bias in outcomes is a result of the nature of the observed metrics at the camera
level and their combination in the local reward function. Ideally, α would be used to
weigh the two objectives evenly, such that the outcome position on the Pareto frontier
can be determined directly by setting α. For example, an α value of 0.25 would lead to
an outcome value 25% of the way along the length of the achieved front. In order to
achieve this, we would need to normalize the two components of the reward function.
However, although a camera knows its own tracking performance associated with an
object, it cannot know what payment it might have received had it advertised the object
to a camera, which it did not. The upper bound on the camera’s utility is therefore not
known and will vary significantly with every time step. Nevertheless, we are still able
to mitigate the bias effect somewhat by attending to the second component of the
reward function, the number of auction invitations issued by the camera. The upper
bound on this value will also vary, but in this case only with the number of objects and
other cameras currently known to the camera.

We are therefore able to perform some estimated normalization of the number of
auction invitations at the local level. Figure 8 shows the frequency with which cameras
send auction invitations to other cameras over time. Clearly, cameras are less com-
municative more often than they are more communicative. As it turns out, this skew
in the distribution appears to have a large effect on the bias observed in the outcome
Pareto front. We are able to account for this skew effect by introducing a normalization
by distribution process into the auction invitation component of the local reward.

More specifically, each camera records the value of auction invitations for each time
step throughout its lifetime. When a new value is observed, its rank within the histor-
ical values is calculated and then scaled to be between 0 and 1. The original value is
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Fig. 8. A selection of histograms showing the frequency distribution of auction invitations sent per time
step. The bins on the x-axis represent 0, 1, 2, 3, and 4 auctions per time step from left to right. The y-
axis shows the frequency with which this number of auctions was observed in each camera. Each camera is
represented by one bar per bin. Each camera is represented using one bar per bin. From top to bottom, the
rows show scenarios 3, 6, and 9, respectively. From left to right, the columns show results when cameras use
EPSILON-GREEDY, SOFTMAX with temperature = 0.1, SOFTMAX with temperature = 0.2, and UCB1, respectively. In
all cases, α = 0.5.

Table III. A Comparison of Distances Between Pairs of Adjacent Outcome Points on the Pareto Frontier, for Both
Normalized and Nonnormalized Cases, for Each of the Bandit Solvers

Mean Pairwise Distances and Variances About These Means are Shown, Averaged over 30 Runs. Statistically
Significant Differences Are Shown in Bold, According to Rank Sum Tests Calculated at the 95% Confidence Level.

EPSILON-GREEDY SOFTMAX T = 0.1 SOFTMAX T = 0.2 UCB1

Original Normalized Original Normalized Original Normalized Original Normalized

Mean 0.1944 0.1533 0.0879 0.0495 0.0611 0.0287 0.0821 0.0795

Variance 0.0768 0.0577 0.0066 0.0010 0.0017 0.0003 0.0040 0.0020

then added to the historical record. For example, if the new value is greater than the
largest observed value so far, its normalized value is 1. Similarly, if a new value falls
halfway along the list of historically observed values, its normalized value is 0.5.

By normalizing in this way, the skew present in the distribution of original values
is reduced, and we obtain a more even spread of outcomes along the achieved frontier.
Figure 7(b) shows this for scenario 1 and can be compared with Figure 7(a). The results
from mixed and heterogeneous mixed strategies, described in Section 5, have also been
added back in for comparison. A bias, though less pronounced, is still present with
EPSILON-GREEDY and UCB1. This skewed distribution pervades all scenarios we evaluated;
therefore, we adopted this normalization method in all subsequent experiments.

For a quantitative evaluation of the effect of the skew observed here, we measured
the distance between each pair of consecutive points on the Pareto frontier for each
bandit solver. From this, we extracted the mean distance between pairs of points, as
well as the variance about the mean. These figures tell us both how far apart and how
evenly spaced the achieved points on the front are. Table III shows these values for the
nonnormalized and normalized by distribution versions of the bandit solvers. In each
case, the values reported are again averaged, as we take the mean over 30 independent
runs. As can be seen from the table, the average distance between achieved points is
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Fig. 9. Performance for scenarios 4, 5, 8, and 9, showing homogeneous and heterogeneous assignment of
strategies, mixed and heterogeneous mixed strategies, and assignments done by bandit solvers. The results
have been normalized by the maximum value of the ACTIVE BROADCAST strategy and are averages over 30 runs
with 1,000 time steps each. The bandit solvers’ reward functions normalized the number of auction invitations
by distribution at runtime.

consistently lower in the normalized case. More importantly from our point of view,
however, is that the variance is also substantially lower in all cases. This tells us that
the achieved points are more evenly spread in the normalized case.

6.3. Learning in More Complex Scenarios

Figure 9 shows results for scenarios 4, 5, 8, and 9. In all cases, bandit solvers used the
normalization by distribution method described in Section 6.2. In each of these more
complex scenarios, bandit solvers appear to be able to obtain outcomes that extended
the Pareto-efficient frontier of the exhaustively evaluated static configurations. This is
particularly true of SOFTMAX and UCB1, all of which obtained a range of highly Pareto-
efficient outcomes. On further evaluation, as will be reported in Section 8, a statistically
significant Pareto frontier extension is observed to arise from online learning in all
scenarios except 2 and 12. In those cases, the outcomes from learning compare well
with the most efficient static heterogeneous configurations.

The spread of outcomes can be observed to vary depending on the particular scenario
and the choice of bandit solver employed. The bias associated with EPSILON-GREEDY and,
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Fig. 10. Performance of all configurations in scenario 12, showing homogeneous and heterogeneous assign-
ment of strategies, mixed and heterogeneous mixed strategies, and assignments done by bandit solvers. The
results have been normalized by the maximum value of the ACTIVE BROADCAST strategy and are averages over
30 runs with 1,000 time steps each. The bandit solvers’ reward functions normalized the number of auction
invitations by distribution at runtime.

to a lesser extent, UCB1 remains. Outcomes from SOFTMAX are more evenly spread as α

varies, typically obtaining the most even spread across the frontier in each scenario,
especially when compared with outcomes arising from the mixed and heterogeneous
mixed strategies. Section 8 also contains a quantitative evaluation of the evenness of
the spread associated with the outcome points.

A further observation is that the outcomes from the bandit solvers never reach
either extreme of the objective space, instead gravitating toward the middle. This is
due to exploration behavior: since we are measuring online performance, in order to
achieve extreme outcomes, the network would need to use the required configuration
throughout its lifetime.

7. REAL CAMERA NETWORK RESULTS

We furthered our evaluation using video feed data from a real smart camera network;
this is referred to as scenario 12 in Table I. A SURF-based tracking approach [Bay et al.
2008] was used to detect and track a person within the network of cameras. The SURF-
based approach initially extracts features from a model image and tries to reidentify
these model features in the consecutive frames. The percentage of reidentified features
represents the confidence (cf. Section 2.2) of our SURF-based tracker. Figure 2(a) shows
snapshots from each camera at five different points in time (left) and the tracking
performance of each camera over time (right). Each camera captured 1,780 frames,
looped four times to create a total of 7, 120 frames, each with a resolution of 640 × 480.
When PASSIVE strategies were employed, auctions were initiated when the tracked object
was within 20 pixels of the border of the FOV.

Figure 10 shows the results obtained from all static and dynamic homogeneous and
heterogeneous strategies as well as those obtained by decentralized online learning.
As with the results in Section 4, heterogeneous configurations lead to system-wide
outcomes that are more Pareto efficient then those possible in the homogeneous case.
Furthermore, as with the results in Section 6, the use of decentralized online learning of
marketing strategies also extended the Pareto-efficient frontier when compared to the
homogeneous case. As with some of the simulation scenarios, in this instance, learning
was not able to generate outcomes dominating the most Pareto-efficient heterogeneous
cases; however, they do compare well here also.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 8, Publication date: June 2015.



8:22 P. R. Lewis et al.

8. QUANTIFYING PARETO EFFICIENCY

We quantitatively compared the quality of Pareto frontiers using three indicators
within a relevant region of the objective space. More specifically, the span2 of objective
values for both objectives is determined for each run and used to scale all outcomes
pertaining to that run. For each simulation run, the set of outcomes consisting of all the
static configurations contain the extreme values for both our objectives, and thus pro-
vide the span to be used as the scaling factor.3 Pareto frontier indicators are computed
using the frontiers resulting from all studied approaches in this scaled objective space.
This enables us to compare Pareto frontiers in relation to each other fairly, as opposed
to each being computed and compared with respect to an arbitrary scale. Moreover, we
perform rank sum tests on the quality of frontiers.

8.1. Notation

The Pareto-efficient frontier considering the outcomes from static homogeneous config-
urations gives us a frontier that we call h. The Pareto-efficient frontier considering all
the outcomes from both static homogeneous and static heterogeneous configurations
gives us a frontier that we call h-he. Outcomes due to sampling of mixed strategies,
as described in Section 5, together with homogeneous configuration outcomes we call
h-m and h-hm for mixed and heterogeneous mixed strategies, respectively. Accordingly,
h-he-m and h-he-hm refer to the fronts arising from the combinations of homogeneous,
static heterogeneous, and either form of mixed strategies, respectively. Outcomes due
to a bandit solver, together with static homogeneous configuration outcomes, give us
frontiers h-eg, h-sm, or h-ucb, depending on the considered bandit solver being EPSILON-
GREEDY, SOFTMAX, or UCB1, respectively. We focused this analysis on SOFTMAX with a
temperature value of 0.2, since this obtained the lowest variance in Table III, indi-
cating more evenly spread outcome points. Outcomes due to a bandit solver, together
with static homogeneous configuration outcomes and static heterogeneous configura-
tion outcomes, give us frontiers h-he-eg, h-he-sm, or h-he-ucb. Similarly, fronts arising
from the combination of both mixed and learned strategies are termed, for example,
h-he-m-eg.

8.2. Hypervolume

One way of comparing Pareto-efficient frontiers is to compute the hypervolume [While
et al. 2006] under each frontier, given a reference point. This is particularly appropriate
when the true frontier is not known, as in this case, and as such the regret measure
cannot be used [Vamplew et al. 2011]. The reference point can be specified as the vector
of worst-case values in the scaled objective space. Thus, a tracking performance value
of 0.0 and a number of auction invitations value of 1.0 in the scaled space specify our
reference point. The greater the hypervolume of a Pareto frontier is, the more efficient
it is. In this case, we calculate the online hypervolume [Vamplew et al. 2011], since we
are interested in online performance, that calculated as a sum over time.

Table IV shows the medians (across 30 independent runs) of the hypervolumes of
the aforementioned frontiers, indicating statistical significance in the extensions with
respect to the fronts arising from nonlearned configurations across the scenarios con-
sidered in this article. First, it is evident that heterogeneity of marketing strategies,

2Given all outcomes from the studied approaches for any run, we refer to the difference between the maximum
and minimum values in these outcomes for an objective as the span for that objective for the run.
3Scenarios 10 and 11 admit a combinatorially large number of heterogeneous configurations, which were not
possible to simulate. Thus, the outcomes from heterogeneous configurations remain unknown to us for these
scenarios. The set of static homogeneous outcomes still contain the extreme values for both our objectives
per run; therefore, we used this set to determine the span across both objectives in these scenarios.
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Table IV. Medians over 30 Independent Runs of the Hypervolume of the Pareto Front Resulting
from Various Configurations

Homogeneous (h), Homogeneous + Heterogeneous (h-he), Homogeneous + Mixed (h-m, h-hm), Homoge-
neous + Heterogeneous + Mixed (h-he-m, h-he-hm), Homogeneous + Learned (h-eg, h-sm, h-ucb), Homoge-
neous + Heterogeneous + Learned (h-he-eg, h-he-sm, h-he-ucb), Homogeneous + Mixed + Learned (h-m-eg,
h-m-sm, h-m-ucb, h-hm-eg, h-hm-sm, h-hm-ucb), Homogeneous + Heterogeneous + Mixed + Learned (h-he-m-
eg, h-he-m-sm, h-he-m-ucb, h-he-hm-eg, h-he-hm-sm, h-he-hm-ucb)

Pareto fronts without learned outcomes

Scenario h h-he h-m h-hm h-he-m h-he-hm

1 0.0 0.30929 a 0.68673 ab 0.72107 abce 0.68673 ab 0.72107 abce
2 0.80137 0.90698 acd 0.8554 a 0.85584 a 0.91055 acd 0.9109 acd
3 0.72707 0.8767 acd 0.83887 a 0.84352 a 0.88769 acd 0.89104 abcd
4 0.65202 0.84816 acd 0.81301 a 0.81993 a 0.8616 abcd 0.86327 abcd
5 0.82796 – 0.88715 a 0.88698 a – –
6 0.9383 – 0.95145 a 0.95204 a – –
7 0.80726 – 0.86218 a 0.86313 a – –
8 0.78658 – 0.86931 a 0.88135 ac – –
9 0.85205 0.94012 acd 0.90023 a 0.90077 a 0.94583 abcd 0.94699 abcd
10 0.89392 – 0.905 0.91355 – –
11 0.68725 – 0.8487 a 0.83122 a – –
12 0.93062 0.98824 acd 0.93615 a 0.94699 ac 0.98824 acd 0.98824 acd

Pareto fronts with learned outcomes
h-eg h-sm h-ucb h-he-eg h-he-sm h-he-ucb

1 0.21849 a 0.75989 abcdef 0.65098 ab 0.35997 ab 0.75989 abcdef 0.65098 ab
2 0.84635 a 0.83036 a 0.81477 0.90866 acd 0.90874 acd 0.90705 acd
3 0.79252 a 0.83807 a 0.83109 a 0.88277 acd 0.8888 abcd 0.89181 abcd
4 0.72772 a 0.82902 a 0.80629 a 0.85151 acd 0.8694 abcd 0.86682 abcd
5 0.85765 a 0.90883 acd 0.88058 a – – –
6 0.95079 a 0.9495 a 0.95023 a – – –
7 0.83062 a 0.83815 a 0.83134 a – – –
8 0.82619 a 0.87712 a 0.86225 a – – –
9 0.88409 a 0.93545 acd 0.92265 acd 0.94012 acd 0.95475 abcdef 0.94842 abcd
10 0.91748 0.91667 0.92355 a – – –
11 0.72752 0.82322 a 0.80153 a – – –
12 0.95727 acd 0.93141 0.95302 acd 0.98835 acd 0.98824 acd 0.98824 acd

h-m-eg h-m-sm h-m-ucb h-hm-eg h-hm-sm h-hm-ucb

1 0.71112 abce 0.78301 abcdef 0.79487 abcdef 0.74209 abcdef 0.78412 abcdef 0.80311 abcdef
2 0.88807 acd 0.85841 a 0.85643 a 0.88674 acd 0.85708 a 0.8578 a
3 0.87684 acd 0.84971 a 0.85532 acd 0.88291 acd 0.85055 a 0.85874 acd
4 0.84425 ac 0.84063 acd 0.86016 acd 0.84687 acd 0.84682 acd 0.86449 abcd
5 0.9063 acd 0.91837 acd 0.91628 acd 0.90669 acd 0.9175 acd 0.91576 acd
6 0.96393 acd 0.95445 a 0.95774 acd 0.96573 acd 0.95533 a 0.95892 acd
7 0.88647 acd 0.86544 a 0.87142 a 0.88306 acd 0.86448 a 0.87456 a
8 0.89729 acd 0.89777 acd 0.90003 acd 0.90689 acd 0.89841 acd 0.90452 acd
9 0.91474 acd 0.93618 acd 0.93399 acd 0.91659 acd 0.93651 acd 0.93553 acd
10 0.92407 a 0.91691 0.92446 a 0.92851 a 0.91722 0.9275 a
11 0.8675 acd 0.85478 ad 0.86499 acd 0.85108 a d 0.83186 a 0.84451 a d
12 0.96034 acd 0.93617 a 0.9541 acd 0.96355 acd 0.94699 ac 0.95551 acd

h-he-m-eg h-he-m-sm h-he-m-ucb h-he-hm-eg h-he-hm-sm h-he-hm-ucb

1 0.71112 abce 0.78301 abcdef 0.79487 abcdef 0.74209 abcdef 0.78412 abcdef 0.80311 abcdef
2 0.91135 acd 0.91059 acd 0.91071 acd 0.91183 acd 0.91166 acd 0.91106 acd
3 0.89424 abcd 0.89196 abcd 0.89805 abcd 0.89685 abcd 0.89293 abcd 0.89937 abcd
4 0.86704 abcd 0.87183 abcd 0.87753 abcdef 0.86683 abcd 0.87153 abcd 0.87655 abcdef
5 – – – – – –
6 – – – – – –
7 – – – – – –
8 – – – – – –
9 0.94583 abcd 0.95542 abcdef 0.95337 abcdef 0.94699 abcd 0.95538 abcdef 0.95453 abcdef
10 – – – – – –
11 – – – – – –
12 0.98835 acd 0.98824 acd 0.98824 acd 0.98835 acd 0.98824 acd 0.98824 acd

Note: The Wilcoxon rank sum test was used with a 95% confidence level to assess statistical significance.
The following symbols denote a significant increase in hypervolume with respect to a front without learned
outcomes: “a” with respect to front h, “b” with respect to front h-he, “c” with respect to front h-m, “d” with
respect to front h-hm, “e” with respect to front h-he-m, “f” with respect to front h-he-hm. Tests that were not
performed due to computational infeasibility are denoted by “–”.
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brought about through either static configurations (h-he) or mixed strategies (h-m and
h-hm), extend the homogeneous frontiers h, regardless of the scenario. Statistically
significant differences were observed in all scenarios except scenario 10. Second, in
roughly half of the scenarios studied, mixed strategies extended the Pareto frontier
relative to static heterogeneous configurations. This is shown by the presence of the
letter b in the columns h-he-m and h-he-hm. Turning to the outcomes from the learned
strategies, we third note that the frontiers h-eg, h-sm, and h-ucb often extend the
Pareto frontier arising from homogeneous configuration outcomes h. This is shown by
the frequent presence of the letter a in those columns. Though statistically significant
differences between these two cases were not observed in all cases, the median hyper-
volume values were always observed to be larger in the case that included learning.
Moreover, the frontiers arising from homogeneous, mixed, and learned strategies of-
ten further extend the frontiers h-m and h-hm, showing that learning often provided
increased Pareto efficiency over the two forms of mixed strategies studied.

Importantly, when compared against both static homogeneous and static heteroge-
neous configuration outcomes, the addition of learning further extends the frontier in
many cases. This is particularly true of SOFTMAX and UCB1. EPSILON-GREEDY did not per-
form as well. Also, scenarios 2 and 12 proved more challenging for the bandit solvers.
From our indicative graphical results (e.g., Figure 9(b)), we speculate that this ability
of learning to extend the Pareto frontier relative to the full set of static heterogeneous
configurations may more widely be found. However, the computational infeasibility of
exhaustively evaluating all static heterogeneous configurations on the larger scenarios
prevented us from obtaining sufficient results for statistical testing. Despite this, it is
clearly shown that decentralized online learning, based on bandit solvers, can lead to
the network self-organizing toward global outcomes that are more Pareto efficient than
those from static heterogeneous configurations in many scenarios. Figure 9(d) provides
an intuitive visualization of this. The adaptive nature of the dynamics generated by the
bandit solvers, based on feedback from the environment, also leads to higher Pareto
efficiency than the nonadaptive dynamic case, as exemplified by the mixed strategies.
Although mixed strategies typically achieve a highly efficient set of outcomes, they
are often highly clustered. Without a parameterizable feedback signal, as provided by
the bandit solvers, it is not possible to achieve a directed search of the Pareto frontier
during runtime. This leads to lost efficiency in the nonadaptive case.

In summary, Table IV shows (1) that heterogeneity clearly increases Pareto efficiency
compared to homogeneity, and (2) that in many cases, adaptive configurations induced
by online learning allow the network to reach favorable parts of the outcome space,
which are inaccessible in any static case. When learning does not lead to a frontier
that represents an extension to the Pareto frontier, it instead typically finds outcomes
that are comparable with the most efficient static heterogeneous configurations. Con-
sidering that at deployment time one does not have the luxury of identifying which
static heterogeneous configurations to choose from an exponentially growing set of al-
ternatives, online learning, which requires no a priori scenario knowledge, presents a
substantially more attractive technique.

8.3. Spread

Hypervolume tells us the Pareto efficiency of the frontiers arising from each of the
approaches evaluated. However, operators may have varying preferences between the
two objectives considered here. It is therefore important that the approach is also able
to provide a good spread of possible outcomes across the objective space. In order to
measure the spread of the outcomes in the objective space, we first used the inverted
generational distance (IGD) [Coello and Cruz Cortés 2005; Zhang et al. 2008] indicator.
This indicator measures the average minimum distance of points in the true Pareto

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 8, Publication date: June 2015.



Static, Dynamic, and Adaptive Heterogeneity in Distributed Smart Camera Networks 8:25

frontier from the obtained frontier:

IGD(Po) =

∑|Pt|

i=1 di(Po)

|Pt|
, (6)

where Po is the obtained frontier, Pt is the true frontier, and di(Po) is the minimum
Euclidean distance of point i from the obtained frontier Po.

If the obtained frontier is such that points in this frontier lie close to the points in
the true frontier, the IGD is small. We do not know the true Pareto frontier in our
case, but we can approximate this by specifying a reference set that is widely and
evenly spread across the part of the objective space that can never be dominated by an
obtained frontier. However, frontiers can be evenly spread across the objective space
yet be further away from many points in the reference set, and vice versa. Both these
situations result in low IGD values, limiting its usefulness. The IGD indicator alone is
therefore not enough to judge the evenness in the spread of outcomes with respect to
the reference set. We thus secondly quantify the spread by computing the variance in
minimum distances di(Po) (see Equation (6)) between points in the reference set and
the obtained frontier. We call this indicator IGDV:

IGDV(Po) =

∑|Pt|

i=1(di(Po) − IGD(Po))2

|Pt|
. (7)

A smaller IGDV indicates the minimum distances between all the points in the
reference set and obtained frontier to be generally similar. Therefore, if the reference
set is evenly spread across the objective space, a small IGDV value indicates evenness
in spread. In essence, IGDV is the more reliable indicator for determining the evenness
in the spread of a frontier.

Table V shows the comparisons of the IGD and IGDV indicators between Pareto
frontiers with only homogeneously mixed (m), only heterogeneously mixed (hm), only
EPSILON-GREEDY (eg), only SOFTMAX (sm), and only UCB (ucb) outcomes, respectively. For the
reference set Pt, we choose 501 evenly spread points ∈ R

2 along the axes, 250 points ∈

[(0, 0), (0, 1)), 250 points ∈ ((0, 1), (1, 1)], and the dominant point (0, 1). We choose this
reference set because we know the extreme points of our obtained frontiers, which
reside in the static frontiers, and we normalize all outcomes (per run) using such
extreme points (per run) to lie in the first quadrant (unit square).

In terms of IGD, eg consistently outperformed both m and hm across the scenarios.
From the graphical results in previous sections, it is clear that both m and hm consis-
tently result in clustered outcomes, while eg obtains a wider spread across the objective
space, even though outcomes in m and hm may be more desirable from the tracking
performance point of view. A point to note here is that in the case of eg, the IGD in-
dicator is being largely influenced by the evenness in spread of outcomes with respect
to the reference set, which is indeed qualified by low IGDV values for eg. As can be
seen, the large number of “+” symbols show eg consistently outperforming mand hm in
IGDV. The IGD values for smsuggest it to be competitive across scenarios with respect
to m and hm. This is indicated by the large number of “=” symbols for sm and an equal
number of “+” and “−” symbols. Although sm may come as close to the reference set as
m and hm across scenarios, it is consistently more evenly spread than m or hm. Finally,
the IGD values of the ucb frontiers are competitive compared with those for m and
hm. But again, the IGDV values suggest better spreads along the reference set, arising
from the learned strategy.
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Table V. Medians over 30 Independent Runs of the IGD and IGDV Indicators for Pareto Frontiers Pertaining to
Only Homogeneously Mixed (m), Only Heterogeneously Mixed (hm), Only EPSILON-GREEDY (eg), Only SOFTMAX

(sm), and Only UCB (ucb) Outcomes, Respectively

Mixed Fronts Learned Fronts

IGD

Scenario m hm eg sm ucb

1 0.2976 0.2945 = 0.4730 −− 0.2552 ++ 0.2916 ==

2 0.3632 0.3395 + 0.2615 ++ 0.3641 =− 0.3238 +=

3 0.3595 0.3148 + 0.2643 ++ 0.3641 =− 0.3521 =−

4 0.3348 0.3406 = 0.2615 ++ 0.3409 == 0.3454 ==

5 0.3717 0.3943 − 0.2744 ++ 0.3525 ++ 0.3811 =+

6 0.3530 0.3665 = 0.3335 ++ 0.3687 == 0.3851 −−

7 0.3549 0.3753 − 0.2739 ++ 0.3568 =+ 0.3596 =+

8 0.3502 0.3596 = 0.2792 ++ 0.3595 == 0.3652 ==

9 0.3640 0.3776 − 0.2994 ++ 0.3593 =+ 0.4034 −−

10 0.3844 0.4224 − 0.3450 == 0.4114 −+ 0.3998 =+

11 0.3541 0.3425 = 0.3908 −− 0.3858 −− 0.3950 −−

12 0.3768 0.4031 − 0.3191 ++ 0.4494 −− 0.3758 =+

IGDV

m hm eg sm ucb

1 0.0604 0.0422 + 0.0666 =− 0.0188 ++ 0.0166 ++

2 0.0706 0.0452 + 0.0439 += 0.0495 += 0.0338 ++

3 0.0759 0.0459 + 0.0334 ++ 0.0535 += 0.0377 +=

4 0.0672 0.0547 + 0.0239 ++ 0.0409 ++ 0.0341 ++

5 0.0792 0.0645 + 0.0293 ++ 0.0611 += 0.0550 ++

6 0.0600 0.0622 = 0.0630 == 0.0635 == 0.0629 ==

7 0.0578 0.0525 + 0.0273 ++ 0.0449 ++ 0.0417 ++

8 0.0531 0.0587 = 0.0310 ++ 0.0559 == 0.0492 ++

9 0.0705 0.0763 − 0.0290 ++ 0.0619 ++ 0.0604 ++

10 0.0673 0.0735 − 0.0556 =+ 0.0718 =+ 0.0644 =+

11 0.0640 0.0427 + 0.0551 =− 0.0535 +− 0.0523 +−

12 0.0861 0.0767 + 0.0545 ++ 0.0723 ++ 0.0571 ++

Note: The Wilcoxon rank sum test was used with a 95% confidence level to assess statistical significance.
The following symbols denote significant difference in IGD and IGDV of a front w.r.t mixed outcome fronts
m or hm: “+” indicates a significant difference in favor of the front, “−” indicates a significant difference in
favor of the mixed outcome front being compared against, and “=” indicates similarity. The ordering of the
symbols pertains to the comparison being made against front m, followed by front hm.

9. CONCLUSIONS

We have studied the self-organizing behavior of smart camera networks that use auc-
tions to exchange object tracking responsibilities during runtime. Our first contribution
was to show that heterogeneous configurations of marketing strategies in the network
can lead to increased network-level tracking performance while simultaneously de-
creasing the number of auction invitations, a proxy for communication and processing
overhead. That is, heterogeneity led to more Pareto-efficient outcomes than those pos-
sible in homogeneous configurations. We demonstrated this on a range of scenarios,
using both an open-source simulation package and real video feeds.

Our second contribution is to show that dynamic heterogeneous configurations, when
cameras change their strategies during runtime, give rise to high Pareto efficiency, typ-
ically comparable with the most efficient of the outcomes from the static heterogeneous
case. We studied two approaches to the generation of dynamic heterogeneity. First, we
used a nonadaptive technique based on the idea of mixed strategies from game the-
ory, which uses stationary probability distributions to generate behaviors at runtime.
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Second, we used an adaptive technique, which uses bandit solving algorithms to learn
behaviors online, in a decentralized fashion within each camera, based on that cam-
era’s feedback from the environment. Both of these approaches were able to provide
increased Pareto efficiency relative to the homogeneous case.

Our third contribution is to show that, in some cases, outcomes arising from online
learning extend the Pareto frontier even when compared to the best possible outcomes
from an exhaustive analysis of possible static heterogeneous configurations. Online
learning not only can enable a network of cameras to find high-performing heteroge-
neous configurations but also in some scenarios is able to obtain favorable outcomes
that cannot be reached in the static case.

Our fourth contribution is to show that outcomes arising from online learning were
typically more evenly spread across the objective space than those arising from mixed
or heterogeneously mixed strategies. Runtime feedback in the adaptive case enabled
the addition of first normalization by distribution and second a weighting parameter
in the reward function to help achieve this.

Although the results in this article are obtained from a camera network case study,
the principles behind heterogeneous configuration, dynamic configuration, and decen-
tralized online learning are not limited to camera networks. Indeed, the results in this
article provide insight into heterogeneity, dynamism of behavior, and adaptivity more
generally in decentralized networked systems. First, by increasing the number of pos-
sible configurations, heterogeneity offers more possibilities for network configuration.
In all the cases studied in this article, some of these new possibilities led to increased
Pareto efficiency of the network, relative to homogeneous configurations, while some led
to decreased Pareto efficiency. Deployed correctly, heterogeneous configurations have a
key positive influence on Pareto efficiency. Dynamic behavior over time offers yet more
configuration possibilities; however, the potential increase in Pareto efficiency by the
addition of dynamism per se was not so great as in the case of heterogeneity relative
to homogeneity. Perhaps surprisingly, however, outcomes arising from both mixed-
strategy-based dynamic behavior and dynamic behavior arising from online learning
outperformed the majority of static heterogeneous configurations and virtually all ho-
mogeneous configurations on all the scenarios studied. This suggests that in addition to
heterogeneity, dynamic forms of heterogeneity are still in themselves useful. While the
Pareto-efficient frontiers arising from static heterogeneity were usually the highest,
the most consistently Pareto-efficient outcomes were obtained by those networks that
used online learning to adaptively select behaviors based on environmental feedback,
captured in the form of a reward function. Of the online learning techniques evaluated,
SOFTMAX typically obtained the most efficient results.

A general problem that then arises in the deployment of decentralized systems is how
to make use of such heterogeneity and dynamism. Though the Pareto frontiers arising
from static heterogeneity were typically the most efficient, one cannot simply deploy
static heterogeneity. Rather, this is a characterization of a vast space of configuration
options; selecting the correct static heterogeneous configuration relies on advance sce-
nario knowledge and calibration, the absence of which was a key motivator for the
overall approach being studied in this article. Instead, the online learning approaches
represent a far more realistic deployment option: first, no advance scenario knowledge
is needed, since behavior is learned through environmental interaction, and second,
the presence of a feedback loop enables a parameter to be used in order to favor regions
of the Pareto frontier according to the operator’s preferences. We encapsulated this in
the form of a value α in the learning reward function.

There are many avenues for extending this line of research. First, further evalu-
ation of the approaches introduced here using more complex deployments may pro-
vide insight into when different bandit solvers outperform each other and when they
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outperform static configurations. Second, in this article, we have focused our study on
classic, well-known bandit solvers. There are many other bandit solver algorithms to be
found in the literature, some of which are designed explicitly with unbounded rewards
and dynamic reward distributions in mind. These, along with other online learning
techniques, may provide further improvements.

As an important aspect of this, due to complex interactions between trading, vision
graph learning, and bandit solvers, the local–global mapping assumed in the local
reward function used by the online learning methods could be further tuned. Though
the results presented in this article based on linear scalarization are encouraging
and results published elsewhere [Moffaert et al. 2014] suggest that this scalarization
method is appropriate, it is likely that improved spread in particular would be achieved
with more advanced techniques. Fundamentally, how to define multiattribute reward
functions at the local level, such as to achieve desired Pareto-efficient outcomes at the
global level, remains an open question.

Furthermore, as briefly alluded to in Section 5.3, one potential alternative avenue of
research is to perform a coevolutionary analysis of the mixed strategies. Coevolution-
ary algorithms have been successfully applied to complex multiagent learning problems
from the idealized Iterated Prisoner’s Dilemma [Axelrod 1987] to more complex eco-
nomic games (e.g., Phelps et al. [2008] and Lewis et al. [2010]). Such an analysis has
the potential here to both identify high-performing complementary mixed strategies
and provide insight into the structure of the strategy search space.

Finally, from the perspective of the smart camera application, we made two simpli-
fying assumptions in order to aid our analysis. First, we assumed in this work that we
are able to recognize and track an object correctly in all cases. However, as discussed,
for example, by Nebehay et al. [2013], this is in itself not a trivial task. Second, we
assumed that the number of objects currently tracked by a camera does not affect its
tracking performance. However, the need for tracking algorithms to share finite re-
sources on a camera means that this will likely not be the case when the number of
objects is sufficiently large. Future smart camera research should therefore address
the question of the robustness of the results in this work with respect to a degradation
of tracking success rate.
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Birgit Möller, Thomas Plötz, and Gernot A. Fink. 2008. Calibration-free camera hand-over for fast and
reliable person tracking in multi-camera setups. In Proceedings of the 19th International Conference on
Pattern Recognition. 1–4.

Kazuyuki Morioka, Szilveszter Kovacs, Joo-Ho Lee, and Peter Korondi. 2010. A cooperative object track-
ing system with fuzzy-based adaptive camera selection. International Journal on Smart Sensing and
Intelligent Control 3, 3 (2010), 338–358.

Eduardo F. Nakamura, Heitor S. Ramos, Leandro A. Villas, Horacio A. B. F. de Oliveira, Andre L. L. de
Aquino, and Antonio A. F. Loureiro. 2009. A reactive role assignment for data routing in event-based
wireless sensor networks. Computer Networks 53, 12 (2009), 1980–1996.

Georg Nebehay, Walter Chibamu, Peter R. Lewis, Arjun Chandra, Roman Pflugfelder, and Xin Yao. 2013.
Can diversity amongst learners improve online object tracking? In Multiple Classifier Systems, Zhi-Hua
Zhou, Fabio Roli, and Josef Kittler (Eds.). Lecture Notes in Computer Science, Vol. 7872. Springer,
Berlin, 212–223.

Steve Phelps, Kai Cai, Peter McBurney, Jinzhong Niu, Simon Parsons, and Elizabeth Sklar. 2008. Auctions,
evolution, and multi-agent learning. In Adaptive Agents and Multi-Agent Systems III. Adaptation and
Multi-Agent Learning. Lecture Notes in Computer Science, Vol. 4865. Springer, 188–210.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 8, Publication date: June 2015.



8:30 P. R. Lewis et al.

Arun Prasath, Abhinay Venuturumilli, Aravind Ranganathan, and Ali A. Minai. 2009. Self-organization of
sensor networks with heterogeneous connectivity. In Sensor Networks: Where Theory Meets Practice,
Gianluigi Ferrari (Ed.). Springer, 39–59.

Markus Quaritsch, Markus Kreuzthaler, Bernhard Rinner, Horst Bischof, and Bernhard Strobl. 2007. Au-
tonomous multicamera tracking on embedded smart cameras. EURASIP Journal on Embedded Systems
Volume 2007 (2007), 10.

Faisal Qureshi and Demetri Terzopoulos. 2008. Multi-camera control through constraint satisfaction for
persistent surveillance. In IEEE Conference on Vision and Signal-Based Surveillance. 211–218.
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