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ABSTRACT 

We present equilibrium states of the interstellar gas, which has run 

down the perturbed magnetic field lines of a stratified, isothermal initial 

state under the action of a vertical galactic gravitational field. The final 

states are lower in total energy than the corresponding initial states. 

Their properties depend quantitatively on the horizontal (but not so much on 

the vertical) wavelength of the initial perturbation. A striking feature of 

the final states is that the scale-height of the gas increases (decreases) 

where the gas density increases (decreases). A connection between initial 

and final states is made by conserving the mass-to-flux ratio in each flux 

tube. Thus, although we determine final equilibrium states by solving a 

time-independent problem, in a time-dependent problem our final states can 

be reached from the corresponding initial states through continuous defor-

mations of the field lines. The final states are consistent with observations 

in the solar neighborhood. We treat the interesting case of the magnetic 

pressure being initially comparable to the pressure of the the~al gas. 

We show that the isothermal gas-field-gravity system possesses an 

"energy integral". An effective potential energy is identified, and an 

"energy principle" follows as a corollary. The iterative procedure used in 

order to solve the magnetohydrostatic equations is outlined, and upper 

-limits on the numerical errors are given. We also extend our formalism so 

that it can apply to the case of a general (rather than an isothermal) 

equation of state. 

Running title: Interstellar Gas and Field 

Subject Headings: hydromagnetics - instabilities - interstellar matter-

magnetic fields - plasmas ' 

/ 
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I. INTitODUCTION 

The dimensions of many condensations of the interstellar gas are so 

large and the condensations themselves are so closely associated with the 

interstellar magnetic field that one may conclude that these large-scale 

condensations could be produced by very long-wavelength hydromagnetic 

disturbances. Parker (1966) showed, using linear stability analysis, that 

the interstellar gas, which is partially supported by magnetic and cosmic­

ray pressures against the Galactic gravitational field, could be unstable 

with respect to· deformations of the field lines. Lerche (1967a) determined 

a final state for the interstellar gas and field system, in which Parker's. 

magnetogravitational instability had developed. Since he ignored the pressure 

of the gas, the final.state consisted of infinitesimally thin sheets of 

matter that extended perpendicular to the galactic plane. This state is un­

stable with respect to small horizontal displacements of the gas elements 

(Lerche .1967b). Parker (1968a) found a different equilibrium state, but at the 

same time he pointed out the very special nature of his solution because of a 

simplifying mathematical assumption made (see §IIa below). 

In this paper we assume strict flux-freezing and we derive a general 

non-linear, elliptic, second-order, partial differential equation, a subset 

of whose solutions properly describes equilibrium states of the interstellar 

gas and field system in a galactic gravitational field (§IIa). In §IIb, by 

making use of constants of the motion, we remove an arbitrariness that would 

otherwise exist in the source term of this equation. This allows us to make 

a connection between initial and final states, even though we solve a time­

independent problem. The boundary conditions and the assumed initial state 

are presented in §III. In §IV we obtain and discuss an "energy integral" of 

the isothermal gas-field-gravity system and we endeavor to anticipate what 
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energy changes will take place as the system makes a transition from an initial 

to a final state. The physics corresponding to each step of the method of solu-

tion is explained in §Va. Indications for the physical stability of the final 

states are discussed in §Vb. We present three typical final states in §VI; 

important features and observational p.redictions are discussed in some detail. 

In §VII we make ~ few concluding remarks and a semi-quantitative comparison 

with observations in the solar neighborh.ood. Mathematical derivations, that 

would interrupt the continuity of an argument, and a description of our iter­

ative scheme are left for the appendices. The generalization· of our formalism, 

so that it can app~y to equations of state P = P(p), is also left for an 

appendix. 

II. HYDROSTATIC EQUILIBRIUM INCLUDING FLUX-FREEZING 

· a) Reduction~~ equation 

Consider a conducting gas of density p and pressure P in hydrostatic 

equilibrium in a magnetic field B and a gravitational field g, derivable from 

+ 
a potential ljl. Denoting the current density by j, we may write the magneto-

hydrostatic force equation as 

(1) 

+ + 
where c is the speed of light in vacuum. The quantities B and j are related 

by Maxwell's equation 

The equation of state is 

++ "t 
cVxB "'4'1rJ. (2) 

(3) 
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where C is the isothermal speed of sound in the gas. In this paper we take 

C = constant. If a magnetic vector potential. A, is defined by 

Maxwe11•s equation 

is satisfied identically. 

++ 
V•B = 0 

(4) 

{5) 

Following previous authors. we assume that all quantities are indepen-

dent of z (2D geometry) and that B = 0. Then B = +3A/3y, B • -aA/3x and 
Z X y 

the magnetic vector potential can be written as A=~ A(x.y). Since 
z 

+ + + :::!"'± 
B • -e xVA. it follows that H•vA = 0 and. therefore. that A is constant on 

z 

a field line. Assuming flux-freezing one can show that ~·VA = o. so that A 

is a constant of the motion in the flow associated with Parker's instability. 

Each field line, therefore. retains its initial value of A. 

We define a scalar function of position, q(x,y). by 

q = P exp(lji/C2) (6) 

and we write equation (1) in terms of A and q as 

(7) 

Decomposing equation (7) in directions parallel and perpendicular to field 

lines and recalling that A is constant on a field line. we can show that 

P exp(lji/C2) _ q =constant on a field line • q(A); (8) 

and that 

~ exp(ljl/c2) = constant on a field line • ~· (9) 
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The quantity q, being a function of A at hydrostatic equilibrium, expresses 

the fact that, since magnetic forces act only perpendicular to the field 

lines, pressure gradients exactly balance the gravitational forces along a 

field line. The meaning of equation (9) is as follows. If a magnetic vector 

potential A*(x,y) [and, therefore, a magnetic field B*(x,y)] is given, and if 

matter is distributed among field lines so that the forces parallel to field 

iines are in exact balance [i.e., q* = q*(A*)], then we can balance the 

forces in a direction perpendicular to the field lines by calculating a 

current density j* from equation (9). However, B* and j* will not be consis-

tent with each other, unless they satisfied equation (2). which may be written 

in terms of A, with j eliminated in favor of q. as 

(10) 

So far, equation (10) differs from an equation derived by Dungey (1953) 

only in that our ~ is any gravitational potential. For example. ~ can be the 

gravitational potential of the Galaxy as a whole. or that of a dense cloud in 

the interstellar medium. In the former case, ~ can be obtained from Schmidt•s 

(1965) model of the Galaxy; in the latter case, a Poisson equation for w has 

to be considered simultaneously with equation (10) in order to obtain a self-

consistent solution. In this paper we take ~ to be due to the Galaxy as a 

whole. 

Let the gas and field system be in some initial state. in which Parker•s 

(1966) magnetogravitational instability develops with wavelengths A and A 
X y 

in the x- and y- directions, respectively. We take the system to be periodic 

in x (along the galactic plane) and we assume that the pair of (unstable) 

wavelengths (A ,A ) is the same everywhere in the galaxy. Moreover. we assume 
X y 

that the magnetic field is frozen in the matter. In order to find a final 
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equilibrium state for this system we must solve equation (10); and for this 

task'we need to calculate q(A). Parker (1968a) assumed that q(A) is either a 

linear, or a quadratic function of A, and he solved the resulting linear equa-

tion (10) for the case in which the gravitational potential, w. is proportion-

al to the vertical distance, y. We find below that, for the plane-parallel 

initial state proposed by Parker (1966), the function q varies as an inverse 

power of A [see equation (15)]. In the final states as well, q varies as some 

inverse po~er of A (see Figure 1). Although q is a function of A alone at 

hydrostatic equilibrium, it is.~ a constant of the motion. Consequently, 

we are not permitted to calculate (or to specify) q(A) in some initial state 

and then procede to determine a final state characterized by the same q(A). 

b) Calculation of the function _gj!) 

In general, q(A) can be calculated as follows. With X = ). /2, the mass 
X 

(om) in ~ f~ux tube between field lines characterized by A and A+oA is, by 

definition,. 

+X y(x,A+OA) 
om(A) c I dx J dy(x,A) p(x,y(x,A)). (11) 

-X y(x;A). 

Itis natural to consider x and A as the independent variables. Since the 

integration over y in equation (11) is performed keeping x fixed, we may 

write dy = dA (ay/3A) and effect the change of variables from y to A. We 

eliminate p in favor of A by using equations {8) and {3), and we expand the 

integrand of the resulting equation in a Taylor series about A keeping only 

first-order terms. (Neglec'ting higher-order terms is justified .!. posteriori.) 

We then solve for q(A) to obtain 

(A) .. c2 dm I XI d 1ri_x,A) [ _t{x,A)J 
q 2 dA x aA exp - • 

o c2 
(12} 
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The quantity y(x,A) refers to they-coordinate of the field line A at x.l 

In Appendix A we generalize the definition of q [equation (6)] to apply to 

any equation of state, P .. P(p). We also derive equations, which are general-

izations of equations (10) and (12). 

If dm/dA is given, q(A) follows from equation (12) for any proposed 

configuration. In particular, both q for the initial and q for the final 

states can be calculated using the ~ dm/dA, since conservation of both 

mass and flux implies that dm/dA is ,!. constant E!_ the motion. 

Note that q(A) depends on the shape of the field lines, which are 

originally unknown. Hence, in general, one must solve equations (10) and (12) 

simultaneously for any ~iven dm/dA. The initial state of the gas and field 

system is not known in reality, for it depends on the mechanism which creates 

the magnetic flux. Here we take it to be the plane-parallel system-proposed 

by Parker (1966). This defines dm/dA for the final state as we.ll. We empha-

size, however, that the only. information needed in order to determine a 

final"state is the mass-to-flux ratio in each flux tube. If the distribution 

of mass among the various flux tubes is obtained from observations, we can 

determine a final equilibrium state without reference to any particular 

initial state. 

III. THE INITIAL STATE - BOUNDARY CONDITIONS 

As an initial state we consider the stratified equilibrium state of the 

-+ -+ 
interstellar gas and magnetic field in a gravitational field g .. -e g(y), 

y 

where g(y) = -~-y) • a positive constant. Following Parker (1966), we 

assume that the ratio of the magnetic-to-gas pressures, 

'• 
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(13) 

is constant in the initial State. For this state we find 

(14) 

(15) 

and 

dm -· dA 
( 16) 

. . . 

where X - Ax/2 and H is the combined scale-height of the gas and field given 

by 

H - (l+a)C2/g • (17) 

The quantities Bi(O) and pi(O) are, respectively, the values of Bi and pi at 

y = 0. The subscript i signifies the initial state. In equation (16) A is not 

subscripted because, as explained in §Ilb, dm/dA is the same function of A 

in the initial and final states. 

The boundary conditions are as follows. Since the x-axis is taken to 

coincide with the galactic plane and the system is assumed periodic in x, 

there is reflection symmetry about both the x- and the y-axes. The former 

symmetry implies that the field line originally coinciding with the x-axis 

remains undeformed, i.e., 

A(x,y=O) = -2HBi(O) =constant. (18) 

Periodicity in x is expressed by 

3A(x,y)l c 0 • 
ax 0 +X 

xa ·-

(19) 
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Boundedness at infinity and conservat i.on of the total magnetic flux imply 

A(x,y) = { O, Y = +oo 
-4HBi(O), y_= -oo 

(20) 

Because of the symmetries, equation (10) may be solved in the rectangle 

O<x<X, O<y<oo. In fact this semi-infinite rectangle may be replaced by a finite 

one without-affecting the solution very much, provided only that the extent 

of t"Q.e finite rectangle_in they-direction is much larger than H (see §VId). 

So, we set the upper boundary at y = Y » H and we replace equation (20) by 

A(x,y) = Ai_'(Y) , (21) 

where Ai(Y) is the initial value of A at y = Y. Recalling that the perturbations 

which Parker (1966, Appendix III) showed to be unstable, always leave some 

field lines of the initial state undeformed, equation (21) is equivalent to 

taking the upper boundary at the position of the first undeformed field line 

of the initial state. 

Before solving equations (10) and (12) we wrote them in a dimensionless 

form (see Appendix Cl) • Thus,!!_ of the initial ~ ~ .the only ~ parameter 

in the equations (see equation Cl, Appendix C). 

IV. ENERGY CONSIDERATIONS 

a) An Energy Principle 

In Appendix B we show that the magnetohydrodynamic equations possess an 

"energy integral", and we identify an effective potential energy (W) of the 

isothermal gas-field-gravity system which is given by 

where 

W=W+W+W 
p m g 

W = f P lnP dV , 
p 

(22) 

(23) 
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W = f (B2/8n) dV 
m 

and W = f pljJ dV • 
g 

(24). (25) 

One can show directly that the force equation (1) follows from the require-
. ~ ·. 

-+ 
ment that the first variation of W vanish under an arbitrary displacement t 

of the plasma elements, provided that: (i) mass is conserved,; (ii) flux is 

conserved; (iii) the temperature is constant. In the case of a system period-

ic in one direction (x), one needs the additional assumption that (iv) no 

mass is transferred from one period to the next during the infinitesimal 

plasma displacements. This demonstration rigorously qualifies W as a potential 

energy and allows one ~o study the stability of an equilibrium state by 

investigating the sign of the potential energy associated with small devia-

tions from the assumed equilibrium. 

b) The Meaning of W 
- _ _E. 

In equation (21), the magnetic energy (W) and the gravitational energy 
m 

(W ) are given by familiar expressions. Note, however, that the quantity 
g . . . " 

P lnP has replaced the usual term P/(y-1). The meaning of P lnP becomes 

~ransparent, if we examine the first law of thermodynamics (for an ideal gas 

in the absence of any fields) .. This is 

-1 
dQ = du + P d(p ) • (26) 

The quantities Q and u are, respectively, the heat supplied ~ the gas and 

the internal energy of the gas; both Q and u are measured in units of energy 

per unit mass. For an isothermal process du vanishes and dQ is an exact 

differential. 

Letting e denote the heat per unit volume supplied to the gas (i.e., 

e = pQ ), we may write equation (26) as 

• 
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d6 a <% - 1) dP • (27) 

A straight-forward integration yields 6 as a function of P; this is further 

integrated over volume to obtain 

9 - f e dv 

~ - f P lnP dV + b f P dV 

• - W + b f P dV 
p 

(28) 

where b is a constant of· integration.· The second term in the right-hand side. 

of equation (28) is the same for all states, because the total mass is fixed 

and the gas is isothermal. Therefore, the heat (!19) supplied to the gas in 

going from one state to another, is simply given by 

!19 .. - l1W 
p 

(29) 

Since l1W was derived from the second term in the right-hand side of equation . 
p . 

(26) , it represents the work done Ex, ~ ~ against pressure forces in 

making a transition between two states along an isothermal path. If l1W > 0, 
. - p 

heat is released by the gas. Note, also, that for a reversible isothermal 

process, the change in the entropy (denoted by l1S) is given by 

l1S .. !19/T • - l1W /T • 
p 

(30) 

Hence, W provides a measure of the entropy and it is equal to the Helmholtz 
p 

free energy of the gas, to within an additive constant. 
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c) Expected Energy Changes 

When Parker's instability develops, compression occurs in some parts of 

the system and expansion in others. Consequently, one cannot anticipate what 

the net changes in W and W will be when a final state is reached. Compression 
m p 

(expansion) tends to increase (decrease) W and W • This is obvious in the 
m p 

case of W. It is so for W as well because, when gas is being compressed.it 
m P 

tends to heat up; for the temperature to remain constant (an assumption in our 

model), heat has to be released. Typical cooling times are of the order of 105 

years in the interstellar medium and become shorter as the gas density increases 

(Spitzer 1968). Since this time is smaller than thee-folding time of the 

instability (10 7 years), the gas has enough time to c.ool down. 

The gravitational energy (W ) is expected to decrease, since gas drains 
g 

down the perturbed field lines under the action of the galactic gravitational 

field. The "fact" that the expanding field lifts some matter to higher alti-

tudes is not expected to produce a ~ increase in the gravitational energy, 

for field lines can expand only because gas is being "unloaded" from their 

raised portions. 

V. METHOD OF SOLUTION AND PHYSICAL STABILITY 

a) The Physics Behind the Method of Solution 

To obtain a simultaneous solution of the equilibrium equations (10) and 

(12) we developed and followed the procedure outlined in Appendix c. The 

physics behind that iterative procedure is as follows. (i) Guess a set of 

·field lines (and, therefore, a magnetic field), which satisfy the periodicity 

and symmetry conditions discussed in §III. (ii) Distribute the total mass 

among the various flux tubes in such a way, that the mass-to-flux ratio in 

each flux tube is equal to the mass-to-flux ratio in the corresponding flux 
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tube of the initial state. (iii) Allow mass to slide up or down along field 

lines (without transferring any mass from one tube to another) .until pressure 

gradients and gravitational forces are in exact balance along field lines. 

(iv) From the magnetic field obtained in step (i) and the mass distribution 

achieved .in ~tep (iv), calculate the current density necessary to balance all 

forces in a direction perpendicular to the field lines. (v) Check whether. the 

just calculated current density is consistent with the magnetic field of step 

(i); if it is not, use this current density to calculate a new ("better") 

magnetic field and go to step (ii) to repeat the process until consistency. 

is achieved. The introduction of an underrelaxation parameter in the 

iterative scheme provides a measure of how~ "better" (or "worse"!) the 

magnetic field of one iteration is, compared to that of the previous itera-

tion. --....-

b) Stability 

The stratified initial state is unstable only if the horizontal and 

vertical wavelengths of the applied perturbation simultaneously e~ceed some 

critical values (see Parker 1966), namely, 

and 

A > A : 4nH(2a+l)-l/Z 
X X 

a+O (31) 

(32) 

The quantities a and Hare defined by equations (13) and (17), respectively, 

and p = A /A < 1. Parker's dispersion relation implies that, for a fixed 
X X 

A > A , the growth-ra·te of the perturbation increases as A (>A ) increases. 
X X y y 

•' 
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In addition, for a fixed ). > A , the growth-rate first increases and then 
y y 

decreases as A increases. The maximum growth-rate is reached when A < 2A 
X X"- X 

and A = ~. For typical parameters of the interstellar medium, the inverse 
y 

of the maximum growth-rate is, approximately, 107 years. This is smaller than 

the time required for one galactic rotation (approximately 108 years).' 

Starting from the stratified initial state, we applied a perturbation 

(in the form of a deformation of the field lines) characterized by a stable 

pair of wavelengths (). ,A). Our iterative scheme always converged to the 
X y 

initial state, no matter how large the amplitude of the perturbation was and 

regardless of the particular values of A and A , as long as they were 
X y 4" 

stable. 

On the other hand, our iterative scheme never converged to the initial·state 

in the case that the perturbation was characterized by an unstable pair of 

wavelengths, even if the amplitude of the perturbation was as small as 1%. 

This is an indication (although not a proof) that the iterative scheme cannot 

converge to solutions representing physically unstable states. 

For a fixed unstable pair of wavelengths, we obtained convergence to one 

and the same solution (distinct from the initial state) for a wide range of 

amplitudes of the initial perturbation. When perturbations were applied to 

this solution, the iterative scheme always converged back to it. This, in. 

conjunction with the properties of the iterative scheme described in the 

preceding paragraph, suggests that our solutions represent states of the gas-

field-gravity system which are physically stable, at least in a local sense. 

The class of perturbations applied to a final state was such, that each 

wavelength of the final state contained an integral number of perturbation 

wavelengths. This prohibits mass transfer from one period of the equilibrium 

state to the next. Of course, for a definitive statement on the nature of 

an equilibrium state, one must consider all. arbitrary perturbations. We 
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make additional comments on stability in §VIc. 

VI. FINAL STATES 

We chose several pairs of unstable wavelengths (A ,A ) for the pertur­
x y 

bation applied to the initial state (see §III), and for each such pair we 

found a final equilibrium state. Figures 2a, 2b, and 2c represent typical 

final states, produced by perturbations that had the same vertical but 

different horizontal wavelengths. Ten field lines (solid curves) and three 

isodensity contours (dashed lines) are shown. The field lines are chosen so 

that the amount of magnetic flux contained between any two consecutive ones 

' :> 

is constant. Thus, the spacing between consecutive field lines is inversely 

proportional to the mean strength of the magnetic field in the interval. The 

ratio a in the initial state (the only free parameter in the equations) was 

taken equal to unity. 

a) Dependence on A 
X 

A comparison of Figures 2a, 2b and 2c reveals that, as the horizontal 

wavelength increases, so does the deformation of the field lines. It is the 

case that the more deformed the field lines are, the more effective the 

gravitational field is in "unloading" the gas from their inflated portions. 

Therefore, the gas density at the midplane of the condensation (x a O, y > 0) 

is expected to increase as A · increases. This is borne out in Figure 3, 
X 

which exhibits the dependence of the "emission measures" (EM) on x, in these 

three final states. 2 The horizontal distance (x) is measured from the center 

2 We define the emission measure of a final state at a particular x by 

EM(x) = /p~(x,y) dy , and we normalize it to that of the initial state, 

EMi a fpt(y) dy. The subscripts f and i denote final and initial states, 

respectively. 

.• 
' 
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of each condensation. In the final state characterized by X = 15, we note 

that 

EM(x=O) ~ 3 EM(x=lS), EM(x=O) = 2.2 EMi • (33),(34) 

In this final state the_column density of the gas as a function of x,.NH(x), 

differs from E~l(x) by at most 18%; in the other two final states presented, 

EM(x) and NH(x) differ by only a few percent. 

A striking feature of the final states is the fact that, compared to 

the initial scale-height, the scale-height of the gas increases at the 

position of the magnetic field "valleys"~ decreases at the "wings" of the 

condensations, where the field lines have expanded. At the midplane of the 

condensations, moreover, while the gas density increases with increasing A , 
X 

the scale-height of the gas increases as well (compare the lowest isodensity 

contours of Figures 2a, 2b, and 2c). This implies that the gas density 

increases not so much beca~se of compression in the vertical direction, but 

because of a very efficient drainage of the gas from the inflated field lines. 

The additional fact that, in the "wings", the gas density and the scale-height 

decrease as A increases, precludes the explanation that gas observed at high 
X 

altitudes in the Galaxy is gas that has been lifted by the expanded field 

lines. In-fact, if the magnetogravitational instability is to be invoked to 

explain the. high-altitude gas, one should concentrate on the -identification 

of that gas with the rise of the isodensity contours at the position of 

magnetic field "valleys" (see Figure 2). 

The ratiq of the magnetic-to-gas pressures, an interesting quantity in 

itself, constitutes another indicator of the efficiency with which gas 

drains down the inflated field lines, and of the dependence of this efficiency 

on A • Table 1 exhibits the values of a(x,y) [see equation (13)] in the final 
X 
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states of Figures 2a, 2b and 2c (heretoforth referred to as states a, b and 

c) at some key points (x,y). The gas density is also shown at the same points; 

it is normalized to its initial value on the x-axis. In addition to the infor-

mation supplied in Table 1, we remark that both, the gas density and the 

.magnetic 'field are monotonically decreasing functions of y at a fixed x. 

Insert Table 1 

At the two values of y used in Table 1, the normalized density in the initial 

-5 
state is pi (0) .. 1.0 and pi (22) "' 1.8 x 10 • The final density along the x-

axis is always uniform (and equal to unity to within a few percent) because 

of the requirement that there be reflection.symmetry about the x-axis [see 

equation (18)). No pressure gradients can be sustained along the x-axis, 

because the x-component of the gravitational field is assumed to vanish, and 

because magnetic forces do not act along field lines. 

Both, the fact that at x a 0 alpha decreases monotonically as y in-

creases, and the fact that at x = X alpha ~creases monoto~ically with y, are 

different expressions of the same conclusion stated above, namely: the 

increase of the gas density ~ the !!!!,gnetic ~ "valleys" is primarily ~ 

.!2. efficient drainage along field lines, rather E.h!!!. due .!2. compression 

perpendicular ~ the galactic plane. This drainage is more efficient the 

larger A is. In addition, the computed low densities at x = X and large y's, 
X 

in conjunction with the large values of a in the same region, indicate that 

the magnetic field is nearly a vacuum field at the raised portions of the upper 

field lines. 

The absolute "horizontal width" of the condensation (denoted by D and 

defined as the distance from the center of the condensation to the point x, 

.. 
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at which the normalized emission mea~ure becomes equal to unity) shows an 

increase with increfising Ax (see Figure 3). However, the ratio D/Ax decreases 

as A increases; it is equal to 0.47 in state a and drops to 0.38 in state c. 
X 

We should bear in mind that the above definition of D uses as a reference the 

stratified initial state, which, as emphasized in §lib, is needed only to 

provide a mass-to-flux ratio in each flux tube of the system. In external 

galaxies seen face-on, one can observe the contrast between regions of high 
'•;• 

and regions of low gas density. Thus, the relevant quantity is the ratio 

EM(x=O)/EM(x=X) for each of the states of Figure 3. This contrast becomes 

more pronounce4 as A increases. 
X 

b) Energy Changes 

In making a transition from an-initial to a corresponding final state, 

the system alters its magnetic and gravitational energies. In addition, 

while remaining isothermal, the gas does work (p~sitive or negative) against 

pressure forces, thus releasing or absorbing heat [see equation (29) ].. The 

net reduction of each of the three forms of energy is shown in Table 2 in . 

the case of the final sta.tes a, b <!nd c. In each state all numbers are 

normalized to the internal energy (U) of the gas which is given by 

u "" I ip dV • (35) 

The quantity U is constant because of the isothermal equation of state and 

because of conservation of total mass. 

Insert Table 2 

Star'ttng with the heat term, we note that more heat is given off as A 
X 
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increases. Since heat is released by compressed gas and absorbed by expanded 

gas, the amount of heat released may be taken as a rough measure of the net 

compression sufferred by the gas. Thus, the entries in the second column of 

Table 2 confirm that, the larger ~ is, the more efficiently the gas is 
X 

compressed. 

In spite of the large expansion sufferred by field lines in the "wings" 

of each condensation, the reduction in magnetic energy is small compared to 

that of the other energy terms. The relatively weak compression of the magnet-

ic field [that takes place primarily along the midplane (x = 0, y > 0)] 

almost cancels the effect of the large expansion in the "wings". This is not 

surprising, since the field lines that suffer the greatest expansion are 
. / 

those at intermediate and high altitudes, where the magnetic energy content 

is small.in the first place. The increase in the amount of magnetic energy 

released at larger ~ may be due to the availability of a larger volum.e, in 
X 

· which field llnes can expand. 

The gravitational energy behaves as anticipated in §IVc. It is inter-

estirig to note that the heat released keeps pace with the decrease in gravi-

tational ·energy, since both quantities reflect the accumulation of gas in 

magnetic field "valleys". 

OVer horizontal distances that are larger than twice the critical wave-

length A, given by equation (31), the possibility of two "final" states (one 
X 

having a wavelength equal to twice that of the other) arises. Merely on 

energy considerations, the state with the longer wavelength is a more likely 

final state, since it is lower in total energy. We chose Y • 25 and X • 18 

and we applied a perturbation to the stratified initial state that had a 
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wavelength Ax .. X (rather than the u . .,ual Ax = 2X). 3 Furthermore, we imposed 

3 Whenever numbers are eiven, the unit of length is c2/g, where c is the 

, 
isothermal speed of souno in the gas and g i~ the magnitude of the vertical 

gravitational field of the galaxy (assumed to be a constant; see §III). 

no condition whatsoever at x = X/2. The final state obtained in this manner 

exhibited the characteristic double "hump", as expected. Its field lines 

differred from those 'of Figure 2a by less than three parts in one thousand 

at'all points. Whenperturbations were applied to this state, the iterative 

scheme converged back to it. Only when the amplitude· of the "perturbation" 

was so large that it erased the double "hump", did the iterative scheme 

picked out the state that has twice as large a horizontal wavelength. This 

leads us to believe that both states represent local potential wells and 

that it takes a finite amount of energy to push the system out of the state 

with t~esho:rter wavelength and down the potential hill into the lower 

ene.rgy state, ,characterized by the longer wavelength. If perturbations that 

can provide the necessary energy are available, the interstellar gas conden-

sations discussed so far may tend to coalesce into larger (and denser) 

condensations, separated by a larger mean distance. 

Suppose, now, that a disturbance in the initial state consists of a 

superposition of many wavelengths. Under these conditions, which final state 

will be reached? A perturbation with initial growth-rate n grows in time as 

exp(nt). Because of the exponential dependence on n, the amplitudes of _two 

perturbations, which differ in their growth-rates by a small amount, will 

be very different after some time has elapsed. So, given a spectrum of 

wavele~gths for the initial perturbation, that final state is more likely .. 
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to be reached that has a wavelength corresponding to the maximum growth-

rate. In all cases presented, we have fixed Y .. 25. Since we also took 

a a 1, this implies that the maximum growth-rate occurs at, approximately, 

X = l2·.4. The solution of Figure 2b is close to this final state. 

In summary, then, the factors deciding which final state will be 

reached are as follows. (i) If the initial perturbation is monochromatic. 

its wavelength alone determines the final state. (ii) If a spectrum of 

wavelengths is initially available. that final state will be reached which 

corresponds to the wavelength of maximum relative growth-rate. (iii) If · 

disturbances continue to be present during the transition of the system, 

the amplitudes of these disturbances may also play a role in determining 

the final state. A definitive statement must await exact calculations. 

d) Dependence on >. _____ _:y_ 

Unlike the horizontal wavelength. the vertical wavelength does not 

affect a solution very much, provided only that >. >> H. For a fixed (unstable) 
y 

>.. we found that, by changing >. by almost a factor of 2 , a typical solution 
X y 

changed by much less than 1% at small y's, and by a few percent at inter-

mediate y's. One could anticipate this insensitive dependence of a solution 

on >. • since more than 90% of the energy (per unit length along x) of the 
y 

initial state resides under the altitude y = 7, and more than 50% of the 

energy is under y = 2.5. We further observed that the shape of the field 

lines at very large y's depends on>. , if>. ~ >. (>>H).q In the case that 
y y X 

q Although this is insignificant for the problem at hand because of the 

energy argument just cit~d. the shape of field lines at high altitudes may 

be important in the context of cosmic-ray propagation. 
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A >> A ~ H, this effect becomes negligible altogether. 
y X 

VII. CONCLUDING REMARKS AND COHPARISON WITH OBSERVATIONS 

We have determined final equilibrium states for a model of the interstellar 

gas and field in the galactic gravitational field. Our solutions repr.esent 

large-scale isothermal condensations of the interstellar gas in magnetic 

field "valleys". They should~ be identified with "standard clouds", which 

could be produced by the magnetogravitational instability only if a » 1 

. (corresponding to a cold gas and a critical wavelength of the instability 

which is only a fraction of the scale-height). ,We find that the boundaries 

of the large-scale isothermal condensations are fairly diffuse. This is .to 

be expected, since we have not allowed any "phase transitions" to occur in 

the manner described by. Field, Goldsmith and Habing (1969). The thermal 

instability (Field 1965), which we have not considered here, could produce 

only small-scale (less than 1 pc) structure within the large-scale conden-

satioris, which the magnetogravitational instability initiates. 

A distinctive feature of the final states is that condensation o~curs 

+ 
not so much because of compression in .the direction of g, but because of 

drainage. of the gas along field lines, especially at intermediate and high 

altitudes. As a consequence, at the midplane of the condensation, the. 

scale-height of the gas in a final state is larger (by a factor of ~2) 

than the scale-height in the corresponding stratified initial state; at the 

"wings" of the condensation the opposite is true. Thus, the observed gas 

at high Galactic altitudes cannot be interpreted as gas lifted by expanding 

field lines. If at all, it should be identified with the rise of the isoden-

sity contours in magnetic field "valleys". As a corollary, it is unlikely 

that any substantial material galactic halo can form by inflated field 
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lines. A radio halo could indeed for1n, however, by cosmic rays and expanding 

,, f;ield lines in the manner described by Parker (1968b). 

· To compare with observations· one needs to know the characteristic wave-

length of a typical final state. A lower limit to this wavelength is, of 

course, the critical wavelength for the instability, A [see equation (31)], 
X 

Care should be taken, however, not to identify H, in the expression for A , 
X 

with the observed scale-height of the gas today. The observed scale-height is 

representative of the final state, rather than the initial one, since the 

growth-time of the instability is only a few times 107 years. Realizing that 

a is a point function and that it cannot, therefore, be obtained by averaging 

either B or p over large distances, in order to make a semi-quantitative 

comparison with observations we assume that a ~ 1. Then, since the observed 

scale-height is of the order of 102 pc, we expect gas condensations pro-

duced by Parker's instability to be separated by at least a few (3 or 4) 

hundred parsecs. Unless a is unexpectedly large, gas condensations separated 

by smaller distances than this cannot be attributed to this instability. 

Because Parker's instability is associated with very long wavelengths, final 

condensations involving up to 106 solar masses could be produced. ( Note 

that a gas element travels only a fraction of the horizontal wavelength in 

going from an initial to a final state.) Also, because of the large scales 

that could be involved (up to a few kiloparsecs), ~~this instability 

~providing ~ stage £!! ~ small-scale processes in the interstellar 

medium (e.g., dark cloud formation and cloud collapse, s~ar formation and 

supernova explosions e.t.c.) ~~~individual~· 

Both, the nicely displayed, recent 21-centimeter observations by Heiles 

and Jenkins (1973), as well as the compilation of 21-centtmeter observations 

by Fejes and Wesselius (1973), when combined with the starlight polarization 
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measurements by Mathewson and Ford (1970), reveal an intimate association 

between the interstellar gas and the interstellar magnetic field. In fact, 
. . ' 

enormous gas condensations coincide with magnetic field "valleys". At the 

position of the field "valleys" the gas extends high above the plane and 

it does so in directions parallel to the magnetic field. The most prominent 

condensation is centered at about t = 40°; it is a few tens of degrees wide 

and extends above (and below) the plane by at least as much as 60°. Field 

lines e~nating from this condensation form arches above the sun's location 

and return to ~he plane in the general direction t = 250°, where another 

condensation is located. The "edge" of the condensation at t = 40° may be 

as close as 100 pc, .and that at t = 250° as close as 200 pc. However, the 

starlight-polarization maps of Mathewson and Ford show that most of the 

contri~ution _to polarization comes from the distance range 200--400 pc in 

each of these directions. Moreover, contribution to polarization is also 

made by gas extending out to about 600 pc in each direction. Therefore, the 

separation between the "centers" of the two condensations may be as larg': 

as 600 pc. Not only is this separation within the range of unstable 

wavelengths for the magnetogravitational instability, but it lliay also be 

close to the wavelength ~orresponding to the maximum growth-rate. 

Below the Galactic plane, two prominent condensations that are centered 

at t ~ 40° and t = 190°, respectively, are similar in size and in separation 

with the ones just discussed. They, also, are located in magnetic field 

"valleys" and they are joined by field lines that arch high above the plan~. 

They, too, may constitute evidence that the magnetogravitational instability 

has occurred in the solar neighborhood. 

If Jeans' instability were responsible for the formation of these 

condensations, (i) they would be more centrally condensed; and (ii) the long 
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dimension of each condensation would certainly not be along the magnetic 

field. When self-gravitation becomes important, three-dimensional calculations 

(that incorporate the assumption of flux-freezing rigorously) show that the 

equilibrium states exhibit flattening along the magnetic field (Mouschovias 

1974). 

The observed symmetry of high- and low-density regions about the Galactic 

plane is understooft in the context of the magnetogravitational instability. 

Whatever the mechanism that triggers the instability (spiral density shock 
( 

waves?), it certainly must act coherently over a region larger than the 

critical wavelength for the onset of the instability (several hundred 

parsecs). Since the interstellar gas forms a thin disk having thickness of 

a few hundred parsecs today, the perturbatio11; that triggers the instability 

can influence the gas above and below the Galactic plane in a similar manner. 

If the initial distribution of the gas was symmetric about the plane, the 

final state is, therefore, expected to retain this symmetry. Smaller-scale 

deviations from this symmetry may be attributed to local phenomena (e.g., 

depletion of gas by star formation; ionization by nearby stars; sweeping of 

gas by supernova shocks, e.t.c.). 

Observations of the motion of the interstellar gas in the solar neigh-

borhood show a flow pattern in which gas falls down towards the Galactic 

plane and flows out in the general direction of the Galactic center and that 

of the anticenter ( Erickson, Helfer and Tate! 1959; Helfer 1959; Weaver 

1973). The velocities observed are a few kilometers per second. This partie-

ular flow pattern is consistent with a picture in which gas is still sliding 

down the expanding field lines joining the two .condensations referred to .. 
above, which are located at R. "' 40° and R. "' 2,50°. 

Observations o~ external galaxies provide further evidence for the 
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magnetogravitational instability. Thls (and some consequences of the assump­

tion that the instability is triggerred by a spiral density shock wave) 

will be discussed in another publication (Mouschovias, Shu and Woodward 

1974). 
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APPE:NDIX A 

GENERALIZATION OF THE FUNCTION q TO EQUATIONS OF STATE P = P(p) 

Even if the isothermal equation of state is replaced by a general 

equation of state 

p = P(p) ' (Al) 

a connection between initial and final·states may still be made. For this 

purpose we define q(x,y) by 

' q "' exp( J ~P + 1jl J . (A2) 

Following the same procedure that we did in §II we can still show that 

q = q(A) (A3) 

and that equations {10) and (12) now become, respectively, 

(A4) 

and 

(A) = 1:. dm I XJ d ~(x,A) ( ~- (A) ~ )-1 
q 2 dA x aA dP q dP • 

0 

(AS) 

In equation (A4) p.is eliminated by using equation (A2), i.e., 

( 
d dljl J -l 

p • q(A) ~- q(A) --
dP dP 

(A6) 

In practice, the derivatives appearing in the right-hand sides of equations 

(AS) and ( A6) are calculated in a straight-forward fashion by using the 

chain-rule. We obtain 



and 

~= ~dA 
dP dA dP 

... ~ ( aA ax + aA ~ J ( ddPP J-l 
dA ax ap ay ap 
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(A7) 

(A8) 

The price, which we have paid in order to replace the isothermal equation 

of state with the general equation of state (Al) 0 is that the iterative pro-

cedure over the single function A must now _be replaced by an iterative_pro-

cedure over all three functions A, q, and p. The solution of this general 

problem is feasible. 

,, 
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APPENDIX B 

AN "ENERGY INTEGRAL" FOR AN ISOTHERMAL PLASMA 

Bernstein et al. (1958) state that the equations of magnetohydrodynamics 

E + (~/c)xB = 0 

~(Pp -y) = 0 
dt 

+ + "t 
'VxB = (4rr/c) J 

v·it = o 

possess the energy integral 

(Bl) 

(B2) 

(B3) 

(B4) 

(BS) 

(B6) 

(B7) 

J dV [ ~v2 + :: + pljl + y:l ) = a constant, (BS) 

where the integration is extended over all space. The operators 'a/at and 

d/dt denote Eulerian and Lagrangian time-derivatives, respectively. 

Here we show that, even fn the case that the plasma is isothermal (i.e., 

y = 1), an "energy integral" still eXists; it is identical with that of 

equation (BS), except for the fact that the term P/(y-1) is replaced by 

? lnP. We procede in the usual manner to take the dot product of both sides 

. -+ 

of equation (Bl) with v; then, by using equations (B2)-(B7), we write each 
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term as follows. 

( B9) 

-+-+ .... -+ d 
- pv• Vljl = - V •( pljlv) - at(pljl) (BlO) 

Also. 

-+:t .... -+ :t-+ 
- v•vP = - V•(Pv) + P v•v • (Bll) 

-+-+ 
But. by judiciously adding and subtracting the quantity P lnP V·v. we can 

show that the last term in equation (Bll) may be written as 

P V•; =- [ ~t( P lnP) + V•( P lnP;) ] • (Bl2) 

Collecting all terms we obtain 

() [ 1 B2 J at 2 pv2 + Sw + pljl + p lnP 

(Bl3) 

-~fl 2-+ c :t:t -+ I-+ 
+ V• t 2 ,PV V + 4Tr .t;X!S + pljlv + P ln(P e) v J = 0 . 

In equation (Bl3). e is the natural-logarithm base. If the plasma extends 

over all space. being periodic in x (with a wavelength ).x) and symmetric 

about the x-axis. we may integrate equation (Bl3) over one period of the 

system in x. and over the upper half plane in y.t The divergence term yields 

t As in the main text. the geometry is taken to be two-dimensional. although 

this is not necessary for this argument. 

a surface integral with all the terms vanishing. if there is no mass transfer 

1 
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from one period to the next, or acrc•ss th·e x-axis, and if either the magnet-

ic field or the velocity vanishes at y = m. Formally these conditions are 

(x, y .. 0) 

(Bl4) 
(x = ±X, y) 

and either 

B(x, y = m) = 0; or ~(x, y· = ~) = 0. (BlS) 

The unit normal to the "surface" of a p_eriod is denoted by n, and X is equal to 

.). /2. Thus, the result of the integration is 
X 

( 
1 B2 ) I dV 2 pv2 + a~ + p~ + p lnP = a constant. (Bl6) 

The first term in .this integral is the kinetic energy of the fluid. The sum 

of the other three terms acts as an effective potential energy of the iso-

thermal plasma. This point and the meaning of P lnP are discussed in the 

main text (see §IV). Here we only remark that P lnP is not the internal 

energy density of the fluid; the latter is always equal to 3P/2. 
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APPENDIX C 

METHOD OF SOLUTION 

1) The Dimensionless Problem 

We measure the magnetic vector potential and the gas density in units of 

their initial values on the x-axis, i.e.,- 2HBi(O) and pi(O), respectively. 

The unit of length is taken as c2 /g and the unit of time is fixed by choosing 

the unit of velocity as C, the isothermal speed of sound in the gas. With the 

gravitational field chosen as in §Ill, we may write the dimensionless form of 

equation (10) as 

v2A(x,y) = Q(y,A;a) , (Cl) 

where, 

( ) 1 ~(A) ( 
Q y,A;a = - 8a(l+a)2 dA exp -y) • (C2) 

The parameter a is characteristic of the initial state ['see equation (13)). 

Similarly, equation (12) becames 

q(A) =t:~ I l dx-H(x,A) exp[-y(x,A)), (C3) 

where 

and X is defined by X 

tions is' 

dm 
dA = - 4X(l+a)A (C4) 

- A /2. 'Ihe dimensionless form of the boundary condi­
x 

A(x,y=O) = 1, (CS) 

ClA(x,y) I = 0 , 
ax =0 +X X ,_ 

(C6) 

) 
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and 

-- [ o. A(x.y) 
2. 

y=+oo 
(C7) 

y = -co 

The approximate boundary condition that replaces equation (C7) is 

A(x,y) = Ai(Y) , (C8) 

with Ai(y) given by 

(C9) 

2) Outline of the Numerical Scheme 

In equation (Cl) v2 is a linear, differential operator and Q is a non-

linear, algebraic operator. We solved equation (Cl) numerically by an under-

relaxation iterative procedure. The premise was that, if we can calculate Q 

as a function of x andy (rather than A andy), we could easily solve the 

resulting Poisson equation by any one of the many available fast techniques 

(see Dorr 1970). We know Q as a function of x andy, however. only if a solu-

tion A(x,y) is at hand; hence the necessity of an iterative scheme. 

Starting from an initial guess A(O)(x,y), we define a sequence of iter-

ates by' the recursion relations 

n .. 0, 1. 2, ..• (Cl0) 

o ~ e (n) < 1 • (Cll) 

*(n+l) (n) 
The quantity A is a provisional iterate and e is the relaxation para-

meter at the nth iteration. We say that a solution is reached, if the follow-

ing condition is satisfied at all points (x,y): 



~~(n+l) - A(n) I 
1(n+l) 

< £ • 
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(Cl2.) 

In equation (Cll), absolute values are denoted by I 1. (Recall that the di-

mensionless A is always positive.) The quantity £ is a small positive number 

and can-be chosen at will to achieve desired levelS of accuracy. 

t . ' 

We 'chose some field lines of the initial state (the number varied from 

65 to 129), we introduced perturbations most often having the form 

6A(x, y) ~- Ai(y) ~ sin(ny/Y) cos(nx/X) , (Cll) 

where ~ is a fixed positive number less than unity, and we followed these 

field lines from iteration to iteration until they settled down. Although we 

found solutions (to within 1% or 2%) in a number of iterations varying from 

6 to 22, we forced the program to continue for as many as 97 iterations in 

order to make a detailed error analysis •. Thus, we computed the asyniptotic 

convergence rate and demonstrated that, at any one interior point, our solu-

tiona are accurate to within 0.5%. 

In more detail, the steps involved in the iterative scheme are the 

following. 

(i) Define a uniform mesh over the region of interest having J points in the 

y- and K points in the x- directions: 

y j .. (j-1) b.y j = 1, 2, J (Cl4) 

xk • (k-1) b.x , k = 1, 2, ••• K (Cl5) 

where t:.y = Y/(J-1) and b.x .. X/(K-1). [Note that having defined a mesh, all 

functions of one (two) variables become one- (two-) dimensional arrays. 1 

(ii) Choose a set of field lines of the initial state which we shall follow. 

Let this set be {AiJ' i a 1, 2~ ••• I. 

' .. 
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(iii) Guesi an A(O)(x,y). 

(iv) For each x, interpolate to find y(Ai,x), i = 1, 2, ••• I. That is, 

obtain y as a function of x along each field line chosen in step (11). 

(v) For each x, differentiate y(Ai,x) with respect to A to obtain 'ily/'ilA. 

(vi) Perform the integration in equation (C3) for each and every Ai. 

(vii) Obtain q(Ai) from equation (C3), since dm(Ai)/dA is always given by 

equation (C4). 

(viii) Perform the differentiation with respect to A to find h(Ai) _ 

dq(A.)/dA. 
1 

(ix) Since h(Ai) is knownalong the field lines, whose position was deter­

mined in step ( iv) • interpolate to obtain h at the mesh points. This inter-

polation is done, for each x, byusing y(Ai,x) as old abscissas and yj as 

new abscissas; the subscripts i and j span their respective ranges. 

(xi) With the right-hand side known as a function of x and y, the Poisson 

equation (Cl) is solved to find A(l)(x,y). 

(xii) If A(l) and A(O) satisfy the criterion given by equation (Cl2), then 

A(l) is a solution. If they do not, underrelax A as in equation (Cll) and 

go back to step (iv) to repeat the process. 

Numerical integrations, differentiations and interpolations are per-

formed so many times in the program that, although the routines performing 

each operation are very accurate, their combined effect in the calculation 

of the right-hand side of equation (Cl) cannot be predicted. To study this 

effect we searched for a function A(x,y), which would (i) correspond to 

field lines having the desired wavy shape; (ii) satisfy the appropriate 

boundary conditions; and (iii) allow us to calculate the right-hand side of 

equation (Cl) analytically! If such an A(x,y) is known, then the calculated 

Q(y,A;a) can be compared to the Q computed by the program and the net 

• 
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numerical errors be determined. Such an A is obtained by solving the qua­

dratic 

exp[ - y/(2a+2)] = (1-A) (A~A 0 ) w(x) +A, (Cl6) 

where 

w(x) = K cos(nx/X) , (Cl7) 

and A0 is the value of A in the initial state at y = Y. 

It is remarkable that we found that the maximum error in the computation 

of dq(A)/dA occurs ~ the~ boundary (where all physical quantities are 

very small compared to their values on the x-axis) and is equal. to 0.91%. 

Table 3 exhibits the maximum errors in the computation of the various quanti­

ties and the points at which these errors occur. The mesh was uniform in 

each direction; the number of mesh points in the·y-direction was 65 and that 

in the x-direction was 63. This is the smallest number of mesh points used 

to obtain any one of our solutions. Thus, the errors given in table 3 are 

the largest that we may expect. The indices j and k denote mesh points in 

they- and x- directions, respectively [see equations (Cl4) and (ClS)]. The 

index i denotes field lines, the lowest field line having i = 1 and the one 

at y = Y having i ~ 65. 

Insert Table 3 

Note that the maximum errors occur at the boundaries. In fact, the errors at 

interior points are much less than those given in Table 3. 
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TABLE 1 

ALPHA AND THE GAS DENSITY IN THREE FINAL STATESl AT SOME POINTS 

a(x,y) p(x,yf 
(x,y) 

a b c a b c 

(0,0) 1.2 1.4 2.0 1.0 1.0 1.0 

(0,22) 0.1 0.05 0.03 8.8xl0-S 2.1xl0-4 4.2xl0-4 

(X,0) 2 0.9 0.7 0.6 1.0 1.0 1.0 

(X,22) 1.6xl0 
2 

7.lxl0
3 

9.0xl0
4 1.8xl0-6 1.8xl0-] 4.1xl0-s 

1 The columns.headed a, band c refer to the final states of Figures 2a, 2b 

and 2c. 

2 Recall that X ( = A /2) is different in each state; it increases as we go 
X 

from state a to state c. 
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b 

c 
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TABLE 2 

ENERGY REDUCTION FOR THREE FINAL STATES 

2 
Heat (xlO ) 

2.32 

5.73 

11.8 

Energy Released 

Magnetic (xl0
2
) 

o.oo 

0.90 

2.67 

2 
Gravitational (xlO ) 

2.37 

5.50 

12.9 

1 In each state, the energy released has been normalized to the internal 

energy of the gas, i J P dV • 
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TABLE 3 

MAXIMm1 COMPUTATIONAL ERRORS 

Function Maximum Error (%) Location 

y(A,x) 0.320 i = 2, k = 2 

_!y(A,x) 
0.060 i = 65, k = 15 

3A 

f{A) 1 0.098 i .. 1 

q(A) 0.445 i .. 65 

~{A) o. 770 i .. 64 
dA 

~[A(x,y)] 
0.91 j Ill 64, k = 45 

dA 

1 The function f(A) is defined as the integral in the denominator of equation 

(C3). 
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CAPTIONS TO FIGURES 

Fig. 1 - The dependence of the function q on A in the stratified initial state (a = 1) 

and in a typical final state (that of Figure 2c). Both q and A are 

normalized to their values on the x-axis in the initial state. 

Fig. 2a (left), 2b (center), and 2c (right).- Final equilibrium states of 

the interstellar gas-field system in a galactic gravitational field 

-+ -+ 
g =- e g(y), where g(y) =- g(-y) =a positive constant. Distance 

y ' 

is measured in units of c2/g, where C is the isothermal speed of 

sound in the gas. The dimensions of each graph are equal to half a 

wavelength in the x- and half a wavelength in the y-direction. Half 

the critical wavelength in the x-direction is equal to 7.26. Field 

lines (solid curves) are chosen so that the magnetic flux between 

any two consecutive ones is constant. The isodensity contours 

(dashed curves) represent the points at which the density decreases 

-1 
to e e-2 and e-3 its value on the x-axis. The number on each curve 

is the y-coordinate of that curve in the initial state, in which a = 1. 

Fig. 3 - The emission measure (normalized to its value in the stratified 

initial state) as a function of x in the three final states of 

Figure 2. The unit of length is C2/g. The number (X) labeling each 

curve is equal to 1/2 of the horizontal wavelength of the 

corresponding final state. The curves X ~ 9 and X a 12 .could also 

represent the normalized column density fn the corresponding final 

states to within a few percent. Similarly, the curve X • 15 could 

represent the corresponding column density to within 18%. 
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r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 

United States Government. Neither the United States nor the United 

States Atomic Energy Commission, nor any of their employees, nor 

any of their contractors, subcontractors, or their employees, makes 

any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness or usefulness of any 

information, apparatus, product or process disclosed, or represents 

that its use would not infringe privately owned rights. 
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