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Abstract: This paper presents a static model for a novel movable tooth drive with logarithmic spiral
tooth profiles, to research contact force and load distribution during the meshing period. According
to the geometric properties of the conjugate tooth profiles, their compatibility law considering the
multi-tooth elastic meshing effect are investigated to reveal load distribution characteristic of the
teeth. The static model of the mechanism is thus developed to systematically analyze variation in
contact force during the rise travel. The results indicate that the contact force between the tooth and
ring gear is proportional to the curvature radius of the contact point, and it increases exponentially
and monotonically corresponding to the curvature radius of logarithmic spiral tooth profile; in
the multi-tooth meshing condition, the load distribution of the teeth coincides with the ratio of
the curvature radius of each contact point, and periodical pulsations of total contact force occur at
the alternation of the teeth. Finally, the proposed model is validated by the FEM simulation of a
prototype, and the influence of dimensional parameters is further discussed for the self-locking and
force transmission characteristics of the tooth. The outcomes provide critical technical support for the
static modelling and design of such transmission mechanism.

Keywords: movable tooth drive; logarithmic spiral tooth profile; load distribution characteristic;
multi-tooth meshing effect; static modelling

1. Introduction

Multi-tooth meshing is the crucial structural characteristic of heavy load-bearing gear
transmissions, and mechanic modelling of the over-constrained transmission systems has
drawn continuous interest. At present, cycloid and harmonic drives, based on the cycloidal,
involute, or double-circular-arc tooth profiles, etc., are prevailing high-precision products
that have been extensively applied in industrial and engineering fields [1]. Tremendous
efforts have been devoted to relevant research on force and load distribution analysis.

Over recent decades, Kudrijavcev [2] and Malhotra et al. [3] studied the static mod-
elling of a cycloid-pinwheel transmission. The former [2] proposed an accurate force model
of a cycloid-pin gear with the ideal dimensions based on the assumption of constant out-
put torque, providing references for the subsequent calculation of cycloid-pin meshing
stiffness [4]. The latter [3] investigated the forces of various elements and the influence of
design parameters on the contact stress. Similarly, Gorla et al. [5] developed a simplified
procedure to calculate the load distribution on the components of an innovative cycloid
speed reducer, and conducted an experiment to validate the theoretical analysis results.
Li et al. [6] established an analytical model based on the loaded tooth contact analysis in
the presence of clearances and eccentricity errors, making the load distribution prediction
more precise. Hidaka et al. [7] presented a systematic force-displacement model of RV
reducer by means of equivalent springs or clearances to release the over-constraints of
components, and the modelling method laid significant technical foundation for mechan-
ical investigations of such over-constrained transmission systems. Moreover, numerous
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scholars have deepened studies by considering different influential factors of load distribu-
tion, such as frictions between cycloidal gear and pins [8], dynamic contact and collision
of pinwheel [9,10], elasticities of crankshafts and cycloidal gear [11], as well as assembly
clearances and tooth profile modifications [12,13]. Furthermore, relevant research on the
FEA of multi-tooth meshing characteristics gained deep insight [14–16]. Kim et al. [14] sim-
ulated the influence of elastic deformations of the cycloidal gear on the meshing forces by a
semi-analytical method. Li [15] refined actual load and contact stress distribution on the
bushes and bearing rollers in the finite element model, aiming for convenient and accurate
strength calculations and evaluation. Blagojevic et al. [16] introduced a new design for a
two-stage cycloid speed reducer and an approximate approach for the load distribution
analysis based on the previous work [3]; the FEA model of contact stress was validated by
the experimental results. It is worth mentioning that Xu et al. [17] presented a multi-tooth
meshing model by discretizing tooth profiles with modification and bearing clearances
considered, allowing for the contact loads to be calculated precisely by the determined
contact point and depth, and a customized program was developed for improving the
design initiative and analysis accuracy.

Harmonic drive, as another typical reducer characterized with multi-tooth meshing,
transmits force and motion through periodic elastic deformations controlled by the flexs-
pline (FS) and wave generator (WG) [18]. Kayabasi et al. [19] conducted a computational
stress–strain simulation of the FS via FEA and obtained the optimum shape of the FS teeth
to maximize fatigue life. Li et al. [20] defined the objective function to minimize the circum-
ferential stress of the FS through an optimization model of the WG profile. Zhu et al. [21]
established the theoretical model of contact force between rolling elements and outer ring,
based on three bending moment equations, and studied the mechanical characteristics of
the FS with the aid of FEA. Pacana [22] studied the effect of the structural form on the
stress distribution of the FS and presented stress diagrams in longitudinal intersections for
susceptible wheels of different shapes for direct comparison. As a parallel session, consid-
erable attention has been paid to the experimental studies [23–25]. Tjahjowidodo et al. [23]
developed two test setups comprising the high- and low-load torque harmonic drives,
respectively, and the hysteresis tests with different loads were implemented to validate the
torsional compliance model. Ma et al. [24] employed an experimental method to investi-
gate the effect of the driving speed on the deformation properties of the FS. Apart from
these attempts to optimize design parameters of the FS, some other researchers have also
concentrated on the WG performances. Chen et al. [26] presented a mechanical analysis
method to calculate the stretch in the neutral line of the FS under the action of four-roller
WG. Xiong et al. [27] developed a universal static analysis model to calculate the roller
load distribution of flexible bearings, considering the numbers of rollers and the shape
of WG cam. Mahanto et al. [28] utilized the finite element and experimental methods
to investigate the stress–strain distribution pattern in the FS considering the insertion
of conventional and split WG cam, respectively. Yague-Spaude et al. [29] compared the
mechanical performance of WG with four different geometries, and the results showed that
the lower average value of maximum von Mises and tensile stresses was achieved with the
simplified and parabolic geometries. In addition, Xu et al. [30,31] studied the operation
principle of an electromagnetic harmonic drive and deduced the displacement and output
torque equations of the flexible ring under magnetic forces.

Throughout the above-mentioned literature, lots of valuable contributions have been
made to the mechanic studies of cycloid and harmonic drives, providing general methods
for relevant research into various over-constrained gear transmission systems. Yet it may
be pointed out that the multi-tooth elastic contact analysis of different transmissions still
needs to be further investigated, considering the distinctive meshing characteristics of the
conjugate tooth profiles and the topologies of kinematic pairs.

It is worth noting that a novel type of movable tooth drive has been proposed that
is characterized by a logarithmic spiral tooth profile [32]. Its structure is different from
traditional movable tooth drives by using balls or rollers as transmission mediums. Under
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the working conditions, the innovative tooth geometry makes the almost full surface
contact possible, unlike cycloidal or involute tooth profiles that only create a linear contact.
Therefore, the novel drive can bear more loads and has higher rigidity. It is believed to
exhibit broad application prospects in the field with heavy load requirements, such as
machine tools, petroleum drilling platforms, industrial robots, etc. In the movable tooth
drive, several independent dynamic teeth interlock simultaneously instead of an integral
gear. All these features make the force analysis and multi-tooth meshing effect quite
different from the previous studies, and little reported work in the open literature can be
found with respect to the force characteristics of such a tooth profile.

In response to the insufficiency, it is of great significance to investigate the static mod-
elling of the mechanism and compatibility law of the conjugate tooth profile, especially
taking into consideration geometric properties of logarithmic spiral and multi-tooth mesh-
ing effect. The remainder of this paper is organized as follows: After this introduction, the
mathematical properties of logarithmic spiral and the structure and transmission principle
of the mechanism are briefly introduced in Section 2. Next, the profile equations of the
logarithmic spiral conjugate tooth profile and wave generator are established in Section 3.
Then, Section 4 studies the multi-tooth meshing load distribution characteristic and devel-
ops the static model of the mechanism. Subsequently, the validity of the presented model
is verified by the FEM simulation in Section 5. On this basis, Section 6 implements analysis
of self-locking and force transmission characteristics of the teeth, before conclusions are
drawn in Section 7.

2. Structure and Transmission Principle

The novel movable tooth drive is designed based on the principle of small teeth
difference, as the schematic diagram illustrated in Figure 1. The transmission mechanism is
mainly comprised of the wave generator 1, tooth carrier 2, ring gear 3, movable tooth 4,
needle roller 5, and pivoted segment 6.
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Figure 1. Schematic diagram of the novel movable tooth drive. 1-wave generator; 2-tooth carrier; 3-
ring gear; 4-movable tooth; 5-needle roller; 6-pivoted segment. 

Figure 1. Schematic diagram of the novel movable tooth drive. 1-wave generator; 2-tooth carrier;
3-ring gear; 4-movable tooth; 5-needle roller; 6-pivoted segment.
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The ring gear, wave generator, and tooth carrier are coaxially arranged. The ring gear
is fixed with the frame, while the wave generator and tooth carrier are both connected
to the frame by revolute pairs, serving as the input and output components, respectively.
The movable teeth constitute prismatic pairs with corresponding radial grooves of the
tooth carrier, and they, together with the ring gear, compose logarithmic spiral conjugate
gear pairs. A pivoted segment is hinged with the bottom of each movable tooth, and the
hinge center locates at the lower surface of the pivoted segment. Several needle rollers are
distributed between the wave generator surface and the pivoted segments to reduce friction.

As the CAD model of the novel movable tooth drive shows in Figure 2a, similar to the
harmonic drive, the teeth are driven by the wave generator to engage with the ring gear, but
they are rigid and independent movable teeth rather than an entire gear, i.e., the flexspline
of the harmonic drive. Moreover, the force and motion are transferred by these dynamic
movable teeth with logarithmic spiral tooth profile, as depicted by the red dotted line in
Figure 2b, instead of the balls or rollers utilized in the conventional movable tooth drives.
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Figure 2. CAD model. (a) virtual prototype; (b) movable teeth and pivoted segments.

In particular, since such conjugate tooth profile is almost in surface contact during the
engagement, it is characterized with a higher load capacity and stiffness compared with
involute or cycloid profiles.

The following describes the transmission principle of the mechanism by taking a
meshing period of the movable tooth 1 and the ring gear as an example. The initial position
is defined when the movable tooth contacts the tooth tip A of the ring gear, as depicted
with the red double dot-dash line in Figure 3a.

When the wave generator rotates clockwise, the movable tooth is actuated to engage
with the profile AB of the ring gear, and the tooth carrier is meanwhile driven to rotate
counterclockwise owing to the radial groove. The rise travel of the cam is finished until the
movable tooth reaches the tooth root B of the ring gear. When the wave generator continues
to rotate, the movable tooth returns to initial position A of next meshing period under the
guidance of the profile BA, and the return travel of the cam is thereby completed. The
simultaneous engaging teeth periodically repeat the above-mentioned motion, i.e., engage-
in and engage-out, with phase difference in their rotation angles, therefore accomplishing
continuous transmission of the reducer.
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Assume that the number of the wave generator lobe, movable teeth, and ring gear
teeth are z1, z2, and z3, respectively. The engaging teeth locate in one ring gear tooth profile,
and their phase distribution relation is demonstrated in Figure 3b, by taking z1 = 2, z2 = 24,
and z3 = 50 as an example. Herein, θh and ∆θ refer to the rise travel angle and phase
difference, respectively, and they can be expressed as:

θh =
π

z3
(1)

∆θ =
2πz1

z2z3
(2)

3. Profile Equations

This section examines the meshing theory of the logarithmic spiral conjugate tooth
profile, based on the geometric properties of logarithmic spiral, in order to lay a foundation
for the subsequent analysis of the force characteristics of such a tooth profile.

3.1. Movable Tooth and Ring Gear
3.1.1. Geometric Properties of Logarithmic Spiral

As is well known, the curve in which polar radius changes exponentially with respect
to polar angle is named as a logarithmic spiral, as the red line plotted in Figure 4, and its
vector equation is:

r(θ) = Reθ/ tan βeiθ , θ ∈ (−∞,+∞) (3)

where R represents the initial polar radius; β denotes the spiral angle; eiθ denotes the
unit vector.
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The curve possesses significant properties as follows:

• Equiangularity: the spiral angle between the tangent line and polar radius is equal at
an arbitrary point;

• Evolute: the curve generated by the curvature center of each point is the identical
logarithmic spiral with a phase angle difference π/2;

• Similarity: the polar radii of any two sectors with the same angle θ are in same
proportion eθ/tanβ.

3.1.2. Logarithmic Spiral Conjugate Tooth Profile

For ease of description, vector equations of the wave generator cam profile, the tooth
profile of the movable tooth and the ring gear are represented by r1, r2, and r3, respectively,
and the subscripts correspond to the serial numbers of the components in Figure 1.

Suppose that the tooth profile of the movable tooth is a known logarithmic spiral and
is utilizing the envelope method to calculate the conjugate tooth profile of the ring gear.

As shown in Figure 5, a fixed coordinate system O1-x1y1 is located at the rotation
center of the wave generator, and a follow-up coordinate system O2-x2y2 is connected to
the movable tooth. In O2-x2y2, the vector equation of the tooth profile of the movable tooth
is expressed as:

r(O2)
2 (θ) =

[
Reθ/ tan β cos θ Reθ/ tan β sin θ 1

]T, θ ≤ 0 (4)

where θ denotes the tooth profile parameter, θ = 0 corresponds to the tooth tip of the
movable tooth.
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From the analysis in Section 2, if the tooth carrier is fixed and the ring gear is the output
component, the wave generator and movable tooth can be regarded as a cam mechanism
with the radial translating follower.

Assume that the movable tooth rotates a counterclockwise angle φ from the initial
position in the light of the logarithmic spiral motion curve, and its radial displacement is
formulated as:

s(φ) = R
(

eθ/ tan β − 1
)

(5)

In O1-x1y1, the vector equation of the tooth profile of the movable tooth is expressed as:

r(O1)
2 (θ, φ) = MO1O2r(O2)

2 (θ) (6)

where MO1O2 is the coordinate transformation matrix from O2-x2y2 to O1-x1y1, and ex-
pressed as:

MO1O2 =

 cos φ − sin φ s(φ) cos φ
sin φ cos φ s(φ) sin φ

0 0 1

 (7)

The equation of engagement is written as:

f (θ, φ) = n12·v = 0 (8)

where n12 and v indicate the common normal vector and relative velocity vector at the
meshing point. Note that the ring gear is fixed and connected with the frame, so v is the
absolute radial velocity of the movable tooth.

By the derivation of Equation (6) with respect to θ and φ, respectively, and yields:n12 =
dr

(O1)
2 (θ,φ)

dθ e−i π
2

v =
dr

(O1)
2 (θ,φ)

dφ
dφ
dt

(9)

Substituting Equation (9) into Equation (8) results in:

tan β cos θ +
(

tan2 β + 1
)

eφ/ tan β sin θ − eθ/ tan β tan β− tan2 β sin θ = 0 (10)

The solution of Equation (10) is obtained as:

θ = 0, φ ≥ 0 (11)

It can be analyzed from Equation (11) that the tooth profile parameter θ is always equal
to 0 corresponding to the arbitrary rotation angle of the movable tooth, indicating that the
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tooth tip of the movable tooth is always the meshing point, and its motion trajectory just
generates the tooth profile of the ring gear.

Substituting Equation (11) into Equation (6), the vector equation of the tooth profile of
the ring gear is derived as:

r(O1)
3 (φ) =

[
Reφ/ tan β cos φ Reφ/ tan β sin φ 1

]T, φ ≥ 0 (12)

Combining Equations (2) and (10), it is found that the tooth profile of the movable
tooth and ring gear are two curve segments of the same logarithmic spiral, as shown in
Figure 6. Moreover, it is noted that the profile curvature of the movable tooth should be
larger than that of the ring gear to avoid interference between them.
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Figure 6. Logarithmic spiral conjugate tooth profiles. Figure 6. Logarithmic spiral conjugate tooth profiles.

3.2. Wave Generator Cam

The wave generator is assumed to be fixed based on the reversal method, and the
tooth rotates an angle (θ1 + θ2) counterclockwise from the initial position, as illustrated in
Figure 7. Accordingly, during the reverse motion, the profile equation of the wave generator
is obtained by the trajectory of the hinge point of the tooth bottom and articulated pivoted
segment, which is expressed as:

r1 = [r0 + s(θ2)]ei(θ1+θ2) (13)

where r0 denotes the pitch circle radius of the wave generator.
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Substituting Equation (5) into Equation (13) yields:

r1(θ) =
[

Reθ/(I+1) tan β − R + r0

]
eiθ , θ ∈ (0, π/z1) (14)

where I represents the speed ratio of the mechanism, and I = (z3 − z1)/z1.
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To analyze the force transmission characteristic of the tooth and wave generator, the
meshing angle α is defined as the acute angle between the normal n of the wave generator
profile and the radial velocity v of the movable tooth, and it is calculated by:

α = cos−1 n·v
|n|·|v| (15)

4. Static Model of the Mechanism

It can be known from the analysis in Section 2 that the teeth and ring gear are multi-
tooth meshing and over-constrained transmission, and the geometric properties of tooth
profile and phase relation of multi-tooth meshing play an important role in the meshing
teeth number and load distribution. Hence, it is essential to first research the compatibility
condition considering the multi-tooth elastic meshing effect, and then to develop the static
model of the mechanism.

4.1. Load Distribution Characteristic of Multi-Tooth Meshing

Assume that the teeth and tooth carrier are temporarily stationary, and a counter-
clockwise torque M3 is applied to the ring gear, then tiny elastic deformations will occur
at the contact points, resulting in a small rotation angle of the tooth carrier considering
comprehensive effect of these deformations.

The contact force and elastic deformation between the i-th tooth and ring gear are
denoted as N3i and δi, as shown in Figure 8. Herein, the component of the deformation
along the circumferential direction is equal to δicosβ because of the equiangularity of
logarithmic spiral, and the small rotation angle of the tooth carrier caused is ∆τ, thus:

δi cos β

r3i
= ∆τ (16)
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Figure 8. Force and elastic deformation at the contact point.

The elastic deformation law of all meshing teeth further satisfies:

δi cos β

r3i
=

δi+1 cos β

r3(i+1)
= · · · = ∆τ (17)

where r3i denotes the distance from the contact point to the rotation center O, and according
to Equation (12) it is expressed as:

r3i = Re[θ2+(i−1)∆θ]/ tan β = ρi sin β (18)

where ρi represents the curvature radius of the ring gear tooth profile at the contact point.
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Note that the variation in comprehensive curvature radius of the logarithmic spiral
conjugate tooth profile is very little within the whole contact area, so the contact stiffness of
the teeth and ring gear is presumed approximately as a constant k, and then the contact
force is proportional to the deformation as follows:

N3i
δi

=
N3(i+1)

δi+1
= · · · = k (19)

Equation (19) is the compatibility equation of multi-tooth elastic meshing.
Substituting Equations (17) and (18) into Equation (19) leads to:

N3i = (k∆τ tan β)ρi (20)

Equation (20) indicates that the contact force is proportional to the curvature radius of
the contact point.

Suppose that the number of meshing teeth in the rise travel is m, and then the total
contact force is written as:

m

∑
i=1

N3i =
m

∑
i=1

k∆τ

cos β
Re[θ2+(i−1)∆θ]/ tan β =

k∆τ

cos β
Reθ2/ tan β

m

∑
i=1

e(i−1)∆θ/ tan β (21)

The items in Equation (21) successively represent the contact force of each tooth and
ring gear, and they change proportionately with respect to the phase difference.

Based on the above analysis, the load distribution factor Ki is further employed to
clearly describe the load ratio of each tooth, formulated as:

Ki =
N3i

∑m
i=1 N3i

(22)

Substituting Equations (20) and (21) into Equation (22) yields:

Ki =
ρi

∑m
i=1 ρi

= e(i−1)∆θ/ tan β e∆θ/ tan β − 1
em∆θ/ tan β − 1

(23)

Equation (23) reveals load distribution characteristic of multi-tooth meshing with a
logarithmic spiral tooth profile, i.e., the ratio of the curvature radius of each contact point
determines the load distribution of the teeth, and they are invariant because teeth always
rotate at the same angle θ2 at any instant and the similarity property of the logarithmic
spiral. Ki are dimensionless constants depending on the spiral angle β and phase difference
∆θ, also not related to the rotation angles of the teeth, and they compose a group of
geometric progression matched with the ratio e∆θ/tanβ.

4.2. Static Equilibrium Equations of Components
4.2.1. Ring Gear

The motion characteristic of multi-tooth meshing is demonstrated in Figure 9. It is
noticed that the absolute instantaneous center of the tooth during the rise travel corresponds
to the curvature center of the ring gear tooth profile, so the centrode just coincides with the
evolute. According to geometric relations of the curves, the arm of contact force of each
tooth is calculated by:

li = r3i cos β = ρi sin β cos β (24)
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Figure 9. Arm of contact force of each tooth.

It can be seen that the arm of contact force is proportional to the curvature radius of
the contact point as well. Therefore, the direction of contact force, arm of contact force, and
radius of contact point form a family of similar right triangles, as depicted with the red
solid line in Figure 9.

The torque equilibrium equation of the ring gear is expressed as:

m

∑
i=1

N3ili =
M3

z1
(25)

By substituting Equations (23) and (24) into Equation (25), the contact force is
obtained as:

N3i = Ki

m

∑
i=1

N3i =
e2∆θ/ tan β − 1

e2m∆θ/ tan β − 1
e[(i−1)∆θ−θ2]/ tan β

z1R cos β
M3 (26)

4.2.2. Movable Tooth

Here, assume that the movable tooth is under the dry environment, and the influence
of lubrication conditions is ignored. When the i-th tooth rotates a certain angle θ2 from
the initial position, its force state during the rise travel is shown in Figure 10, and the
equilibrium equation is established as:

[
F1i F1

2i F2
2i F3i

]
Li =

[
−Fki Fri − Fci −Fki

(
r1i +

R− r0

2

)]
, i = 1, 2, · · · , m (27)

where Li represents the coefficient matrix; F1i and F3i represents the total reaction forces of
the wave generator and ring gear to the teeth, respectively; F2 denotes the total reaction
forces of the tooth carrier to the teeth; Fki, Fri, and Fci are the inertial forces acting on the
centroid Oi, in response to the radial, Coriolis, and tangential accelerations of the teeth,
respectively, and they can be ignored considering the small mass of the tooth.

Li =


sin(αi + ϕ1)

cos ϕ2
− cos ϕ2

− cos(β + ϕ3)

cos(αi + ϕ1)
− sin ϕ2
− sin ϕ2

− sin(β + ϕ3)

r1i sin(αi + ϕ1)
rx cos ϕ2 − b/2 sin ϕ2
b/2 sin ϕ2 − rl cos ϕ2

r3i cos(β + ϕ3)

 (28)

{
rx = ru, i f r3i − h ≥ ru

rx = r3i − h, i f r3i − h < ru
(29)
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Figure 10. Force state of the i-th tooth during the rise travel. 

Then the explicit formulas of the forces are derived as: 

𝐹𝐹1𝑖𝑖 = 𝐹𝐹3𝑖𝑖
(2𝑟𝑟3𝑖𝑖 − 𝑟𝑟𝑥𝑥 − 𝑟𝑟𝑙𝑙 + 𝑏𝑏 tan𝜑𝜑2) tan𝜑𝜑2 cos(𝛽𝛽 + 𝜑𝜑3) + (𝑟𝑟𝑥𝑥 − 𝑟𝑟𝑙𝑙) sin(𝛽𝛽 + 𝜑𝜑3)
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Then the explicit formulas of the forces are derived as:

F1i = F3i
(2r3i − rx − rl + b tan ϕ2) tan ϕ2 cos(β + ϕ3) + (rx − rl) sin(β + ϕ3)

(2r1i − rx − rl + b tan ϕ2) tan ϕ2 sin(αi + ϕ1) + (rx − rl) cos(αi + ϕ1)
(30)

F1
2i =

F1i cos(αi + ϕ1 + ϕ2)− F3i sin(β + ϕ3 − ϕ2)

2 sin ϕ2 cos ϕ2
(31)

F2
2i =

F1i cos(αi + ϕ1 − ϕ2)− F3i sin(β + ϕ3 + ϕ2)

2 sin ϕ2 cos ϕ2
(32)

where ϕ1, ϕ2, and ϕ3 stand for the friction angles; h and b refer to the full tooth height and
width of the tooth; r1i and αi represent the radius and meshing angle at the hinge point,
respectively; ru and rl denote the radii of the outer and inner circles of the tooth carrier.

4.2.3. Wave Generator and Tooth Carrier

Suppose that the wave generator rotates clockwise under the input torque M1, and the
tooth carrier is driven by the teeth to rotate counterclockwise producing an output torque
M2, as illustrated in Figure 11. Their equilibrium equations are expressed as:

m

∑
i=1

F1ir1i sin(αi + ϕ1) =
M1

z1
(33)

m

∑
i=1

F1ir1i cos(φi − αi − ϕ1) = Fx (34)

m

∑
i=1

F1ir1i sin(φi − αi − ϕ1) = Fy (35)

m

∑
i=1

[
F1

2i

(
rx −

b
2

tan ϕ2

)
cos ϕ2 − F2

2i

(
rl −

b
2

tan ϕ2

)
cos ϕ2

]
=

M2

z1
(36)

m

∑
i=1

[
F1

2i cos
(π

2
− φi + ϕ2

)
− F2

2i cos
(π

2
− φi − ϕ2

)]
= 0 (37)

m

∑
i=1

[
F1

2i sin
(π

2
− φi + ϕ2

)
− F2

2i sin
(π

2
− φi − ϕ2

)]
= 0 (38)

where Fx and Fy are components of force of the frame on the wave generator along x and y
directions, respectively; φi is the angle between the centerline of the i-th tooth and x-axis,
and φi = θ2 + 2π(i − 1)/z2.
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where Fx and Fy are components of force of the frame on the wave generator along x and 
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5. Validation of the Model

In this section, the FEM simulation of contact forces will be implemented on the
prototype to verify the effectiveness of the presented model by comparing with the nu-
merical simulation results, and the dimensional and duty parameters are displayed in
Tables 1 and 2, respectively.

Table 1. Dimensional parameters of the prototype.

Dimensional Parameter Value

Initial polar radius R (mm) 65
Pitch circle radius of the wave generator r0 (mm) 35

Radius of the outer circle of the tooth carrier ru (mm) 63
Radius of the inner circle of the tooth carrier rl (mm) 47

Spiral angle β (◦) 30
Width of the tooth b (mm) 6

Table 2. Duty parameters of the prototype.

Duty Parameters Case 1 Case 2

Number of wave generator lobe z1 1 2
Number of the teeth z2 24 24

Number of ring gear teeth z3 25 50
Sequence of the teeth in the rise travel 1st~12th 1st~6th, 13th~18th

Speed ratio I 24
Input torque M1 20 Nm

ϕ1 = arctan0.05, ϕ2 = ϕ3 = arctan0.1.

5.1. Numerical Simulation
5.1.1. Forces of the Movable Tooth

The variation in forces of the tooth versus the rotation angle during the rise travel is
calculated based on Equations (23)–(38) in the cases of one- and two-lobe wave generators,
respectively, as illustrated in Figure 12. In the figures, one rise travel is represented by the
entire circle in the counterclockwise direction, and the force values are tagged along the
direction of polar radius.
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5.1.2. Load Distribution Factor 
The load distribution factors of the teeth are calculated by Equation (23), as demon-

strated in Figure 14. It is known that the closer the tooth is to the tooth root B of the ring 
gear, the larger its load ratio is, because of the increasing curvature radius of the ring gear 
tooth profile. The factors are around 8% in both cases, and their differences in case 2 are 

Figure 12. Variation in forces of the tooth versus the rotation angle. (a) Case 1; (b) Case 2.

Figure 12a,b indicate that forces of the tooth increase exponentially and monotonically
versus the rotation angle, thanks to the exponential increase in curvature radius of the ring
gear tooth profile. Moreover, it is observed that the variation in the contact force is more
stable and smaller in case 2 than that in case 1, as depicted with the blue solid line in the
figures, which can be explained by the fact that the ring gear teeth number corresponding to
the two-lobe wave generator is twice of that corresponding to the one-lobe wave generator,
under the condition of same speed ratio; this results in a smaller rise travel angle and full
tooth height of the ring gear tooth profile. In addition, the force of the output side of the
groove is larger than that of the other side, and its wear may be more severe.

The variation in total contact force of the teeth in the rise travel versus the rotation
angle is shown in Figure 13, by taking case 2 as an example.
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5.1.2. Load Distribution Factor 
The load distribution factors of the teeth are calculated by Equation (23), as demon-
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gear, the larger its load ratio is, because of the increasing curvature radius of the ring gear 
tooth profile. The factors are around 8% in both cases, and their differences in case 2 are 

Figure 13. Variation in total contact force versus the rotation angle.

It can be seen that the pulsation phenomena, as depicted with the red solid line in the
figure, occur periodically at the alternation of the meshing teeth, because the curvature
radii of the contact points are different when the teeth enter (point A) and end (point B)
the rise travel, resulting in a sudden change in the contact force. Obviously, the pulsation
amplitude is related to the spiral angel.
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In this case, the variation in contact force of a single tooth is about 10%, and the
pulsation amplitude δF of total contact force is approximately 2%, because the sum of
curvature radii of all contact points varies very little throughout the rise travel, while the
variation in curvature radius of one contact point is relatively lager.

5.1.2. Load Distribution Factor

The load distribution factors of the teeth are calculated by Equation (23), as demon-
strated in Figure 14. It is known that the closer the tooth is to the tooth root B of the ring
gear, the larger its load ratio is, because of the increasing curvature radius of the ring gear
tooth profile. The factors are around 8% in both cases, and their differences in case 2 are
less than those in case 1, showing that load distribution of the teeth under the condition of
the two-lobe wave generator are relatively even.
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5.2. FEM Simulation

The CAD model of the porotype is developed via ABAQUS software by taking the
same parameters listed in Tables 1 and 2.

In the modelling, the grid partition density of the teeth and ring gear are refined to
improve calculation accuracy, and the other components are divided automatically, as
illustrated in Figure 15a. The numbers of units of the wave generator, teeth, and ring gear
are 1309, 20,784, and 39,287, respectively, and the defined unit type is C3D10 (Ten-node
quadratic tetrahedron). The material properties are set as follows: the density, Young’s
modulus, and Poisson’s ratio are 7800 kg/m3, 206 Gpa, and 0.3, respectively.
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(b) Contact stresses of the teeth and ring gear.
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In the simulation, a driving torque of 20 Nm is applied to the input shaft, and the con-
tact stresses between the teeth and ring gear during the rise travel are shown in Figure 15b.
Then the contact forces are inversely calculated according to Hertz formula, and the simu-
lation results of the analytical model and FEM model are listed in Table 3.

Table 3. Comparison of contact forces between the analytical model and the FEM model.

Rotation Angle θ2 1/6θh 1/3θh 1/2θh 2/3θh 5/6θh θh

Analytical model (N) 278.1 283.2 288.4 293.7 299.1 304.5
FEM model (N) 272.2 276.8 281.1 286.0 291.2 295.9
Relative error 2.2% 2.3% 2.6% 2.7% 2.7% 2.9%

The comparative analysis indicates that the relative error of both results is less than 3%,
and the numerical simulation results are all higher than the FEM simulation results. The
reason is that the teeth and ring gear are regarded as theoretically line contact and contact
force between them is calculated as concentrated force in the analytical model, while a
surface contact area around the contact point is actually formed considering deformations
in the FEM model, and the contact stresses are apportioned.

6. Discussion

In this section we research the critical conditions of self-locking of the tooth during
one meshing period and implement relevant influence factor analysis on force transmission
characteristics for discussing the reasonable ranges of the dimensional parameters.

6.1. Self-Locking Analysis

It is noticed that the tooth is a reciprocating moving component, and it will occur
self-locking due to the unreasonable parameter design.

6.1.1. Rise Travel

The meshing angle α between the wave generator and the tooth is a significant factor
influencing the force transmission, and the self-locking of the tooth will happen during the
rise travel if α is too large. The critical meshing angle αc can be obtained by making the
denominator of Equation (30) equal to zero:

αc = tan−1 rx − rl
(rx + rl − 2r1i − b tan ϕ2) tan ϕ2

− ϕ1 (39)

Note that αc varies with the rotation angle of the tooth, and its minimum is defined as
the allowable meshing angle [αc], which is deduced as:

[αc] = tan−1 R− h− rl
(R− h + rl − 2r0 − b tan ϕ2) tan ϕ2

− ϕ1 (40)

Then in this case, the maximum meshing angle αmax should be less than the allowable
one, and combining Equation (15) results in a constraint of the dimensional parameters:

αmax = (I + 1)θh − tan−1
(I + 1)

(
eθh/ tan β − 2 + r0/R

)
tan β

eθh/ tan β
< [αc] (41)

It can be seen from Equation (41) that R, r0, and β are the main dimensional parameters
influencing αmax. To make the research more universal, set r0/R as the pitch circle radius
coefficient, and it is also applicable to the following discussions below. For the cases in
Section 5, based on Equations (40) and (41), the allowable and maximum meshing angles
are 73.6◦ and 7.0◦, respectively.
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6.1.2. Return Travel

The tooth, pushed by the tooth carrier during the return travel, returns to the initial
position of next meshing period under the guide of the ring gear tooth profile, and its force
state is illustrated in Figure 16, then the equilibrium equation is established as:[

F1i F1
2i F2

2i F3i
]
L′i =

[
0 0 0

]
, i = 1, 2, · · · , m (42)

L′i =


sin(ϕ1 − αi)

cos ϕ2
− cos ϕ2

cos(β− ϕ3)

cos(ϕ1 − αi)
− sin ϕ2
− sin ϕ2

sin(β + ϕ3)

r1i sin(ϕ1 − αi)
rl cos ϕ2 + b/2 sin ϕ2
−b/2 sin ϕ2 − rx cos ϕ2

r3i cos(β− ϕ3)

 (43)
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 (45) 

𝐹𝐹2𝑖𝑖2 =
𝐹𝐹1𝑖𝑖 cos(𝜑𝜑1 − 𝛼𝛼𝑖𝑖 − 𝜑𝜑2) + 𝐹𝐹3𝑖𝑖 sin(𝛽𝛽 − 𝜑𝜑3 + 𝜑𝜑2)
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The forces are thus derived as:

F3i = F1i
(rx + rl + b tan ϕ2 − 2r1i) tan ϕ2 sin(ϕ1 − αi) + (rx − rl) cos(ϕ1 − αi)

(rx + rl + b tan ϕ2 − 2r3i) tan ϕ2 cos(β− ϕ3) + (rx − rl) sin(β− ϕ3)
(44)

F1
2i =

F1i cos(ϕ1 − αi + ϕ2) + F3i sin(β− ϕ3 − ϕ2)

2 sin ϕ2 cos ϕ2
(45)

F2
2i =

F1i cos(ϕ1 − αi − ϕ2) + F3i sin(β− ϕ3 + ϕ2)

2 sin ϕ2 cos ϕ2
(46)

Similarly, let the denominator of Equation (44) to be greater than zero yields the other
constraints of the dimensional parameters:

β > ϕ3 (47)

ru

R
[tan ϕ2 + tan(β− ϕ3)] +

rl
R
[tan ϕ2 − tan(β− ϕ3)]− 2eθh/ tan β tan ϕ2 > 0 (48)

Equation (48) indicates that the radii of the outer and inner circles of the tooth carrier,
ru and rl, should satisfy the specific boundary condition to avoid self-locking of the tooth
during the return travel, which is notable in the dimensional synthesis. In other words, the
reset springs may need to be installed to help the tooth complete the return motion.
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6.2. Force Transmission Characteristics

On the premise that the teeth do not self-lock, the pulsation amplitude of total contact
force and the force transmission rate are investigated to improve the force performance of
the tooth.

6.2.1. Pulsation Amplitude of Total Contact Force

As analyzed in Section 5.1, the total contact force occurs as periodical pulsation due to
the alternation of the meshing teeth, and its amplitude δF is expressed as follows through
Equation (21):

δF = 1− (∑m
i=1 N3i|θ2 = 0)

(∑m
i=1 N3i|θ2 = ∆θ)

= 1− 1
e∆θ/ tan β

(49)

The variation in δF versus β and I is illustrated in Figure 17a based on Equation (49).
It can be observed that δF decreases with the increases in β and I, because the change in
curvature radius of the ring gear tooth profile becomes smaller. Additionally, β is preferably
more than 10◦ to ensure δF less than 10% for stable force of the conjugate tooth profile.
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6.2.2. Force Transmission Rate

To evaluate force transmission rate between one tooth and ring gear from the input to
the output, the non-dimensional index ηF is introduced throughout the rise travel, and it is
formulated according to Equations (30)–(32) with frictions ignored as follows:

ηF =

∫ θh
0

F1
2−F2

2
F1

dθ2

θh
=

∫ θh
0

cos(α+β)
sin β dθ2

θh
(50)

The variation in ηF versus r0/R and β is illustrated in Figure 17b. It shows that ηF
increases with the decrease in β, because of the increases in the meshing angle α and
effective output resultant force. In addition, ηF increases with the increase in r0/R when
β < 30◦, otherwise it is almost unaffected.

6.3. Selection of Dimensional Parameters

Based on the above analysis, the feasible ranges of the dimensional parameters are
further discussed.

6.3.1. Pitch Circle Radius Coefficient r0/R and Spiral Angle β

The contour maps of αmax, ηF, and δF versus r0/R and β are plotted in Figure 18 with
comprehensive consideration of Equations (41), (47), (49), and (50). Here, black solid and
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dotted lines represent different force transmission rates and maximum meshing angles,
and red dotted lines denote the pulsation amplitude.
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As can be seen from the figure, the ranges of r0/R and β are narrowed when ηF
increases and αmax decreases for meeting the requirement of higher force transmission rate
of the tooth and better force performance of the wave generator. Moreover, by comparing
Figure 18a with Figure 18b, the selectable ranges also become narrow as I decreases at the
same condition. It is worth noting that the consideration of δF can further help the selection
of β.

6.3.2. Radius Coefficients of the Outer and Inner Circles of the Tooth Carrier, ru/R and rl/R

After the determination of r0/R and β, the design of ru/R and rl/R is not only related
to self-locking avoidance, but also to the kinematic interference. Specifically, ru/R must
be less than 1, and rl/R ought to be more than the maximum lift of the wave generator
to reserve allowance for the pivoted segment. Therefore, the structural constraints are
expressed as:

r0

R
+ eθh/ tan β − 1 <

rl
R

<
ru

R
< 1 (51)

According to Equations (48) and (51), the variation in rl/R versus r0/R and β is
demonstrated in Figure 19. Herein, red solid lines, as the lower bounds, correspond to
contour curves of different values of rl/R; black solid lines, as the upper bounds, are plotted
through Equation (48).
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It can be seen from the figure that the range of rl/R becomes wider with the increase
in β, owing to the decreases in the maximum lift of the wave generator. In addition, by
comparing Figure 19a with Figure 19b, the range of rl/R is narrowed while I decreases. For
example, referring to Figure 19a, if r0/R and β are given as 0.54 and 30◦, the optional range
of rl/R is about 0.65~0.9 under the condition of I = 24.

7. Conclusions

This paper presents a static model of the novel transmission mechanism with loga-
rithmic spiral tooth profile, to analyze force characteristic of the conjugate tooth profile
with consideration of the multi-tooth elastic meshing effect. The conclusions are drawn
as follows:

(1) The tooth profiles of movable tooth and ring gear can be designed by two pieces of
curves taken from the same one logarithmic spiral. They are almost in full surface
contact under the working condition because their curvatures are very close, different
from the conventional involute or cycloidal tooth profiles creating a linear contact.
Thus, the novel drive can bear more loads and has higher rigidity than the conven-
tional ones, which can be applied in the fields with heavy load requirements, such as
machine tools, petroleum drilling platforms, industrial robots, etc.;

(2) The contact force between one tooth and ring gear is proportional to the curvature
radius of the contact point, which increases exponentially and monotonically corre-
sponding to the curvature radius of the logarithmic spiral tooth profile during the rise
travel, and the load distribution of the teeth is determined according to the ratio of
the curvature radius of their contact points;

(3) The pulsations of total contact force appear periodically at the alternation of the teeth
in the multi-tooth meshing condition, because the closer the tooth is to the tooth root
of the ring gear, the larger its load ratio is, and the pulsation amplitude is related to
the spiral angle, rise travel angle, and ring gear tooth number;

(4) There may be self-locking between the tooth and ring gear in a meshing period
because of the unreasonable parameter design, especially during the return travel;
therefore it is recommended to select feasible ranges of the dimensional parameters,
or equip the reset springs, to avoid the self-locking, and the comprehensive consid-
eration of the pulsation amplitude and force transmission rate can further help the
dimensional synthesis.

This paper only researches static modelling of the transmission mechanism under
ideal conditions, and mechanical characteristic analysis considering elastic surface contact,
lubrication conditions and manufacturing errors need to be further studied. Moreover, it
is noticed that there is a singular point at the midpoint of a meshing period, and relevant
modification research will be reported later.
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Nomenclature

z1, z2, and z3 the number of the wave generator lobe, movable teeth, and ring gear teeth
θh the rise travel angle
∆θ the phase difference
R the initial polar radius
β the spiral angle
eiθ the unit vector

r1, r2, and r3
the vector equations of wave generator cam profile, the tooth profile of
movable tooth and ring gear

O1-x1y1 the fixed coordinate system located at the rotation center of the wave generator
O2-x2y2 the follow-up coordinate system connected to the movable tooth.
θ the tooth profile parameter
φ the rotation angle of movable tooth
s the radial displacement of movable tooth
MO1O2 the coordinate transformation matrix from O2-x2y2 to O1-x1y1
n12 and v the common normal vector and relative velocity vector at the meshing point
r0 the pitch circle radius of the wave generator
n the normal wave generator profile
α the acute angle between n and v
I the speed ratio of the mechanism
M3 the torque applied to the ring gear
N3i and δi the contact force and elastic deformation between the i-th tooth and ring gear
∆τ the small rotation angle of the tooth carrier
r3i the distance from the contact point to the rotation center O
ρi the curvature radius of the ring gear tooth profile at the contact point
k the contact stiffness of the teeth and ring gear
Ki the load distribution factor
li the arm of contact force
Li the coefficient matrix
F1i and F3i the total reaction forces of the wave generator and ring gear to the teeth
F2 the total reaction forces of the tooth carrier to the teeth
Fki, Fri, and Fci the inertial forces acting on the centroid
ϕ1, ϕ2, and ϕ3 the friction angles
h and b the full tooth height and width of the tooth
r1i and αi the radius and meshing angle at the hinge point
ru and rl the radii of the outer and inner circles of the tooth carrier
M1 and M2 the input torque and output torque

Fx and Fy
the components of force of the frame on the wave generator along x and y
directions

φi the angle between the centerline of the i-th tooth and x-axis
δF the pulsation amplitude of total contact force
αc the critical meshing angle
[αc] the allowable meshing angle
αmax the maximum meshing angle
r0/R the pitch circle radius coefficient
ηF the force transmission rate
ru/R and rl/R the radius coefficients of the outer and inner circles of the tooth carrier
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