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New general relativity predicts a static, isotropic spacetime q\1ite different from the Schwarz­
schild spacetime of general relativity, unless one of the two unknown parameters, c, is exactly zero. 
In this paper we study its structure as a Riemannian spacetime, paying special attentions to motions 
of test particles theliein. 

Recently Kawai and Tomal} have discussed singularities of the static, isotropic 
spacetime in new general relativity, a gravitational theory based on absolute (or tele-) 
parallelism.2),*) Here we study structures of the spacetime as probed by spin-1/2 
particles and photons. 

The static, isotropic spacetime of new general relativity is described by the 
parallel vector fields b={bkl'(x)} with 

b(o)o=l/J A(r) , b(o)a=b(a)o=O, 

with indices a and a running over 1 ~ 3, where A( r) and B( r) are 

A( r) = (1 - GM/ar )a(1 + GM/br)-b , 

B(r )=(1- GM/ar y-a(1 + GM/br )2+b . 

(2a) 

(2b) 

Here r is the radial coordinate and M denotes the mass of the central gravitating 
body. The two constants, a and bi are defined by 

a=2{J(1-e)(1-4e) -2e}/(1-5e)=2+e+O(e2
), 

b=2{j(1-e)(1-4e) +2e}/(1-5e)=2+ge+O(e2
) 

(3a) 

(3b) 

in terms of e, which is one of the two unknown parameters (denoted by e and C3) of 
the theory.2),**) Comparison with solar-system experiments severely restricts the 
possible value of e : 

e=-O.004±O.004. (4) 

So we shall assume henceforth that 1e1<t1 even if it is nonvanishing. 
The invariant distance ds2 is expressed by 

*) We use the same notations and conventions as in Ref. 2). The only exception is that the constants, 
a and b, of Eqs. (3a) and (3b) are denoted therein by p and q, respectively. 

**) The parameter Ca does not appear in isotropic spacetimes, 
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(5) 

50 we are using the isotropic coordinates. If € is vanishing, then Eqs. (3a) and (3b) 
give a=b=2, and therefore the metric reduces to the 5chwarzschild metric of general 
relativity written in the isotropic coordinates. 

In a spherically symmetric spacetime with parallel vector fields of diagonal form 
like (1), the axial-vector part of the torsion tensor identically vanishes, and so the 

- -

Dirac equation is locally Lorentz invariant: Namely, the Dirac equation does not 
change its form under local Lorentz transformations of parallel vector fields, 

bk"(X) ---+ b,/(x)=A/(x)b/(x) 

accompanied with the transformation of Dirac spinor fields, ¢(x) ---+ ¢'(x)= U(A)¢(x). 
The transformed fields bit are not parallel vector fields in general: Nevertheless, 
these fields do form-a tetrad of the metric, and are sufficient for describing spin-l/2 
particles and fields. 

The Maxwell equation of new general relativity is of the same form as in general 
relativity, being completely described by the metric tensor alone. Therefore, as long 
as we explore spacetime structure by using spin-l/2 particles and photons as probes, 
the parallel v~ctor fields cannot be determined uniquely, and ambiguity of making 
local Lorentz transformations is left unremoved. 

These considerations imply that for an isotropic spacetime the underlying 
Weizenboeckian structure, on which new general relativity is based, is not observable 
by studying motions of test particles. Instead, it is the Riemannian structure that is 
explored by test particles: 50 we shall next investigate properties of the static, 
isotropic spacetime, regarding it as a Riemannian spacetime. 

If the parameter € is exactly zero, the metric (5) is the 5chwarischild metric as 
was noted earlier, and its structure is quite well-known.3

) In particular, when it is 
written in the isotropic coordinates, its form is invariant under the transformation, r 
---+ r =( GM/2)2 /r, and it covers only those regions of spacetime which are denoted by 
I and III in the Kruskal coordinates. These two regions represent two asymptotically 
fiat spacetimes outside the event horizon located at r= GM/2. 

If the parameter € takes a small but non-zero value, l~lel *0, the constants, a and 
b,are both very close but unequal to 2: If €>O (or €<O), then a >2 and b >2 (or a<2 
and b<2) as is seen from Eqs. (3a) and (3b). Thus, since a (and hence 2-a) are not 
integer, the metric functions, A(r) and B(r), become complex for- r< GM/a. This 
represents that the spacetime is physically meaningful only outside the sphere of 
radius r = GM/a. 

The singularity property of the metric (5) for €*O is seen from the behavior of the 
Riemann-Christoffel curvature tensor near r = GM/a. It has been shown that the 
scalar curvature R({ D and the quadratic invariants, R({ })"JlPoR({ D"JlPO" and 
R({})"JlR({})"JI, become infinite there. I

) Thus, the spherical shell of r=GM/a is a 
singularity of spacetime, if the parameter € takes a nonzero value, no matter how 
small its value may be. As will be seen shortly, this is a point singularity when €< 0. 
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Fig. L The qualitative behaviors of p as a func· 
tion of r. 

In order to gain more insights about' 
the metric (5), we shall rewrite it in the 
Schwarzschild coordinates: 

ds2= - E(p)dt2+ F(p)dp2 

(6) 

where the radial coordinate p is defined 
by 

p=rJB(r) =r(1-GM/ar)1-aI2 

x (1 + GM/br )l+bI2 , (7) 

and the,metric functions E(p) and F(p) 
are given by 

E(p)=A(r) 

and 

F(p)=B(r)(dr/dp)2 . (8) 

The behavior of p(r) is quite different depending on the value of c. So we shall 
discuss the three cases, c=O, c>O and c<O, separately (see Fig. 1 for the qualitative 
behavior of p as a function of r) : 

(0 If c=O (i.e., a=b=2), p is well-behaved over the whole region, O<r<oo, and 
it takes the minimum, p=2GM, at r=GM/2. The metric function~ are given by E(p) 
=(1-2GM/p) and F(p)=1/(1-2GM/p), and therefore they are defined also for 0< p 
< 2GM, i.e., the region inside the event horizon. 

(ii) If l::}:>c>O (Le., a>2 and b >2), then p is defined only over the region r >GM /a: 
For large r, p is nearly equal to r, and as r decreases it becomes minimum, Po 
=roJ B(ro) , at r=ro=(1/2)(1 +/e)GM, and then increases to infinity as r approaches 
GM/a. In contrast with-the Schwarzschild metric, however, the radial, Schwarzschild 
coordinate cannot be extended to p< Po, since both the metric functions E(p) and F(p) 
have complex, non-real values there. The region p > Po corresponding to r> ro 
represents an asymptotically flat spacetime: By contrast, another region p > Po for ro 
> r > GM/a is not asymptotically flat and instead, the boundary with infinitely large 
area at p=OO (i.e., at r = GM/a) is a singularity of spacetime, as has been noted above. 

(iii) If c<O and Icl<t1 (Le., a<2 and b<2), then p is zero for r=GM/a, and 
monotonically increases as r becomes larger. The sphere with radius r = GM/a is 
therefore the point singularity located at the center. 

The radial distance from the singularity at r = GM/a to any other point r is finite 
for any value of c=1=O, however: In fact, for any r larger than GM/a, we have 

(r J B( r) dr = (r (1 - GM/ar )1-aI2(1 + eM/br )l+bI2 dr < 00 
)GMla )GMla 

(9) 

since the integral converges at both ends. 
Further information about the nature of the singularity can be obtained by 

-considering a radially traveling photon in the metric (5). - The world line is deter­
mined by the condition ds2=0, and so we have in the isotropic coordinates 
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dt/dr= ±j B(r)/A(r)= ±(I-GM/ar)l-a(1 +GM/br)l+b , (10) 

where the plus and the minus signs ate for outgoing and ingoing photons, respectively. 
For a photon starting from Yl at t=O, the coordinate time t(rl, r) for arriving at r is 
given by 

t( rl, r) = ± l
r
(1 - GM/ar )l-a(1 + GM/br )l+b dr . 

T! 
(11) 

It follows from this expression that an outgoing photon emitted at an arbitrary point 
outside the sphere of radius r= GM/a can escape to infinity. This represents that the 
sin~ularity at r=GM/a for c-=f=.O is naked, not being covered with event horizon. 

As an ingoing photon approaches the sphere r=GM/a, its coordinate time 
changes like 

{

a finite function of rl for c< ° , 
t(rl,r) ~ -4GMln(I-GM/2r) for c=O, 

r-GMla 

. const X (1 ~ GM/ar )2-a for c > ° . (12) 

If c< 0, the photon collides with the singularity in a finite coordinate time. When c 
>0, on the other hand, it will take infinite coordinate time for a photon to collide-with 
the singularity. 

The physical time interval r(rl, r) for a photon to travel from Yl to r, however, 
is not equal to the coordinate time interval itself, but should be defined by the 
following manner. Imagine a chain of fixed observers between rl and r, and suppose 
that each observer measures the time interval dr for the photon to go to the next one. 
Adding up all these time intervals gives the physical time interval r(rl, r): 

r(rl, r)=l
r 
dr= l

r
(dr/dt)(dt/dr) dr 

Tl Tl 

= ±l
r
(l- GM/ar )1-aI2(1 + GM/br )l+bl2dr , 

T! 
(13) 

where the plus and minus signs correspond to outgoing and ingoing photons, re­
spectively, and dr=jA(r)(dt/dr)dr means the time interval for the photon to go 
from r to r + dr, as measured by the observer fixed at r. Since we are assuming that 
1c1~1, the value of a is very close to 2, and the integral converges at r=GM/a. Thus, 
an ingoing photon does indeed collide with the singularity at r = GM/a in a finite 
physical time interval. 

The radial motion of a photon can be described most simply by using the 
advanced and retarded time parameters, 

v=t+r*, w=t-r*, (14) 

where r* is defined by 

r*=l
r 
j B(r)/A(r)dr=l

r
(l- GM/ar)l-a(1 + GM/br)l+bdr 

T2 72 
(15) 
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with r2 being a constant. If c<O, we 
choose as r2=GM/a, since the integral of 
(15) converges in this case. When c>O, 
we choose as r2=ro{=(1/2)(I+j€)GM 
> GM fa}. The range of the variable r* 
is then 

for c<O, 
Fig. 2. The Penrose diagrams; (a) for c<O and 

(b) for c>O. oo>r*>-oo for c>O. (16)· 

The singularity is located at r*=O for c<O and at r*= -00 for c>O, respectively. 
An ingoing (outgoing) photon travels along v=const (w=const) in the v-w plane. 

N ow introduce the new coordinates p and q by 

v=tanp, 

w=tanq. 

(7[/2> p > - 7[/2) 

(7[/2> q > - 7[/2) (17) 

If c<O, the range of p and q is further restricted by p-q~O, because v-w=2r*~0 
in this case. 

We can then construct the Penrose diagram for the spacetime with the metric 
(5).4) It describes causal structure of the spacetime in a simple manner (see Fig. 2). 
In this diagram null geodesics are at ±45° to the vertical axis, r*=O. If c<O, the 
singularity at r = GM/a is timelike : The Penrose diagram is similar to the one for the 
Reissner-N ordstroem spacetime with e2 > m2

; Due to the timelike character of the 
singularity, there are no Cauchy surfaces. If c >0, the singularity is null: There are 
Cauchy surfaces, over which all the past-directed timelike or null lines cross before 
hitting the singularity. In both cases with c=FO, unlike in the Schwarzschild 
spacetime, timelike and null curves can always escape to infinity. 

In summary, the static, isotropic spacetime predicted by new general relativity is 
quite different from the Schwarzschild spacetime of general relativity, unless the 
parameter c is exactly zero. In particular, the spacetime has a naked singularity not 
covered with event horizon. When c > 0, the. singular region is a spherical shell with 
infinitely large area. If c< 0, on the other hand, the singularity is point-like and is 
located at the center. 

Finally, we mention an unsolved problem of proving the Birkhoff theorem in new 
general relativity. This will be indispensable when one applies new general relativ­
ity to gravitational collapse of stellar matters. 
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