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We study level crossing in the optical whispering-gallery (WG) modes by using toroidal microcavities.

Experimentally, we image the stationary envelope patterns of the composite optical modes that arise when

WG modes of different wavelengths coincide in frequency. Numerically, we calculate crossings of levels

that correspond with the observed degenerate modes, where our method takes into account the not

perfectly transverse nature of their field polarizations. In addition, we analyze anticrossing with a large

avoidance gap between modes of the same azimuthal number.
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Zeeman and Stark realized that tuning an external field

causes a variation in the position of atomic energy levels.

Atomic levels can then cross each other when an applied

magnetic field [1], electrical field [2], or pressure [3] is

varied. Level tuning with an external field is an important

tool in atomic [1]—as well as molecular—spectroscopy

[4], and facilitates precise measurements such as of fine

structure [1] and lifetimes [5]. Resembling behavior is

known in vibrational mechanical modes [6]. In optics,

anticrossings (also referred to as avoided crossings) with

a gap in the transmission frequency have been reported in

liquid-crystal etalons [7] and used to observe the geometric

amplitude factor [8]. Crossing of optical resonances was

recently reported [9] in spherical cavities.

Here we show experimentally and theoretically that

optical resonances with a different number of wavelengths

along the circumference can be tuned to cross in frequency.

Modes of the same number of wavelengths, on the other

hand, are shown to anticross with a large gap. Overall,

diverse azimuthal and radial mode shapes are imaged, and

modes with complex transverse shapes and polarizations

are calculated. Using a fluorescent mode-mapping tech-

nique enabled imaging of noncircular mode patterns that

signals crossing. This visual indication was hidden when

we were using bare nonfluorescent cavities.

Near the degeneracy region, modes exhibiting a differ-

ent number of circumferential wavelengths are simulta-

neously excited with a single-frequency laser source to

produce a standing interference envelope. Here, only

modes circulating in one direction are examined. Level

crossing of countercirculating modes is possible [10] but,

in distinction to the relatively large spatial ‘‘beats’’ ob-

served here, manifests itself as a fine standing-wave inter-

ference pattern with nodes lying just half an optical

wavelength apart. Moreover, in experiments, countercircu-

lating modes (of similar indices) are typically split (i.e.,

nondegenerate) [11–13] due to imperfect isotropy (broken

axial symmetry). In our system, this split (�107 Hz) is

much smaller than the free spectral range (�1012 Hz);

such a splitting and the type of anisotropy it originates

from might therefore play only a minor role here in bring-

ing levels close enough to cross.

Optical resonators in general [14–16] and dielectric

whispering-gallery (WG) cavities [17,18] in particular

have a set of discrete optical eigenfrequencies. For a

geometry in which the wave equation is separable, such

as a cylindrical or spherical resonator, each mode can be

labeled by three integer indices. Normally, by convention,

the resonance frequency increases monotonically with

each mode index. In a dielectric ring, for example, a

whispering-gallery mode with a fixed and small transverse

mode index and a large azimuthal mode index of m � 105,

say, will have 105 wavelengths along the circumference

and will resonate at an optical frequency higher than that of
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FIG. 1 (color online). Experimental results: Top view of

modes with increasing transverse index. On the right section

of the table, the calculated field profile in a cross section

perpendicular to the mode’s azimuthal direction of propagation.
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a mode with 100 wavelengths along the circumference.

Hence, in general, the simultaneous excitation of both of

these modes will require two separate laser sources, and

their resulting interference envelope will circulate around

the ring at typically millions of revolutions per second.

Such rapidly moving interference patterns are not inves-

tigated here. If we vary the discrete transverse mode index

in such a system, two levels with different m indices could

lie close in frequency, but such coincidences, i.e., degen-

eracies, would be accidental. In the toroidal resonators, in

contrast, one has a continuous (dimensionless) parameter,

namely, the aspect ratio of the major to minor diameters of

the torus [19], which can be varied leading to degeneracy

and potentially strong mode mixing.

The wave equations for the toroidal resonator [20] are

partially separable. In the azimuthal direction, the rotation

symmetry allows an exp�im�� dependency to be factored

out. Modes of different m are hence the solutions of two

independent equations and can cross each other. The ei-

genfunctions in this transverse plane cutting through the

torus (see Fig. 2 below) are labeled here by only a single

mode index, which we shall refer to as the ‘‘transverse’’

index. When the aspect ratio is varied, modes of the same

m and different transverse index interact and can generate

avoided crossings.

In this work, level crossing refers to a situation when the

modes lie close enough in frequency to be simultaneously

excited by the same single-frequency laser source [21]. We

find both experimentally and theoretically that the fre-

quency difference between modes with different azimuthal

indices m can be completely compensated by changing the

transverse index. Modes of different transverse indices

extend differently into the air clad and hence their reso-

nance frequencies have different slopes with respect to

changes in the aspect ratio. Having many levels with differ-

ent slopes implies crossings. Because of their difference in

azimuthal index, the superposition of two such degenerate

modes at a crossing exhibits an azimuthally modulated

envelope, i.e., one that beats circumferentially. As modes

are resonating at the same frequency, the azimuthally

modulated envelope is stationary.

The experimental setup consists of a high-Q toroidal

cavity [22], fabricated from silica on a silicon wafer.

Optical coupling of the continuous-in-time pump laser

into the cavity is performed via a tapered fiber [23–25].

In order to make the IR composite-mode pattern visible,

the cavity is doped with erbium [26,27], which converts

photons stored in the 1500 nm mode into 500 nm (green)

light via 3-photon fluorescent up-conversion. Advantages

of up-conversion mode mapping [26] include improvement

of the optical resolution by a factor of 3 and a uniform

detection sensitivity in the cavity volume. Additionally,

although the examined optical mode is at the telecom

compatible (vacuum) wavelength of 1500 nm, the indica-

tion for its intensity (when using the 3-photon up-

conversion) is in the visible where high-quality micro-

scopes and cameras are available. Other known mode-

mapping techniques include the near-field probe [28]

method. To interpret the experimental images, we also

calculate numerical solutions for the resonances of the

torus, shown in Figs. 1–3.

Fundamental and high-order transverse modes (not

crossing at this stage) are photographed in Fig. 1 where

they are presented side by side with their calculated field
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FIG. 2 (color online). Crossed modes.

(a) Top-view image of the measured

mode. (b) Intensity profile of the mea-

sured mode. (c) Graph of the calculated

resonance frequency (given in vacuum

wavelength units) versus the ratio of

the major and minor diameter for two

different modes with similar polariza-

tion. Tx stands for the x transverse

mode. m describes the number of optical

waves resonating along circumference

[the field changes as to where the azimu-

thal coordinates]. The green circle rep-

resents the experimentally measured

vacuum wavelength and shape. (d),(e)

are like (a),(b) but based on calculation.
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for comparison. It is interesting to note that the ring-to-ring

distance in Fig. 1(c) is subwavelength. Thanks to the up-

conversion mapping technique it can, however, still be

imaged. Figure 1 demonstrates that high-order transverse

modes do exist even in a relatively thin toroid.

We now discuss the composite modes that consist of

different fundamental and high-order modes (such as the

ones shown in Fig. 1). Figure 2 shows several such com-

posite modes, where the number of maxima recorded (thus

wavelength difference along the circumference) changes

between 2 and 10 depending on the cavity geometry and

the input optical frequency. Correspondingly, the wave-

length difference along the circumference changes from

2 to 10. The results in Fig. 2 are in agreement with

numerically calculated crossings. Deviation between the

calculated crossing (line intersection in Fig. 2(c)] and the

experimental loci of crossing [circle in Fig. 2(c)] lies

within the experimental uncertainties.

The composite modes at crossings do not only have

maxima and nodes in the azimuthal direction; in Fig. 3,

we show modes with both radial and azimuthal maxima in

the interference envelope. We imaged up to three maxima

in the radial direction and 18 maxima in the azimuthal

direction [Fig. 3(b)]. In general, a higher difference of the

azimuthal index, �m, requires a higher radial index differ-

ence in order to compensate the frequency difference and

lead to a composite mode; an azimuthal index difference of

seven is compensated by a radial index difference of two

[Fig. 3(a)], and an azimuthal difference of 18 needs a radial

index difference of three to compensate [Fig. 3(b)]. Note

also that the maxima in Fig. 3 are arranged in a ‘‘zigzag’’

pattern, which reflects the tendency of the rings in the

constituent radial mode to be � out of phase (for such

rings, see Fig. 1).

In a torus exhibiting perfect axial symmetry, composite

modes like those in Fig. 2 have no preferred azimuthal

orientation. For any given composite mode, there thus

exists a family of others with the same frequency but

with an envelope pattern that is rotated arbitrarily. In an

experimental system, however, the relative phase of the

two degenerate traveling whispering-gallery modes is

‘‘pinned’’ by a nonperfect axial symmetry. Causes are

likely to be deviations of the cavity geometry from a

perfect ring as well as azimuthal variation in the refractive

index. To give a scale, deviations in the shape of the cavity

from that of a perfect ring are about 1% of the radius.

Coupling the light into the cavity can also cause a breaking

of the axial symmetry. Yet, in a high-Q cavity only a

relatively small transmission at the coupler region is nec-

essary to achieve critical coupling (to give a scale, the

coupler here is �1 micron away from the cavity and hence

creates only a weak anisotropy). Therefore, as expected,

flipping the coupler position to the other side of the toroid

as well as varying the toroid-to-coupler distance did not

appear to affect the orientation of the observed modes.

Another family of resonances is the set of transverse

modes within each of the separable families, each member

of this set has the same azimuthal index. For such modes

with identical m [Fig. 4(a)], the remaining cylindrical

coordinates ��; z� are in general not separable. Coupling

between the governing equations results [29] in anticross-

ing that is characterized by a gap between resonances

[Fig. 4(c)] and mode evolution via state of a mixed shape

and polarization at the avoidance region [Fig. 4(b) and

4(d)]. In more detail, the curves appear as if they should

cross, but then repel each other on approach, to veer away,

with each taking the path, the shape, and the polarization of

the other. It is interesting to note that the size of the gap

[Fig. 4(a)] varies from one crossing to another. We use here

a ‘‘2.5-D’’ finite-element method [29] that does not con-

strict the WG mode’s polarization to be either purely

transverse magnetic (TM) or purely transverse electric

(TE). Looking towards nonlinear and QED effects, our

method can thus accurately simulate the quasi-TM and

quasi-TE modes of even the smallest spheres or toroids

with low azimuthal mode orders and tiny mode volumes.

In conclusion, since the frequency difference between

component WG modes as in Fig. 2 is zero (�! � 0) while

their wave-number difference [�k � 2��1=�1 � 1=�2�] is

finite, the velocity, V � �!=�k, of the envelope neces-

sarily vanishes, creating an interference pattern that is

frozen in space. Practically, to coexcite such modes with

a single pump, the modes should lie closer in frequency

than their bandwidth. Continuous improvements in optical

cavities suggests that level crossing will soon be reported

in other types of devices such as disks [30]. The coupling

of near-lying optical modes within a single device by

scattering [13], gratings [31], or other techniques, could

facilitate applications such as filters [32], gyroscopes [33],

and delays [34]. Until now, it was largely thought that these

applications will require multicavity configurations [35–
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FIG. 3 (color online). Crossed modes with azimuthal as well as

radial profiles. (a) Composed of fundamental modes similar to

the first two shown in Fig. 1. (b) Composed of modes similar to

the first and the last modes shown in Fig. 1.
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37]. The work described here, however, suggests that, by

exploiting level crossings, they could each be realized

within a single microcavity. Going from many resonators

to many nearby resonances on the same device is trading

off the nontrivial coupling between modes with the sim-

plicity of dealing with a single photonic device.
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FIG. 4 (color online). Calculated anticrossing for modes of

similar azimuthal index. (a) Resonance frequency as a function

of the ratio between major and minor diameter (m � 106, ex-

ternal diameter � 17:5 �m, refractive index 1.46). (b),(d) Evo-

lution of the transverse mode structure at the marked region in

(a), arrows indicate the magnetic field direction. (c) Zoom-in to

the marked region in (a).
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