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Abstract

In this paper the authors derive a higher-order shear deformation theory for mod-
elling functionally graded plates accounting for extensibility in the thickness direc-
tion.

The explicit governing equations and boundary conditions are obtained using the
principle of virtual displacements under Carrera’s Unified Formulation and then
interpolated by collocation with radial basis functions.

The efficiency of the present approach is assessed with numerical results includ-
ing deflection, stresses, free vibration, and buckling of functionally graded isotropic
plates and functionally graded sandwich plates.

1 Introduction

Composite materials have been widely used in aircraft and other engineering
applications for many years because of their excellent strength-to-weight and
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stiffness-to-weight ratios. Functionally graded materials (FGM) are a class
of composite materials that were first proposed by Bever and Duwez [1] in
1972. In a typical FGM plate the material properties continuously vary over
the thickness direction by mixing two different materials [2], usually ceramic
and metal. The gradual variation of properties avoids the delamination failure
that are common in laminated composites. The computational modelling of
FGM is an important tool to the understanding of the structures behavior,
and has been the target of intense research, from micro to macro mechanics
[3–6]. A review of the main developments in FGM can be found in Birman
and Byrd [7]. These materials have attracted much attention and already have
applications in many fields [2] or [8].

When compared to isotropic and laminated plates, the literature on FGM
plates is scarce. Because of FGM applications in high temperature environ-
ments most of the studies on the behaviour of FGM plates focus on the thermo-
mechanical response of FGM plates: Reddy and Chin [9], Reddy [10], Vel and
Batra [11,12], Cheng and Batra [13], Javaheri and Eslami [14]. Studies on the
mechanical behaviour of FGM plates include the static analysis of FGM plates
performed by Kashtalyan [15], Kashtalyan and Menshykova [16], Qian et al.
[17], Zenkour [18,19], Ramirez et al. [20], Ferreira et al. [21,22], Chi and Chung
[23,24], and Cheng and Batra [25]. Vibrations problems of FGM plates can be
found in Batra and Jin [26], Ferreira et al. [27], Vel and Batra [28], Zenkour
[29], Roque et al. [30], and Cheng and Batra [31]. Mechanical buckling of FGM
plates can be found in Najafizadeh and Eslami [32], Zenkour [29], Cheng and
Batra [31], Birman [33], Javaheri and Eslami [34].

The classical plate theory (CLPT) yields acceptable results only for thin
plates. The accuracy of the results from the first-order shear deformation the-
ory (FSDT) depends on the shear correction factor which is hard to find as it
depends on many parameters. Besides, higher-order shear deformation theo-
ries (HSDT) provide better accuracy for transverse shear stresses and there is
no need of a shear correction factor. Therefore, we are now proposing a higher-
order shear deformation theory based on the following displcament field:

u = u0 + zu1 + z3u3

v = v0 + zv1 + z3v3
w = w0 + zw1 + z2w2

(1)

A higher-order plate theory popular in the literature is the one from Kant
[35], used by Pandya and Kant for laminated plates [36,37], with 6 unknowns.
Comparing Kant’s theory with present theory, both accounts for warping of
the cross section but Kant’s theory does not account for the displacements
along the coordinate lines of a point on the reference plane (u0 and v0) or the
rotation w1. Other popular HSDT are used for laminated plates in [38–40],
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with 9 to 12 unknowns depending on the number of terms in the transverse
displacement expansion, considering or not warping in the thickness direction.
The higher-order presented in this paper includes less unknows in the u and
v expansion. Another popular HSDT plate theory in the literature is the one
from Reddy [10], with 5 unknowns, already used for FGM plates, but that does
not account for warping in the thickness direction unlike present higher-order
theory. Although Reddy’s theory has 4 unknows less than present theory, the
present theory is much easier to implement as it is possible to use the Unified
Formulation proposed by Carrera.

Carrera’s Unified Formulation (CUF) was proposed in [41–43] for laminated
plates and shells and extended to FGM plates in [44–46]. The present for-
mulation can be seen as a generalization of the original CUF, by introducing
different displacement fields for in-plane and out-of-plane displacements. It
is possible to implement any C0

z theory under CUF, using layer-wise as well
as equivalent single-layer descriptions, and the Principle of Virtual Displace-
ments, as is the case in present formulation, or the Reissner mixed variational
theorem. CUF allows a systematic assessment of a large number of plate mod-
els and the effect of thickness stretching in FGM plates was recently investi-
gated by Carrera et al. [47] using CUF and finite element approximations.

The use of alternative methods to the Finite Element Methods for the analysis
of plates, such as the meshless methods based on collocation with radial basis
functions is atractive due to the absence of a mesh and the ease of collocation
methods. In recent years, radial basis functions (RBFs) showed excellent accu-
racy in the interpolation of data and functions. The authors have applied the
RBF collocation to the static deformations and free vibrations of composite
beams and plates [48–55]. The combination of CUF and meshless methods has
been performed in [56–59] for laminated plates and in [60,61] for FGM plates.
Furthermore, the CUF method is here applied for the first time to the buckling
analysis of FGM plates, owing to collocation with radial basis functions.

This paper presents explicit governing equations and boundary conditions
of the HSDT and focus on the thickness stretching issue on the static, free
vibration, and buckling analysis of FGM plates by a meshless technique. The
CUF method is employed to obtain the algebraic governing equations and
boundary conditions which are then interpolated by radial basis functions to
obtain an algebraic system of equations.

2 Problem formulation

Consider a rectangular plate of plan-form dimensions a and b and uniform
thickness h. The co-ordinate system is taken such that the x-y plane (z = 0)
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Fig. 1. Rectangular plate subjected to compressive in-plane forces and distributed
shear forces.

coincides with the midplane of the plate (z ∈ [−h/2, h/2]).

The plate may be subjected to a transverse mechanical load applied at the
top of the plate.

The plate may be subjected to compressive in-plane forces acting on the mid-
plane of the plate and distributed shear force (see fig. 1). N̄xx and N̄yy denote
the in-plane loads perpendicular to the edges x = 0 and y = 0 respectively,
and N̄xy denote the distributed shear force parallel to the edges x = 0 and
y = 0 respectively.

We are interested in study three different types of functionally graded plates:
(A) isotropic FGM plates; (B) sandwich plates with FGM core; (C) sandwich
plates with FGM skins.

2.1 Plate A: isotropic FGM plate

The plate of type A is graded from metal (bottom) to ceramic (top) (see figure
2). The volume fraction of the ceramic phase is defined as in [19]:

Vc =
(
0.5 +

z

h

)p

(2)

where z ∈ [−h/2, h/2], h is the thickness of the plate, and p is a scalar pa-
rameter that allows the user to define gradation of material properties across
the thickness direction. The volume fraction for the metal phase is given as
Vm = 1− Vc.
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Fig. 2. Plate A: isotropic FGM plate.
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Fig. 3. Plate B: sandwich plate with FGM core and isotropic skins.

2.2 Plate B: sandwich plate with FGM core

In this type of sandwich plates the bottom skin is isotropic fully metal and the
top skin is isotropic fully ceramic. The core is graded from metal to ceramic
so that there are no interfaces between core and skins. Figure 3 illustrates the
plate B type.

The volume fraction of the ceramic phase in the core is obtained by adapting
the polynomial material law in [19]:

Vc =
(
0.5 +

zc
hc

)p

(3)

where zc ∈ [h1, h2], hc = h2 − h1 is the thickness of the core, and p is the
power-law exponent that defines the gradation of material properties across
the thickness direction. The volume fraction for the metal phase in the core is
given as Vm = 1− Vc.
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Fig. 4. Plate C: Sandwich with isotropic core and FGM skins.

2.3 Plate C: sandwich plate with FGM skins

In the plates of type C the sandwich core is isotropic fully ceramic and skins
are composed of a functionally graded material across the thickness direction.
The bottom skin varies from a metal-rich surface (z = −h/2) to a ceramic-
rich surface while the top skin face varies from a ceramic-rich surface to a
metal-rich surface (z = h/2) as illustrated in figure 4. There are no interfaces
between core and skins. The volume fraction of the ceramic phase is obtained
as:

Vc =

(
z − h0

h1 − h0

)p

, h ∈ [−h/2, h1], bottom skin

Vc = 1, h ∈ [h1, h2], core (4)

Vc =

(
z − h3

h2 − h3

)p

, h ∈ [h2, h/2], top skin

where z ∈ [−h/2, h/2], and p is a scalar parameter that allows the user to
define gradation of material properties across the thickness direction of the
skins. The volume fraction for the metal phase is given as Vm = 1− Vc.

The sandwich plate C may be symmetric or non-symmetric about the mid-
plane as we may vary the thickness of each face. Figure 5 shows a non-
symmetric sandwich with volume fraction defined by the power-law (4) for
various exponents p, in which top skin thickness is the same as the core thick-
ness and the bottom skin thickness is twice the core thickness. Such thickness
relation is denoted as 2-1-1. A bottom-core-top notation is being used. 1-1-1
means that skins and core have the same thickness.
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Fig. 5. A 2-1-1 sandwich with FGM skins for several volume fractions.

3 A quasi-3D higher-order plate theory

3.1 Displacement field

The present theory is based on the following displacement field:

u(x, y, z, t) = u0(x, y, t) + zu1(x, y, t) + z3u3(x, y, t) (5)

v(x, y, z, t) = v0(x, y, t) + zv1(x, y, t) + z3v3(x, y, t) (6)

w(x, y, z, t) = w0(x, y, t) + zw1(x, y, t) + z2w2(x, y, t) (7)

where u, v, and w are the displacements in the x−, y−, and z− directions,
respectively. u0, u1, u3, v0, v1, v3, w0, w1, and w2 are functions to be deter-
mined.
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3.2 Strains

The strain-displacement relationships are given as:




ǫxx

ǫyy

γxy





=





∂u
∂x

+ 1
2

(
∂w0

∂x

)2

∂v
∂y

+ 1
2

(
∂w0

∂y

)2

∂u
∂y

+ ∂v
∂x

+ ∂w0

∂x
∂w0

∂y





,





γxz

γyz

ǫzz





=





∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y

∂w
∂z





(8)

By substitution of the displacement field in (8), the strains are obtained:




ǫxx

ǫyy

γxy





=





ǫ(0)xx

ǫ(0)yy

γ(0)
xy





+





ǫ(nl)xx

ǫ(nl)yy

γ(nl)
xy





+ z





ǫ(1)xx

ǫ(1)yy

γ(1)
xy





+ z3





ǫ(3)xx

ǫ(3)yy

γ(3)
xy





(9)





γxz

γyz

ǫzz





=





γ(0)
xz

γ(0)
yz

ǫ(0)zz





+ z





γ(1)
xz

γ(1)
yz

ǫ(1)zz





+ z2





γ(2)
xz

γ(2)
yz

ǫ(2)zz





(10)

being the strain components obtained as




ǫ(0)xx

ǫ(0)yy

γ(0)
xy





=





∂u0

∂x

∂v0
∂y

∂u0

∂y
+ ∂v0

∂x





;





ǫ(nl)xx

ǫ(nl)yy

γ(nl)
xy





=





1
2

(
∂w0

∂x

)2

1
2

(
∂w0

∂y

)2

∂w0

∂x
∂w0

∂y





(11)





ǫ(1)xx

ǫ(1)yy

γ(1)
xy





=





∂u1

∂x

∂v1
∂y

∂u1

∂y
+ ∂v1

∂x





;





ǫ(3)xx

ǫ(3)yy

γ(3)
xy





=





∂u3

∂x

∂v3
∂y

∂u3

∂y
+ ∂v3

∂x





(12)





γ(0)
xz

γ(0)
yz

ǫ(0)zz





=





u1 +
∂w0

∂x

v1 +
∂w0

∂y

w1





;





γ(1)
xz

γ(1)
yz

ǫ(1)zz





=





∂w1

∂x

∂w1

∂y

2w2





;





γ(2)
xz

γ(2)
yz

ǫ(2)zz





=





3u3 +
∂w2

∂x

3v3 +
∂w2

∂y

0





(13)
where ǫ

(nl)
αβ contains the non-linear terms that will originate the linearized

buckling equation.
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3.3 Elastic stress-strain relations

In the case of functionally graded materials, the 3D constitutive equations can
be written as:





σxx

σyy

τxy

τxz

τyz

σzz





=





C11 C12 0 0 0 C12

C12 C11 0 0 0 C12

0 0 C44 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

C12 C12 0 0 0 C33









ǫxx

ǫyy

γxy

γxz

γyz

ǫzz





(14)

The computation of the elastic constants Cij depends on which assumption
of ǫzz we consider. If ǫzz = 0, then Cij are the plane-stress reduced elastic
constants:

C11 =
E

1− ν2
; C12 = ν

E

1− ν2
; C44 = G; C33 = 0 (15)

where E is the modulus of elasticity, ν is the Poisson’s ratio, and G is the
shear modulus G = E

2(1+ν)
.

It is interesting to note that the present theory does not consider the use of
shear-correction factors, as would be the case of the first-order shear deforma-
tion theory (FSDT).

If ǫzz 6= 0 (thickness stretching), then Cij are the three-dimensional elastic
constants, given by

C11 =
E(1− ν2)

1− 3ν2 − 2ν3
, C12 =

E(ν + ν2)

1− 3ν2 − 2ν3
(16)

C44 = G, C33 =
E(1− ν2)

1− 3ν2 − 2ν3
(17)
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3.4 Governing equations and boundary conditions

The governing equations of present theory are derived from the dynamic ver-
sion of the Principle of Virtual Displacements. The internal virtual work is

δU =
∫

Ω0

{ h/2∫

−h/2

[
σxx

(
δǫ(0)xx + zδǫ(1)xx + z3δǫ(3)xx

)
+ σyy

(
δǫ(0)yy + zδǫ(1)yy + z3δǫ(3)yy

)

+ σxy

(
δγ(0)

xy + zδγ(1)
xy + z3δγ(3)

xy

)
+ σxz

(
δγ(0)

xz + zδγ(1)
xz + z2δγ(2)

xz

)

+ σyz

(
δγ(0)

yz + zδγ(1)
yz + z2δγ(2)

yz

)
+ σzz

(
δǫ(0)zz + zδǫ(1)zz

) ]
dz

}
dx dy

(18)

δU =
∫

Ω0

(
Nxxδǫ

(0)
xx +Mxxδǫ

(1)
xx +Rxxδǫ

(3)
xx +Nyyδǫ

(0)
yy +Myyδǫ

(1)
yy +Ryyδǫ

(3)
yy

+Nxyδγ
(0)
xy +Mxyδγ

(1)
xy +Rxyδγ

(3)
xy +Qxzδγ

(0)
xz +Mxzδγ

(1)
xz +Rxzδγ

(2)
xz

+Qyzδγ
(0)
yz +Myzδγ

(1)
yz +Ryzδγ

(2)
yz +Qzzδǫ

(0)
zz +Mzzδǫ

(1)
zz

)
dx dy

(19)

where Ω0 is the integration domain in plane (x, y) and





Nxx

Nyy

Nxy





=

h/2∫

−h/2





σxx

σyy

σxy





dz,





Qxz

Qyz

Qzz





=

h/2∫

−h/2





σxz

σyz

σzz





dz (20)





Mxx

Myy

Mxy





=

h/2∫

−h/2

z





σxx

σyy

σxy





dz,





Mxz

Myz

Mzz





=

h/2∫

−h/2

z





σxz

σyz

σzz





dz (21)





Rxx

Ryy

Rxy





=

h/2∫

−h/2

z3





σxx

σyy

σxy





dz,





Rxz

Ryz





=

h/2∫

−h/2

z2





σxz

σyz




dz. (22)

The external virtual work due to external loads applied to the plate is given
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as:

δV =−
∫

Ω0

(pxδu+ pyδv + pzδw) dx dy

=−
∫

Ω0

(
px
(
δu0 + zδu1 + z3δu3

)
+ py

(
δv0 + zδv1 + z3δv3

)
+ pz

(
δw0 + zδw1 + z2δw2

))
dx dy

(23)

The external virtual work due to in-plane forces and shear forces applied to
the plate is given as:

δV = −
∫

Ω0

[
N̄xx

∂w0

∂x

δ∂w0

∂x
+ N̄xy

∂w0

∂y

δ∂w0

∂x
+ N̄yx

∂w0

∂x

δ∂w0

∂y
+ N̄yy

∂w0

∂y

δ∂w0

∂y

]
dx dy

(24)
being N̄xx and N̄yy the in-plane loads perpendicular to the edges x = 0 and
y = 0 respectively, and N̄xy and N̄yx the distributed shear forces parallel to
the edges x = 0 and y = 0 respectively.

The virtual kinetic energy is given as:

δK =
∫

Ω0





h/2∫

−h/2

ρ (u̇δu̇+ v̇δv̇ + ẇδẇ) dz




dx dy

=
∫

Ω0

{ h/2∫

−h/2

ρ
[
(u̇0δu̇0 + v̇0δv̇0 + ẇ0δẇ0)

+ z (u̇0δu̇1 + u̇1δu̇0 + v̇0δv̇1 + v̇1δv̇0 + ẇ0δẇ1 + ẇ1δẇ0)

+ z2 (u̇1δu̇1 + v̇1δv̇1 + ẇ0δẇ2 + ẇ1δẇ1 + ẇ2δẇ0)

+ z3 (u̇0δu̇3 + u̇3δu̇0 + v̇0δv̇3 + v̇3δv̇0 + ẇ1δẇ2 + ẇ2δẇ1)

+ z4 (u̇1δu̇3 + u̇3δu̇1 + v̇3δv̇1 + v̇1δv̇3 + ẇ2δẇ2)

+ z6 (u̇3δu̇3 + v̇3δv̇3)
]
dz

}
dx dy

(25)

δK =
∫

Ω0

[
I0 (u̇0δu̇0 + v̇0δv̇0 + ẇ0δẇ0)

+ I1 (u̇0δu̇1 + u̇1δu̇0 + v̇0δv̇1 + v̇1δv̇0 + ẇ0δẇ1 + ẇ1δẇ0)

+ I2 (u̇1δu̇1 + v̇1δv̇1 + ẇ0δẇ2 + ẇ1δẇ1 + ẇ2δẇ0)

+ I3 (u̇0δu̇3 + u̇3δu̇0 + v̇0δv̇3 + v̇3δv̇0 + ẇ1δẇ2 + ẇ2δẇ1)

+ I4 (u̇1δu̇3 + u̇3δu̇1 + v̇3δv̇1 + v̇1δv̇3 + ẇ2δẇ2)

+ I6 (u̇3δu̇3 + v̇3δv̇3)
]
dx dy

(26)

where the dots denote the derivative with respect to time t and the inertia

11



terms are defined as

Ii =

h/2∫

−h/2

ρzidz i = 1, 2, 3, 4, 6 (27)

Substituting δU , δV , and δK in the virtual work statement, integrating through
the thickness, integrating by parts with respect to x and y, and collecting the
coefficients of δu0, δu1, δu3, δv0, δv1, δv3, δw0, δw1, δw2, the following gov-
erning equations are obtained:

δu0 :−
∂Nxx

∂x
− ∂Nxy

∂y
+

∂Qxz

∂z
=

h/2∫

−h/2

{
ρ
(
ü0 + zü1 + z3ü3

)
+ px

}
dz

δv0 :−
∂Nxy

∂x
− ∂Nyy

∂y
+

∂Qyz

∂z
=

h/2∫

−h/2

{
ρ
(
v̈0 + zv̈1 + z3v̈3

)
+ py

}
dz

δw0 :−
∂Qxz

∂x
− ∂Qyz

∂y
+

∂Qzz

∂z
+ N̄xx

∂2w0

∂x2
+ N̄xy

∂2w0

∂y∂x
+ N̄yx

∂2w0

∂x∂y

+ N̄yy
∂2w0

∂y2
=

h/2∫

−h/2

{
ρ
(
ẅ0 + zẅ1 + z2ẅ2

)
+ pz

}
dz

δu1 :−
∂Mxx

∂x
− ∂Mxy

∂y
+

∂Mxz

∂z
=

h/2∫

−h/2

{
ρz
(
ü0 + zü1 + z3ü3

)
+ zpx

}
dz

δv1 :−
∂Mxy

∂x
− ∂Myy

∂y
+

∂Myz

∂z
=

h/2∫

−h/2

{
ρz
(
v̈0 + zv̈1 + z3v̈3

)
+ zpy

}
dz

δw1 :−
∂Mxz

∂x
− ∂Myz

∂y
+

∂Mzz

∂z
=

h/2∫

−h/2

{
ρz
(
ẅ0 + zẅ1 + z2ẅ2

)
+ zpz

}
dz

δu3 :−
∂Rxx

∂x
− ∂Rxy

∂y
+

∂Rxz

∂z
=

h/2∫

−h/2

{
ρz3

(
ü0 + zü1 + z3ü3

)
+ z3px

}
dz

δv3 :−
∂Rxy

∂x
− ∂Ryy

∂y
+

∂Ryz

∂z
=

h/2∫

−h/2

{
ρz3

(
v̈0 + zv̈1 + z3v̈3

)
+ z3py

}
dz

δw2 :−
∂Rxz

∂x
− ∂Ryz

∂y
+

∂Rzz

∂z
=

h/2∫

−h/2

{
ρz2

(
ẅ0 + zẅ1 + z2ẅ2

)
+ z2pz

}
dz

(28)
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The mechanical boundary conditions are:

δu0 : nxNxx + nyNxy = nxN̄xx + nyN̄xy

δv0 : nxNxy + nyNyy = nxN̄xy + nyN̄yy

δw0 : nxQxz + nyQyz = nxQ̄xz + nyQ̄yz

δu1 : nxMxx + nyMxy = nxM̄xx + nyM̄xy

δv1 : nxMxy + nyMyy = nxM̄xy + nyM̄yy

δw1 : nxMxz + nyMyz = nxM̄xz + nyM̄yz

δu3 : nxRxx + nyRxy = nxR̄xx + nyR̄xy

δv3 : nxRxy + nyRyy = nxR̄xy + nyR̄yy

δw2 : nxRxz + nyRyz = nxR̄xz + nyR̄yz

(29)

where (nx, ny) denotes the unit normal-to-boundary vector.

4 Governing equations and boundary conditions in the framework

of Unified Formulation

The Unified Formulation proposed by Carrera [62,42] (further denoted as
CUF) has been applied, using the Principle of Virtual Displacements, to obtain
the equations of the present theory (see equation (28)). The stiffness matrix
components, the external force terms or the inertia terms can be obtained
directly with this unified formulation, irrespective of the shear deformation
theory being considered.

The three displacement components ux, uy and uz (given in (5) to (7)) and
their relative variations can be modelled as:

(ux, uy, uz) = Fτ (uxτ , uyτ , uzτ ) (δux, δuy, δuz) = Fs (δuxs, δuys, δuzs)
(30)

In the present formulation the thickness functions are

Fsux = Fsuy = Fτux = Fτuy =
[
1 z z3

]
(31)

for inplane displacements u, v and

Fsuz = Fτuz =
[
1 z z2

]
(32)

for transverse displacement w.

The CUF formulation considers virtual (mathematical) layers of constant
thickness, each containing a homogeneized modulus of elasticity, Ek, and a
homogeneized Poisson’s ratio, νk. The functionally graded plate is divided
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into a number (NL) of uniform thickness layers and for each layer the vol-
ume fraction of the ceramic phase is defined according to (2), (3) or (4). The
volume fraction for the metal phase is given as Vm = 1− Vc.

For each virtual layer, the elastic properties Ek and νk can be computed in
two ways. First, we may consider the law-of-mistures:

Ek(z) = EmVm + EcVc; νk(z) = νmVm + νcVc (33)

Second, we may consider the Mori-Tanaka homogenization procedure [63,64].
In this homogenization method, we find the bulk modulus, K, and the effective
shear modulus, G, of the composite equivalent layer as

K −Km

Kc −Km

=
Vc

1 + Vm
Kc−Km

Km+4/3Gm

;
G−Gm

Gc −Gm

=
Vc

1 + Vm
Gc−Gm

Gm+fm

(34)

where

fm =
Gm(9Km + 8Gm)

6(Km + 2Gm)
(35)

The effective values of Young’s modulus, Ek, and Poisson’s ratio, νk, are found
from

Ek =
9KG

3K +G
; νk =

3K − 2G

2(3K +G)
(36)

After using the law-of-mixtures or the Mori-Tanaka homogenization proce-
dure, the computation of the elastic constants Ck

ij is performed for each layer
based on νk and Ek. For example,

Ck
12 =

Ek(νk + (νk)2)

1− 3(νk)2 − 2(νk)3
. (37)

The procedure for the other Ck
ij is analogous.

Under CUF formulation the PVD is expressed considering a sumatoria over
the layers:

NL∑

k=1

∫

Ωk

∫

Ak

(
δǫp

T
σ

k
p + δǫn

T
σ

k
n

)
dz dΩk =

NL∑

k=1

∫

Ωk

∫

Ak

(
ρk δuT

ü+ δuT
p

)
dz dΩk

(38)
Here, k indicates the layer and Ωk and Ak are the integration domains in plane
(x,y) and z direction, respectively, and ρk is the mass density of the k-th layer.
Subscript p indicates in-plane components (xx, yy, xy) and subscript n the
transverse components (xz, yz, and zz). p = {px, py, pz} is the external load
applied to the structure. T denotes the transpose of a vector, δ denotes the
variational symbol, and double dots acceleration.
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Equation (38) considers the 9 variationals δu0, δv0, δw0, δu1, δv1, δw1, δuZ ,
δvZ , and δw2 disregarding the the in-plane loads and the shear forces. These
external forces just imply addicional terms on the variational δw0:

∫

Ω0

N̄αβw0,αδw0,βdΩ0 (39)

where Ω0 is the integration domain in plane (x, y) and α and β take the
symbols x, y.

Considering that the mechanical external load is only transverse p = {0, 0, pz}
applied at the top (coordinate z = h/2) and assuming that N̄xy = N̄yx, equa-
tions in (28) become:

δu0 :
NL∑

k=1

(
−∂Nk

xx

∂x
− ∂Nk

xy

∂y
+

∂Qk
xz

∂z

)
=

NL∑

k=1

∫

Ak

ρk
(
ü0 + zü1 + z3ü3

)
dz

δv0 :
NL∑

k=1

(
−∂Nk

xy

∂x
− ∂Nk

yy

∂y
+

∂Qk
yz

∂z

)
=

NL∑

k=1

∫

Ak

ρk
(
v̈0 + zv̈1 + z3v̈3

)
dz

δw0 :
NL∑

k=1

(
−∂Qk

xz

∂x
− ∂Qk

yz

∂y
+

∂Qk
zz

∂z

)
+ N̄xx

∂2w0

∂x2
+ 2N̄xy

∂2w0

∂x∂y
+ N̄yy

∂2w0

∂y2

=
NL∑

k=1

∫

Ak

ρk
(
ẅ0 + zẅ1 + z2ẅ2

)
dz + pz

δu1 :
NL∑

k=1

(
−∂Mk

xx

∂x
− ∂Mk

xy

∂y
+

∂Mk
xz

∂z

)
=

NL∑

k=1

∫

Ak

ρkz
(
ü0 + zü1 + z3ü3

)
dz

δv1 :
NL∑

k=1

(
−∂Mk

xy

∂x
− ∂Mk

yy

∂y
+

∂Mk
yz

∂z

)
=

NL∑

k=1

∫

Ak

ρkz
(
v̈0 + zv̈1 + z3v̈3

)
dz

δw1 :
NL∑

k=1

(
−∂Mk

xz

∂x
− ∂Mk

yz

∂y
+

∂Mk
zz

∂z

)
=

NL∑

k=1

∫

Ak

ρkz
(
ẅ0 + zẅ1 + z2ẅ2

)
dz

δu3 :
NL∑

k=1

(
−∂Rk

xx

∂x
− ∂Rk

xy

∂y
+

∂Rk
xz

∂z

)
=

NL∑

k=1

∫

Ak

ρkz3
(
ü0 + zü1 + z3ü3

)
dz

δv3 :
NL∑

k=1

(
−∂Rk

xy

∂x
− ∂Rk

yy

∂y
+

∂Rk
yz

∂z

)
=

NL∑

k=1

∫

Ak

ρkz3
(
v̈0 + zv̈1 + z3v̈3

)
dz

δw2 :
NL∑

k=1

(
−∂Rk

xz

∂x
− ∂Rk

yz

∂y
+

∂Rk
zz

∂z

)
=

NL∑

k=1

∫

Ak

ρkz2
(
ẅ0 + zẅ1 + z2ẅ2

)
dz +

(
h

2

)2

pz

(40)

where Nk
xx =

∫

Ak

σk
xxdz, R

k
xz =

∫

Ak

z2σk
xzdz and analogous procedure for other

resultants.
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In (40), for static problems, the ρk and the N̄αβ terms are set to zero; for the
free vibration problems, the N̄αβ and the pz terms are set to zero; and for
buckling problems the pz and the ρk terms are set to zero.

4.1 Governing equations and boundary conditions in terms of displacements

In order to discretize the governing equations by radial basis functions, we
present in the following the explicit terms of the governing equations and the
boundary conditions in terms of the generalized displacements.

δu0 : −
(
A11

∂2u0

∂x2
+ A66

∂2u0

∂y2

)
− (A12 + A66)

∂2v0
∂x∂y

−
(
B11

∂2u1

∂x2
+ B66

∂2u1

∂y2

)

−
(
E11

∂2u3

∂x2
+ E66

∂2u3

∂y2

)
− (B12 +B66)

∂2v1
∂x∂y

− (E12 + E66)
∂2v3
∂x∂y

−A13
∂w1

∂x
− 2B13

∂w2

∂x
= I0

∂2u0

∂t2
+ I1

∂2u1

∂t2
+ I3

∂2u3

∂t2
(41)

δu1 :

(
−F11

∂2u3

∂x2
+ 3D55u3 − F66

∂2u3

∂y2

)
+

(
−D11

∂2u1

∂x2
+ A55u1 −D66

∂2u1

∂y2

)

−
(
B11

∂2u0

∂x2
+ B66

∂2u0

∂y2

)
− (B12 + B66)

∂2v0
∂x∂y

− (D12 +D66)
∂2v1
∂x∂y

− (F12 + F66)
∂2v3
∂x∂y

+ (−B13 + B55)
∂w1

∂x
+ (−2D13 +D55)

∂w2

∂x
+ A55

∂w0

∂x

= I1
∂2u0

∂t2
+ I2

∂2u1

∂t2
+ I4

∂2u3

∂t2
(42)

δu3 :

(
−F11

∂2u1

∂x2
+ 3D55u1 − F66

∂2u1

∂y2

)
+

(
−G11

∂2u3

∂x2
+ 9F55u3 −G66

∂2u3

∂y2

)

−
(
E11

∂2u0

∂x2
+ E66

∂2u0

∂y2

)
− (E12 + E66)

∂2v0
∂x∂y

− (F12 + F66)
∂2v1
∂x∂y

− (G12 +G66)
∂2v3
∂x∂y

+ (−E13 + 3E55)
∂w1

∂x
+ (−2F13 + 3F55)

∂w2

∂x
+ 3D55

∂w0

∂x

= I3
∂2u0

∂t2
+ I4

∂2u1

∂t2
+ I6

∂2u3

∂t2
(43)
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δv0 : − (A12 + A66)
∂2u0

∂x∂y
−
(
A22

∂2v0
∂y2

+ A66
∂2v0
∂x2

)
− (B12 + B66)

∂2u1

∂x∂y

− (E12 + E66)
∂2u3

∂x∂y
−
(
B22

∂2v1
∂y2

+ B66
∂2v1
∂x2

)
−
(
E22

∂2v3
∂y2

+ E66
∂2v3
∂x2

)

−A23
∂w1

∂y
− 2B23

∂w2

∂y
= I0

∂2v0
∂t2

+ I1
∂2v1
∂t2

+ I3
∂2v3
∂t2

(44)

δv1 :

(
−F22

∂2v3
∂y2

+ 3D44v3 − F66
∂2v3
∂x2

)
+

(
−D22

∂2v1
∂y2

+ A44v1 −D66
∂2v1
∂x2

)

− (B12 + B66)
∂2u0

∂x∂y
− (D12 +D66)

∂2u1

∂x∂y
− (F12 + F66)

∂2u3

∂x∂y

−
(
B22

∂2v0
∂y2

+ B66
∂2v0
∂x2

)
+ (−B23 + B44)

∂w1

∂y
+ (−2D23 +D44)

∂w2

∂y
+ A44

∂w0

∂y

= I1
∂2v0
∂t2

+ I2
∂2v1
∂t2

+ I4
∂2v3
∂t2

(45)

δv3 :

(
−F22

∂2v1
∂y2

+ 3D44v1 − F66
∂2v1
∂x2

)
+

(
−G22

∂2v3
∂y2

+ 9F44v3 −G66
∂2v3
∂x2

)

− (E12 + E66)
∂2u0

∂x∂y
− (F12 + F66)

∂2u1

∂x∂y
− (G12 +G66)

∂2u3

∂x∂y

−
(
E22

∂2v0
∂y2

+ E66
∂2v0
∂x2

)
+ (−E23 + 3E44)

∂w1

∂y
+ (−2F23 + 3F44)

∂w2

∂y
+ 3D44

∂w0

∂y

= I3
∂2v0
∂t2

+ I4
∂2v1
∂t2

+ I6
∂2v3
∂t2

(46)

δw0 : −
(
A55

∂2w0

∂x2
+ A44

∂2w0

∂y2

)
−
(
B55

∂2w1

∂x2
+ B44

∂2w1

∂y2

)
−
(
D55

∂2w2

∂x2
+D44

∂2w2

∂y2

)

−A55
∂u1

∂x
− A44

∂v1
∂y

− 3D55
∂u3

∂x
− 3D44

∂v3
∂y

(47)

+N̄xx
∂2w0

∂x2
+ 2N̄xy

∂2w0

∂x∂y
+ N̄yy

∂2w0

∂y2
= I0

∂2w0

∂t2
+ I1

∂2w1

∂t2
+ I2

∂2w2

∂t2
+ pz (48)
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δw1 :

(
−E55

∂2w2

∂x2
+ 2B33w2 − E44

∂2w2

∂y2w2

)
+

(
−D55

∂2w1

∂x2
+ A33w1 −D44

∂2w1

∂y2

)

+(B13 − B55)
∂u1

∂x
+ (E13 − 3E55)

∂u3

∂x
+ (B23 −B44)

∂v1
∂y

+ (E23 − 3E44)
∂v3
∂y

−
(
B55

∂2w0

∂x2
+ B44

∂2w0

∂y2

)
+ A13

∂u0

∂x
+ A23

∂v0
∂y

= I1
∂2w0

∂t2
+ I2

∂2w1

∂t2
+ I3

∂2w2

∂t2
(49)

δw2 :

(
−E55

∂2w1

∂x2
+ 2B33w1 − E44

∂2w1

∂y2

)
+

(
−F55

∂2w2

∂x2
+ 4D33w2 − F44

∂2w2

∂y2

)

+(2D13 −D55)
∂u1

∂x
+ (2F13 − 3F55)

∂u3

∂x
+ (2D23 −D44)

∂v1
∂y

+(2F23 − 3F44)
∂v3
∂y

−
(
D55

∂2w0

∂x2
+D44

∂2w0

∂y2

)
+ 2B13

∂u0

∂x
+ 2B23

∂v0
∂y

= I2
∂2w0

∂t2
+ I3

∂2w1

∂t2
+ I4

∂2w2

∂t2
+

(
h

2

)2

pz (50)

Being NL the number of mathematical layers across the thickness direction,
the stiffness components can be computed as follows.

Aij =
NL∑

k=1

c
(k)
ij (zk+1 − zk) ; Bij =

1

2

NL∑

k=1

c
(k)
ij

(
z2k+1 − z2k

)
(51)

Dij =
1

3

NL∑

k=1

c
(k)
ij

(
z3k+1 − z3k

)
; Eij =

1

4

NL∑

k=1

c
(k)
ij

(
z4k+1 − z4k

)
(52)

Fij =
1

5

NL∑

k=1

c
(k)
ij

(
z5k+1 − z5k

)
; Gij =

1

7

NL∑

k=1

c
(k)
ij

(
z7k+1 − z7k

)
(53)

The inertia terms are defined by

Ii =
1

i+ 1

NL∑

k=1

ρ(k)
(
zi+1
k+1 − zi+1

k

)
(54)

where ρ(k) is the material density, hk is the thickness, and zk, zk+1 are the
lower and upper z coordinate for each layer k.

4.2 Natural boundary conditions

This meshless method based on collocation with radial basis functions needs
the imposition of essential (e.g. w = 0) and mechanical (e.g. Mxx = 0) bound-
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ary conditions. Assuming a rectangular plate (for the sake of simplicity) equa-
tions (29) are expressed as follows.

Given the number of degrees of freedom, at each boundary point at edges
x = min or x = max we impose:

Mxxu0 =2B13w2 + A13w1 + A11
∂u0

∂x
+ A12

∂v0
∂y

+B11
∂u1

∂x
+ E11

∂u3

∂x
+ B12

∂v1
∂y

+ E12
∂v3
∂y

(55)

Mxxu1 =B13w1 + 2D13w2 + B11
∂u0

∂x
+D11

∂u1

∂x
+ F11

∂u3

∂x
+ B12

∂v0
∂y

+D12
∂v1
∂y

+ F12
∂v3
∂y

(56)

Mxxu3 =E13w1 + 2F13w2 + E11
∂u0

∂x
+ F11

∂u1

∂x
+G11

∂u3

∂x
+ E12

∂v0
∂y

+ F12
∂v1
∂y

+G12
∂v3
∂y

(57)

Mxxv0 =A66
∂u0

∂y
+ A66

∂v0
∂x

+B66
∂u1

∂y
+ E66

∂u3

∂y
+ B66

∂v1
∂x

+ E66
∂v3
∂x

(58)

Mxxv1 =B66
∂u0

∂y
+D66

∂u1

∂y
+ F66

∂u3

∂y
+ B66

∂v0
∂x

+D66
∂v1
∂x

+ F66
∂v3
∂x

(59)

Mxxv3 =E66
∂u0

∂y
+ F66

∂u1

∂y
+G66

∂u3

∂y
+ E66

∂v0
∂x

+ F66
∂v1
∂x

+G66
∂v3
∂x

(60)

Mxxw0 =3D55u3 + A55u1 + A55
∂w0

∂x
+ B55

∂w1

∂x
+D55

∂w2

∂x
(61)

Mxxw1 =B55u1 + 3E55u3 + B55
∂w0

∂x
+D55

∂w1

∂x
+ E55

∂w2

∂x
(62)

Mxxw2 =D55u1 + 3F55u3 +D55
∂w0

∂x
+ E55

∂w1

∂x
+ F55

∂w2

∂x
(63)
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Similarly, given the number of degrees of freedom, at each boundary point at
edges y = min or y = max we impose:

Myyu0=A66
∂u0

∂y
+ A66

∂v0
∂x

+ B66
∂u1

∂y
+ E66

∂u3

∂y
+B66

∂v1
∂x

+ E66
∂v3
∂x

(64)

Myyu1=B66
∂u0

∂y
+D66

∂u1

∂y
+ F66

∂u3

∂y
+ B66

∂v0
∂x

+D66
∂v1
∂x

+ F66
∂v3
∂x

(65)

Myyu3=E66
∂u0

∂y
+ F66

∂u1

∂y
+G66

∂u3

∂y
+ E66

∂v0
∂x

+ F66
∂v1
∂x

+G66
∂v3
∂x

(66)

Myyv0=A12
∂u0

∂x
+ A22

∂v0
∂y

+ B12
∂u1

∂x
+ E12

∂u3

∂x
+ B22

∂v1
∂y

+ E22
∂v3
∂y

(67)

Myyv1=B12
∂u0

∂x
+D12

∂u1

∂x
+ F12

∂u3

∂x
+ B22

∂v0
∂y

+D22
∂v1
∂y

+ F22
∂v3
∂y

(68)

Myyv3=E12
∂u0

∂x
+ F12

∂u1

∂x
+G12

∂u3

∂x
+ E22

∂v0
∂y

+ F22
∂v1
∂y

+G22
∂v3
∂y

(69)

Myyw0 =3D44v3 + A44v1 + A44
∂w0

∂y
+ B44

∂w1

∂y
+D44

∂w2

∂y
(70)

Myyw1 =B44v1 + 3E44v3 + B44
∂w0

∂y
+D44

∂w1

∂y
+ E44

∂w2

∂y
(71)

Myyw2 =D44v1 + 3F44v3 +D44
∂w0

∂y
+ E44

∂w1

∂y
+ F44

∂w2

∂y
(72)

with Aij, Bij, Dij, Eij, Fij, Gij as in (53).
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5 The radial basis function method

The governing equations are interpolated by radial basis function method.
This meshless method was first used by Hardy [65] in the early 1970’s for the
interpolation of geographical data. Kansa [66] introduced in 1990 the concept
of solving partial differential equations (PDE) by an unsymmetric RBF collo-
cation method based upon the multiquadric interpolation functions. For the
sake of completeness we present in the following the basics of collocation with
radial basis functions for static, vibrations, and buckling problems.

5.1 The static problem

In this section the formulation of a global unsymmetrical collocation RBF-
based method to compute elliptic operators is presented. Consider a linear
elliptic partial differential operator L and a bounded region Ω in R

n with some
boundary ∂Ω. In the static problems we seek the computation of displacements
(u) from the global system of equations

Lu = f in Ω; LBu = g on ∂Ω (73)

where L, LB are linear operators in the domain and on the boundary, respec-
tively. The right-hand sides in (73) represent the external forces applied on the
plate and the boundary conditions applied along the perimeter of the plate,
respectively. The PDE problem defined in (73) will be replaced by a finite
problem, defined by an algebraic system of equations, after the radial basis
expansions.

5.2 The eigenproblem

The eigenproblem looks for eigenvalues (λ) and eigenvectors (u) that satisfy

Lu + λu = 0 in Ω; LBu = 0 on ∂Ω (74)

As in the static problem, the eigenproblem defined in (74) is replaced by a
finite-dimensional eigenvalue problem, based on RBF approximations.
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5.3 Radial basis functions approximations

The radial basis function (φ) approximation of a function (u) is given by

ũ(x) =
N∑

i=1

αiφ (‖x− yi‖2) ,x ∈ R
n (75)

where yi, i = 1, .., N is a finite set of distinct points (centers) in R
n. Examples

of the many RBFs that can be used are

φ(r) = r3, cubic (76)

φ(r) = e−(cr)2 , Gaussian (77)

φ(r) =
√
c2 + r2, Multiquadric (78)

where the Euclidean distance r is real and non-negative and c is a positive
user defined shape parameter.

Considering N distinct interpolations, and knowing u(xj), j = 1, 2, ..., N , we
find αi by the solution of a N ×N linear system

Aα = u (79)

where A = [φ (‖x− yi‖2)]N×N , α = [α1, α2, ..., αN ]
T and u = [u(x1), u(x2), ..., u(xN )]

T .

5.4 Solution of the static problem

The solution of a static problem by radial basis functions considers NI nodes
in the domain and NB nodes on the boundary, with a total number of nodes
N = NI + NB. We denote the sampling points by xi ∈ Ω, i = 1, ..., NI and
xi ∈ ∂Ω, i = NI + 1, ..., N . At the points in the domain we solve the following
system of equations

N∑

i=1

αiLφ (‖x− yi‖2) = f(xj), j = 1, 2, ..., NI (80)

or
LI

α = F (81)

where
LI = [Lφ (‖x− yi‖2)]NI×N (82)
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At the points on the boundary, we impose boundary conditions as

N∑

i=1

αiLBφ (‖x− yi‖2) = g(xj), j = NI + 1, ..., N (83)

or
Bα = G (84)

where
B = LBφ [(‖xNI+1 − yj‖2)]NB×N

Therefore, we can write a finite-dimensional static problem as



LI

B


α =




F

G


 (85)

By inverting the system (85), we obtain the vector α. We then obtain the
solution u using the interpolation equation (75).

5.5 Solution of the eigenproblem

We consider NI nodes in the interior of the domain and NB nodes on the
boundary, with N = NI +NB. We denote interpolation points by xi ∈ Ω, i =
1, ..., NI and xi ∈ ∂Ω, i = NI +1, ..., N . At the points in the domain, we define
the eigenproblem as

N∑

i=1

αiLφ (‖x− yi‖2) = λũ(xj), j = 1, 2, ..., NI (86)

or
LI

α = λũI (87)

where
LI = [Lφ (‖x− yi‖2)]NI×N (88)

At the points on the boundary, we enforce the boundary conditions as

N∑

i=1

αiLBφ (‖x− yi‖2) = 0, j = NI + 1, ..., N (89)

or
Bα = 0 (90)
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Equations (87) and (90) can now be solved as a generalized eigenvalue problem



LI

B


α = λ



AI

0


α (91)

where
AI = φ [(‖xNI

− yj‖2)]NI×N

5.6 Discretization of the governing equations and boundary conditions

The radial basis collocation method follows a simple implementation proce-
dure. Taking equation (85), we compute

α =



LI

B




−1 


F

G


 (92)

This α vector is then used to obtain solution ũ, by using (75). If derivatives
of ũ are needed, such derivatives are computed as

∂ũ

∂x
=

N∑

j=1

αj
∂φj

∂x
;

∂2ũ

∂x2
=

N∑

j=1

αj
∂2φj

∂x2
, etc (93)

In the present collocation approach, we need to impose essential and natural
boundary conditions. Consider, for example, the condition w0 = 0, on a simply
supported or clamped edge. We enforce the conditions by interpolating as

w0 = 0 →
N∑

j=1

αW0

j φj = 0 (94)

Other boundary conditions are interpolated in a similar way.

5.7 Free vibrations problems

For free vibration problems we set the external force to zero, and assume
harmonic solution in terms of displacements u0, u1, u3, v0, v1, v3, w0, w1, w2 as
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u0 = U0(w, y)e
iωt; u1 = U1(w, y)e

iωt; u3 = U3(w, y)e
iωt;

v0 = V0(w, y)e
iωt; v1 = V1(w, y)e

iωt; v3 = V3(w, y)e
iωt;

w0 = W0(w, y)e
iωt; w1 = W1(w, y)e

iωt; w2 = W2(w, y)e
iωt

(95)

where ω is the frequency of natural vibration. Substituting the harmonic ex-
pansion into equations (91) in terms of the amplitudes U0, U1, U3, V0, V1, V3,
W0,W1,W2, we may obtain the natural frequencies and vibration modes for
the plate problem, by solving the eigenproblem

[
L − ω2G

]
X = 0 (96)

where L collects all stiffness terms and G collects all terms related to the
inertial terms. In (96) X are the modes of vibration associated with the natural
frequencies defined as ω.

5.8 Buckling problems

The eigenproblem associated to the governing equations is defined as

[L − λG]X = 0 (97)

where L collects all stiffness terms and G collects all terms related to the in-
plane forces. In (97) X are the buckling modes associated with the buckling
loads defined as λ.

6 Numerical examples

In the next examples the higher-order plate theory presented before and col-
location with RBFs are used for the analysis of simply supported functionally
graded square plates. For the ǫzz = 0 case, we consider w = w0 instead of (7).

All examples use the Wendland RBF function [67] defined as

φ(r) = (1− cr)8+
(
32(cr)3 + 25(cr)2 + 8cr + 1

)
(98)

The shape parameter (c) is obtained by an optimization procedure as de-
tailed in Ferreira and Fasshauer [68]. The interpolation points are Chebyshev
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Fig. 6. Chebyshev grid with N=17

R
2 points. For a given number of nodes per side (N) they are generated by

MATLAB code as:

x = cos(pi*(0:N)/N)’; y=x;

A 172 points Chebyshev grid is illustrated in figure 6.

91 mathematical layers were considered in order to model the continuous
variation of properties across the thickness direction. A significant number
of mathematical layers is needed to ensure correct computation of material
properties at each thickness position. The Young’s modulus of each layer,
Ek(z), are computed considering a simple law-of-mixtures (33) or the Mori-
Tanaka procedure (36). Poisson’s ratio is considered constant for both mate-
rials νm = νc = ν = 0.3.
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grid 132 172 212

w 0.5868 0.5868 0.5868
Table 1
w convergence study for the bending analysis of plate A using higher-order plate
theory, p = 1, and a/h = 10.

grid 132 172 212

σxx 1.4911 1.4917 1.4917
Table 2
σxx convergence study for the bending analysis of plate A using higher-order plate
theory, p = 1, and a/h = 10.

6.1 Plates on bending

The plate is subjected to a bi-sinusoidal transverse mechanical load of ampli-
tude load pz = p̄zsin

(
πx
a

)
sin

(
πy
a

)
applied at the top of the plate with p̄z = 1.

It is important to note that the load is applied at the top surface (z = h/2),
which is not only physically correct as it makes all the difference in terms of
the displacement and stresses evolution. The right-hand side of the governing
equations given in section 4.1 and the terms including the in-plane forces are
zero.

6.1.1 Isotropic FGM square plate

In this example, an isotropic FGM square plate of type A is considered. The
plate is graded from aluminum Em = 70 GPa at the bottom to alumina
Ec = 380 GPa at the top. The law-of-mixtures was used for the Young’s
modulus.

The in-plane displacements, the transverse displacements, the normal stresses
and the in-plane and transverse shear stresses are presented in normalized
form as

ūz =
10h3Ec

a4p̄z
uz, σ̄xx =

h

ap̄z
σxx, σ̄xz =

h

ap̄z
σxz, σ̄zz = σzz (99)

An initial convergence study was performed for σxx

(
h
3

)
and transverse dis-

placement w(0) at the center of the plate, considering p = 1, a/h = 10, and
Chebyshev grids of 132, 172, and 212 points. Results are presented in tables 1
and 2.

In table 3 we present results for σxx and transverse displacement for various
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exponents p of the power-law (2) considering a 172 points grid. The consid-
ered side-to-thickness ratios a/h are 4, 10 and 100, which means thickness h
equals 0.25, 0.1 and 0.01, respectively. Results are compared with the Clas-
sical Plate Theory (CLPT), the first-order shear deformation theory (FSDT)
with a correction factor k = 5/6, and those from Zenkour’s generalized shear
deformation theory [19], considering ǫzz = 0, and those from Carrera et al.
[46,47], and Neves et al. [61], accounting for ǫzz.

The results from present higher-order plate theory considering ǫzz 6= 0 are in
good agreement with those from references [46,47] and [61] who also considers
ǫzz 6= 0. The present theory allows to conclude that the values of σxx and
transverse displacement considering ǫzz = 0 are higher than those considering
ǫzz 6= 0. These differences decrease as the thickness of the plate decreases
which is not surprising as thicker plates can stretch more in the thickness
direction.

In figures 7 and 8 we present the evolution of the displacement and stresses
across the thickness direction according to present shear deformation theory
for various values of the exponent p, and side to thickness ratio a/h = 4, using
a 192 grid.

6.1.2 Sandwich with FGM core

In this example we analyse the bending of a square sandwich plate of type
B with thickness h. The bottom skin is aluminium (Em = 70 GPa) with
thickness hb = 0.1h and the top skin is alumina (Ec = 380 GPa) with thickness
ht = 0.1h. The core is in FGM with volume fraction of the ceramic according
to (3). The functional relationship for YoungŠs modulus Ek(z) in the thickness
direction z is obtained from the rule of mixtures as in (33).

The transverse displacement and the normal stresses are presented in normal-
ized form as

ūz =
10h3Ec

a4p̄z
uz

(
a

2
,
b

2

)
, σ̄xx =

h

ap̄z
σxx

(
a

2
,
b

2

)

σ̄yy =
h

ap̄z
σyy

(
a

2
,
b

2

)
, σ̄zz = σzz

(
a

2
,
b

2

)
(100)

The transverse shear stresses are normalized according to

σ̄xy =
h

ap̄z
σxy (0, 0) , σ̄xz =

h

ap̄z
σxz

(
0,

b

2

)
, σ̄yz =

h

ap̄z
σyz

(
a

2
, 0
)

(101)
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p ǫzz σ̄xx(h/3) ūz(0)

a/h 4 10 100 4 10 100

1 Ref. [46] 6= 0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625

CLPT 0 0.8060 2.0150 20.150 0.5623 0.5623 0.5623

FSDT(k=5/6) 0 0.8060 2.0150 20.150 0.7291 0.5889 0.5625

GSDT [19] 0 1.4894 0.5889

Ref. [47] N=4 0 0.7856 2.0068 20.149 0.7289 0.5890 0.5625

Ref. [47] N=4 6= 0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625

Ref. [61] 6= 0 0.5925 1.4945 14.969 0.6997 0.5845 0.5624

Present 0 0.5806 1.4874 14.944 0.7308 0.5913 0.5648

Present 6= 0 0.5911 1.4917 14.945 0.7020 0.5868 0.5647

4 Ref. [46] 6= 0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286

CLPT 0 0.6420 1.6049 16.049 0.8281 0.8281 0.8281

FSDT(k=5/6) 0 0.6420 1.6049 16.049 1.1125 0.8736 0.828

GSDT [19] 0 1.1783 0.8651

Ref. [47] N=4 0 0.5986 1.5874 16.047 1.1673 0.8828 0.8286

Ref. [47] N=4 6= 0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286

Ref. [61] 6= 0 0.4404 1.1783 11.932 1.1178 0.8750 0.8286

Present 0 0.4338 1.1592 11.737 1.1552 0.8770 0.8241

Present 6= 0 0.4330 1.1588 11.737 1.1108 0.8700 0.8240

10 Ref. [46] 6= 0 0.3695 0.8965 8.9077 1.3745 1.0072 0.9361

CLPT 0 0.4796 1.1990 11.990 0.9354 0.9354 0.9354

FSDT(k=5/6) 0 0.4796 1.1990 11.990 1.3178 0.9966 0.9360

GSDT [19] 0 0.8775 1.0089

Ref. [47] N=4 0 0.4345 1.1807 11.989 1.3925 1.0090 0.9361

Ref. [47] N=4 6= 0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361

Ref. [61] 6= 0 0.3227 1.1783 11.932 1.3490 0.8750 0.8286

Present 0 0.3112 0.8468 8.6011 1.3760 0.9952 0.9228

Present 6= 0 0.3097 0.8462 8.6010 1.3334 0.9888 0.9227
Table 3
FGM isotropic plate type A on bending. Effect of transverse normal strain ǫzz on
σxx and deflection under present higher-order theory and using 172 points.
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Fig. 7. FGM square plate subjected to sinusoidal load at the top, with a/h = 4.
Stresses through the thickness direction according to present higher-order theory for
different values of p.
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Fig. 8. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. Dis-
placement through the thickness direction according to present higher-order theory
for different values of p.

An initial convergence study was performed for σxz

(
h
6

)
and transverse dis-

placement w(0) considering p = 4, a/h = 100, and Chebyshev grids of 132,
172, 192, and 212 points. Results are presented in tables 4 and 5.

In table 6 we present the values of σxz and out-of-plane displacement for

30



grid 132 172 192 212

w 0.7749 0.7782 0.7784 0.7785
Table 4
w convergence study for the bending analysis of plate B using higher-order plate
theory, p = 4, and a/h = 100.

grid 132 172 192 212

σxz 0.2696 0.2749 0.2753 0.2753
Table 5
σxz convergence study for the bending analysis of plate B using higher-order plate
theory, p = 4, and a/h = 100.

various values of exponent p of the material power-law (p = 1, 4, 10) and
various thickness to side ratios (a/h = 4, 10, 100) according to the present
higher-order theory considering zero and non-zero ǫzz strain using 192 points.
Results are tabulated and compared with available references.

In figures 9 and 10 we present the evolution of the displacement and stresses
across the thickness direction according to present shear deformation theory
for various values of the exponent p of a plate with side to thickness ratio
a/h = 100, using a 192 grid.

6.2 Free vibration of plates

For the vibration analysis it is assumed that there are no external forces
applied in the plate. In this example we study the free vibration of a simply
supported isotropic FGM square plate (a = b = 1) of type A. The plate is
graded from aluminum (bottom) to zirconia (top). Em = 70 GPa and Ec = 200
GPa are the corresponding properties of the metal and zirconia, respectively.

We consider the Mori-Tanaka homogeneization scheme (36), the same used in
the literature we use as a reference: the exact solution by Vel and Batra [69],
and the one obtained with a meshless technique by Qian et al. [70].

The frequency w has been non-dimensionalized as follows:

w̄ = wh
√
ρm/Em (102)

In table 7 we present the results obtained with the theories considered and
different values of p for a side to thickness ratio a/h = 5.

The first 10 natural frequencies obtained with present higher-order shear de-
formation theorie are listed in tables 8 (a/h = 20) and 9 (a/h = 10) for p = 1
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p ǫzz σ̄xz(h/6) ūz(0)

a/h 4 10 100 4 10 100

1 Ref. [45] 6= 0 0.2613 0.2605 0.2603 0.7628 0.6324 0.6072

CLPT 0 0.0000 0.0000 0.0000 0.6070 0.6070 0.6070

FSDT(k=5/6) 0 0.2458 0.2458 0.2458 0.7738 0.6337 0.6073

Ref. [47] N=4 0 0.2596 0.2593 0.2593 0.7735 0.6337 0.6072

Ref. [47] N=4 6= 0 0.2604 0.2594 0.2593 0.7628 0.6324 0.6072

Ref. [61] 0 0.2703 0.2718 0.2720 0.7744 0.6356 0.6092

Ref. [61] 6= 0 0.2742 0.2788 0.2793 0.7416 0.6305 0.6092

Present 0 0.2706 0.2720 0.2721 0.7746 0.6357 0.6092

Present 6= 0 0.2745 0.2789 0.2795 0.7417 0.6305 0.6092

4 Ref. [45] 6= 0 0.2429 0.2431 0.2432 1.0934 0.8321 0.7797

CLPT 0 0.0000 0.0000 0.0000 0.7792 0.7792 0.7792

FSDT(k=5/6) 0 0.1877 0.1877 0.1877 1.0285 0.8191 0.7796

Ref. [47] N=4 0 0.2400 0.2398 0.2398 1.0977 0.8308 0.7797

Ref. [47] N=4 6= 0 0.2400 0.2398 0.2398 1.0930 0.8307 0.7797

Ref. [61] 0 0.2699 0.2726 0.2728 1.0847 0.8276 0.7785

Ref. [61] 6= 0 0.2723 0.2778 0.2785 1.0391 0.8202 0.7784

Present 0 0.2671 0.2695 0.2696 1.0826 0.8272 0.7785

Present 6= 0 0.2696 0.2747 0.2753 1.0371 0.8199 0.7784

10 Ref. [45] 6= 0 0.2150 0.2174 0.2179 1.2232 0.8753 0.8077

CLPT 0 0.0000 0.0000 0.0000 0.8070 0.8070 0.8070

FSDT(k=5/6) 0 0.1234 0.1234 0.1234 1.1109 0.8556 0.8075

Ref. [47] N=4 0 0.1935 0.1944 0.1946 1.2240 0.8743 0.8077

Ref. [47] N=4 6= 0 0.1932 0.1944 0.1946 1.2172 0.8740 0.8077

Ref. [61] 0 0.1998 0.2021 0.2022 1.2212 0.8718 0.8050

Ref. [61] 6= 0 0.2016 0.2059 0.2064 1.1780 0.8650 0.8050

Present 0 0.1996 0.2018 0.2019 1.2183 0.8712 0.8050

Present 6= 0 0.1995 0.2034 0.2039 1.1752 0.8645 0.8050
Table 6
Sandwich square plate with FGM core type B on bending. Effect of transverse
normal strain ǫzz on σxz and w according to present higher-order plate theory, using
192 points.
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source p = 1 p = 2 p = 3 p = 5

Exact [69] 0.2192 0.2197 0.2211 0.2225

Ref. [70] 0.2152 0.2153 0.2172 0.2194

Ref. [61] (ǫzz = 0) 0.2184 0.2189 0.2202 0.2215

Ref. [61] (ǫzz 6= 0) 0.2193 0.2198 0.2212 0.2225

Present (ǫzz = 0) 0.2184 0.2191 0.2206 0.2220

Present (ǫzz 6= 0) 0.2193 0.2200 0.2215 0.2230
Table 7
Fundamental frequency of a SSSS isotropic functionally graded plate (Al/ZrO2)
square plate with a/h = 0.2 using a 212 grid.

source 1 2 3 4 5 6 7 8 9 10

Ref. [70] 0.0149 0.0377 0.0377 0.0593 0.0747 0.0747 0.0769 0.0912 0.0913 0.1029

Ref. [61] 0.0153 0.0377 0.0377 0.0596 0.0739 0.0739 0.0950 0.0950 0.1029 0.1029

ǫz = 0 132 0.0153 0.0377 0.0377 0.0596 0.0740 0.0740 0.0951 0.0951 0.1030 0.1030

ǫz 6= 0 132 0.0153 0.0377 0.0377 0.0596 0.0741 0.0741 0.0953 0.0953 0.1030 0.1030

ǫz = 0 172 0.0153 0.0377 0.0377 0.0595 0.0738 0.0738 0.0949 0.0949 0.1030 0.1030

ǫz 6= 0 172 0.0153 0.0377 0.0377 0.0596 0.0739 0.0739 0.0950 0.0950 0.1030 0.1030

ǫz = 0 212 0.0153 0.0377 0.0377 0.0595 0.0738 0.0738 0.0948 0.0948 0.1030 0.1030

ǫz 6= 0 212 0.0153 0.0377 0.0377 0.0596 0.0739 0.0739 0.0950 0.0950 0.1030 0.1030
Table 8
First 10 frequencies of a SSSS isotropic functionally graded plate (Al/ZrO2) square
plate with p = 1 with a/h = 20.

source 1 2 3 4 5 6 7 8 9 10

Ref. [70] 0.0584 0.1410 0.1410 0.2058 0.2058 0.2164 0.2646 0.2677 0.2913 0.3264

Ref. [61] 0.0596 0.1426 0.1426 0.2058 0.2058 0.2193 0.2676 0.2676 0.2910 0.3363

ǫz = 0 132 0.0595 0.1422 0.1422 0.2059 0.2059 0.2185 0.2664 0.2664 0.2912 0.3347

ǫz 6= 0 132 0.0596 0.1426 0.1426 0.2059 0.2059 0.2194 0.2678 0.2678 0.2912 0.3367

ǫz = 0 172 0.0595 0.1422 0.1422 0.2059 0.2059 0.2184 0.2663 0.2663 0.2912 0.3344

ǫz 6= 0 172 0.0596 0.1426 0.1426 0.2059 0.2059 0.2193 0.2676 0.2676 0.2912 0.3364

ǫz = 0 212 0.0595 0.1422 0.1422 0.2059 0.2059 0.2184 0.2663 0.2663 0.2912 0.3344

ǫz 6= 0 212 0.0596 0.1426 0.1426 0.2059 0.2059 0.2193 0.2676 0.2676 0.2912 0.3364
Table 9
First 10 frequencies of a SSSS isotropic functionally graded plate (Al/ZrO2) square
plate with p = 1 with a/h = 10.
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Fig. 9. Sandwich square plate with FGM core subjected to sinusoidal load at the
top, with a/h = 100. Stresses through the thickness direction according to present
higher-order theory for different values of p.
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Fig. 10. Sandwich square plate with FGM core type B subjected to sinusoidal load
at the top, with a/h = 100. Displacement through the thickness direction according
to present higher-order theory for different values of p.

In figure 11 the first 4 frequencies of a simply supported isotropic functionally
graded (Al/ZrO2) square plate, with p = 1, a 212 grid, using present higher-
order shear deformation theory and a side to thickness ratio a/h = 20 are
presented.
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Fig. 11. First 4 frequencies of a SSSS isotropic functionally graded (Al/ZrO2) square
plate, with p = 1, a 212 grid, present higher-order shear deformation theory and
a/h = 20.

6.3 Buckling loads of plates

In the next examples the higher-order plate theory and collocation with RBFs
are used for the buckling analysis of simply supported functionally graded
sandwich square plates (a = b) of type C with side-to-thickness ratio a/h = 10.
The uni- and bi-axial critical buckling loads are analised. For the buckling
analysis we assume that all other mechanical loads are zero and the right-
hand side of equations in section 4.1 are set to zero as well.

The material properties are Em = 70E0 (aluminum) for the metal and Ec =
380E0 (alumina) for the ceramic being E0 = 1GPa. The law-of-mixtures (33)
was used for the Young’s modulus. The non-dimensional parameter used is

P̄ =
Pa2

100h3E0

.

An initial convergence study with the higher-order theory was conducted for
each buckling load type considerind grids of 132, 172, and 212 points. The
uni-axial case is presented in table 10 for the 2-2-1 sandwich with p = 5 and
the bi-axial case is presented in table 11 for the 1-2-1 sandwich with p = 1.
Further results are obtained by considering a grid of 172 points.

The critical buckling loads obtained from the present approach with ǫzz 6=
0 and ǫzz = 0 are tabulated and compared with those from Zenkour [29]
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grid 132 172 212

P̄ 4.05112 4.05070 4.05065
Table 10
Convergence study for the uni-axial buckling load of a simply supported 2-2-1 sand-
wich square plate with FGM skins and p = 5 case using the higher-order theory.

grid 132 172 212

P̄ 3.66028 3.65998 3.65994
Table 11
Convergence study for the bi-axial buckling load of a simply supported 1-2-1 sand-
wich square plate with FGM skins and p = 1 case using the higher-order theory.

in tables 12 and 13 for various power-law exponents p and thickness ratios.
Both tables include results obtained from classical plate theory (CLPT), first-
order shear deformation plate theory (FSDPT, K = 5/6 as shear correction
factor), Reddy’s higher-order shear deformation plate theory (TSDPT) [10],
and Zenkour’s sinusoidal shear deformation plate theory (SSDPT) [29]. Table
12 refers to the uni-axial buckling load and table 13 refers to the bi-axial
buckling load.

There is a good agreement between the present solution and references consid-
ered, specially [10] and [29]. This allow us to conclude that the present higher-
order plate theory is good for the modeling of simply supported sandwich
FGM plates and that collocation with RBFs is a good formulation. Present
results with ǫzz = 0 approximates better references [10] and [29] than ǫzz 6= 0
as the authors use the ǫzz = 0 approach. This study also lead us to conclude
that the thickness stretching effect has influence on the buckling analysis of
sandwich FGM plates as ǫzz = 0 gives higher fundamental buckling loads than
ǫzz 6= 0.

The isotropic fully ceramic plate (first line on tables 12 and 13) has the higher
fundamental buckling loads. As the core thickness to the total thickness of the
plate ratio ((h2 − h1)/h) increases the buckling loads increase as well. This
can be seen by looking at each line of the tables. Considering each column
of both tables we may conclude that the critical buckling loads decrease as
the power-law exponent p increases. From the comparison of tables 12 and 13
we deduce that the bi-axial buckling load of any simply supported sandwich
square plate with FGM skins is half the uni-axial one for the same plate.

In figure 12 the first four buckling modes of a simply supported 2-1-2 sandwich
square plate with FGM skins, p = 0.5, subjected to a uni-axial in-plane com-
pressive load, using the higher-order plate theory and a grid with 172 points
is presented. Figure 13 presents the first four buckling modes of a simply sup-
ported 2-1-1 sandwich square plate with FGM skins, p = 10, subjected to a
bi-axial in-plane compressive load.
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p Theory P̄

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CLPT 13.73791 13.73791 13.73791 13.73791 13.73791 13.73791

FSDPT 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449

TSDPT [10] 13.00495 13.00495 13.00495 13.00495 13.00495 13.00495

SSDPT [29] 13.00606 13.00606 13.00606 13.00606 13.00606 13.00606

present ǫzz 6= 0 12.95287 12.95287 12.95287 12.95287 12.95287 12.95287

present ǫzz = 0 13.00508 13.00508 13.00508 13.00508 13.00508 13.00508

0.5 CLPT 7.65398 8.25597 8.56223 8.78063 9.18254 9.61525

FSDPT 7.33732 7.91320 8.20015 8.41034 8.78673 9.19517

TSDPT [10] 7.36437 7.94084 8.22470 8.43645 8.80997 9.21681

SSDPT [29] 7.36568 7.94195 8.22538 8.43712 8.81037 9.21670

present ǫzz 6= 0 7.16207 7.71627 7.98956 8.19278 8.55172 8.94190

present ǫzz = 0 7.18728 7.74326 8.01701 8.22133 8.58129 8.97310

1 CLPT 5.33248 6.02733 6.40391 6.68150 7.19663 7.78406

FSDPT 5.14236 5.81379 6.17020 6.43892 6.92571 7.48365

TSDPT [10] 5.16713 5.84006 6.19394 6.46474 6.94944 7.50656

SSDPT [29] 5.16846 5.84119 6.19461 6.46539 6.94980 7.50629

present ǫzz 6= 0 5.06137 5.71135 6.05467 6.31500 6.78405 7.31995

present ǫzz = 0 5.07848 5.73022 6.07358 6.33556 6.80547 7.34367

5 CLPT 2.73080 3.10704 3.48418 3.65732 4.21238 4.85717

FSDPT 2.63842 3.02252 3.38538 3.55958 4.09285 4.71475

TSDPT [10] 2.65821 3.04257 3.40351 3.57956 4.11209 4.73469

SSDPT [29] 2.66006 3.04406 3.40449 3.58063 4.11288 4.73488

present ǫzz 6= 0 2.63652 3.00791 3.36255 3.53005 4.05070 4.64701

present ǫzz = 0 2.64681 3.01865 3.37196 3.54148 4.06163 4.66059

10 CLPT 2.56985 2.80340 3.16427 3.25924 3.79238 4.38221

FSDPT 2.46904 2.72626 3.07428 3.17521 3.68890 4.26040

TSDPT [10] 2.48727 2.74632 3.09190 3.19471 3.70752 4.27991

SSDPT [29] 2.48928 2.74844 3.13443 3.19456 3.14574 4.38175

present ǫzz 6= 0 2.47216 2.72046 3.06067 3.15761 3.66166 4.20550

present ǫzz = 0 2.48219 2.73080 3.06943 3.16837 3.67153 4.21792
Table 12
Uni-axial buckling load of simply supported plate of type C using the higher-order
theory and a grid with 172 points. 37



p Theory P̄

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CLPT 6.86896 6.86896 6.86896 6.86896 6.86896 6.86896

FSDPT 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224

TSDPT [10] 6.50248 6.50248 6.50248 6.50248 6.50248 6.50248

SSDPT [29] 6.50303 6.50303 6.50303 6.50303 6.50303 6.50303

present ǫzz 6= 0 6.47643 6.47643 6.47643 6.47643 6.47643 6.47643

present ǫzz = 0 6.50254 6.50254 6.50254 6.50254 6.50254 6.50254

0.5 CLPT 3.82699 4.12798 4.28112 4.39032 4.59127 4.80762

FSDPT 3.66866 3.95660 4.10007 4.20517 4.39336 4.59758

TSDPT [10] 3.68219 3.97042 4.11235 4.21823 4.40499 4.60841

SSDPT [29] 3.68284 3.97097 4.11269 4.21856 4.40519 4.60835

present ǫzz 6= 0 3.58104 3.85813 3.99478 4.09639 4.27586 4.47095

present ǫzz = 0 3.59364 3.87163 4.00851 4.11067 4.29064 4.48655

1 CLPT 2.66624 3.01366 3.20195 3.34075 3.59831 3.89203

FSDPT 2.57118 2.90690 3.08510 3.21946 3.46286 3.74182

TSDPT [10] 2.58357 2.92003 3.09697 3.23237 3.47472 3.75328

SSDPT [29] 2.58423 2.92060 3.09731 3.23270 3.47490 3.75314

present ǫzz 6= 0 2.53069 2.85568 3.02733 3.15750 3.39202 3.65998

present ǫzz = 0 2.53924 2.86511 3.03679 3.16778 3.40274 3.67183

5 CLPT 1.36540 1.55352 1.74209 1.82866 2.10619 2.42859

FSDPT 1.31921 1.51126 1.69269 1.77979 2.04642 2.35737

TSDPT [10] 1.32910 1.52129 1.70176 1.78978 2.05605 2.36734

SSDPT [29] 1.33003 1.52203 1.70224 1.79032 2.05644 2.36744

present ǫzz 6= 0 1.31826 1.50395 1.68128 1.76502 2.02535 2.32351

present ǫzz = 0 1.32340 1.50933 1.68598 1.77074 2.03081 2.33029

10 CLPT 1.28493 1.40170 1.58214 1.62962 1.89619 2.19111

FSDPT 1.23452 1.36313 1.53714 1.58760 1.84445 2.13020

TSDPT [10] 1.24363 1.37316 1.54595 1.59736 1.85376 2.13995

SSDPT [29] 1.24475 1.37422 1.56721 1.59728 1.57287 2.19087

present ǫzz 6= 0 1.23608 1.36023 1.53034 1.57880 1.83083 2.10275

present ǫzz = 0 1.24109 1.36540 1.53472 1.58419 1.83576 2.10896
Table 13
Bi-axial buckling load of simply supported plate of type C using the higher-order
theory and a grid with 172 points. 38
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Fig. 12. First four buckling modes. Uni-axial buckling load of a simply supported
2-1-2 plate type C, p = 0.5, a 172 points grid, and using the higher-order theory.

7 Conclusions

A novel application of a Unified formulation coupled with collocation with
radial basis functions is proposed. A thickness-stretching higher-order shear
deformation theory was successfuly implemented for the static, free vibration,
and linearized buckling analysis of functionally graded plates.

The present formulation was compared with analytical, meshless or finite ele-
ment methods and proved very accurate in both static, vibration and buckling
problems. The effect of ǫzz 6= 0 showed significance in thicker plates. Even for
a thinner functionally graded plate, the σzz should always be considered in
the formulation.

For the first time, the complete governing equations and boundary conditions
of the higher-order plate theory are presented to help readers to implement it
successfully with the present or other strong-form techniques.
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Fig. 13. First four buckling modes. Bi-axial buckling load of a simply supported
2-1-1 plate type C, p = 10, a 172 points grid, and using the higher-order theory.
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