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Abstract—This paper focuses on static output feedback control SPSs. Following the trend, many effective tools have been
for fuzzy Markovian switching singularly perturbed systems proposed to deal with nonlinear SPSs, for instance, the fuzzy
(FMSSPSs) with deception attacks and asynchronous quantized model method, Euler approach, and graph model technique,

measurement output. Different from the previous work, both . .
logarithmic quantizer and static output feedback controller et al. Especially, the Takagi-Sugeno (T-S) fuzzy model has

are dependent on the operation system, by means of hiddenP€€en proved to be very effective in approximating complex
Markov models, their modes run asynchronously with that of nonlinear systems, which are consisted of a series of local
FMSSPSs. Additionally, the deception attacks are guided by a |inear subsystems associated with membership functions [5]-
Bernoulli variable, and nonlinear ch_aracterlstlcs are modeled [7]. The T-S fuzzy model fills the gap between linear models
by the T-S fuzzy model. By resorting to a mode-dependent . . .
Lyapunov functional, several criteria are acquired and strictly and nonlinear ones, _and the derived res_ults of linear SPSs can
(2,.7,%) — y-dissipative of FMSSPSs can be ensured. Finally, be extended to nonlinear SPSs. Benefit from these methods,
a DC motor model is expressed to illustrate the effectiveness of considerable valuable results on nonlinear SPSs have been
the asynchronous control scheme. established [8]-[10]. In [8]-[10], the states are assumed to be
Index Terms—Markovian switching singularly perturbed sys- fU”y observed in the studied nonlinear SPSs. Nevertheless, as
tems; Quantized control; T-S Fuzzy-based; Deception attacks. implied in [11], the aforementioned assumption is infeasible
in some physical applications. To our knowledge, the static
output feedback control (SOFC) issue for nonlinear SPSs is
quite few, which motivates the present work.

) ) . Since the concept of Markov switching systems (MSSs)
In reality, many dynamic systems are always characterizgg o proposed by Krasovskii and Lidskii [12], many physical

by multiple-time scales, which have been well recognizedsiems whose structures or parameters are undergoing with
as singularly perturbed systems (SPSs). Associated withzqom abrupt changes can be modeled effectively, and the
small parasitic parameter (SPP), the states of SPSs cangR&ying attention of scholars in many research fields have
separated into two parts, namely, fast states and slow ongSen drawn. Because of the advantage in modeling compre-
Owing to its strong ability in dividing states, SPSs have begunsjve dynamic systems, many issues have been addressed
received increasing attention. So_far, many fruitful re§ults hays: Msss including stabilization [13]-[15], estimation [16],
been repprtgd for SPSs including stability analysis, robbﬁl{ering [17], robust control [18], [19], and sliding model
control, filtering, and so on [1]-[4]. Among them, ma&joryqnirl [20]. When Markov switching parameters are involved
issues are concerned with linear SPSs. When SPSs posgesspgs namely, Markov switching SPSs (MSSPSs). Very
nonlinear characteristics, it is natural to cast nonlinear i”F@centIy for MSSPSs, various effective methodologies have
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controller and the original system. For instance, in [32§ thwherez,(k) € R}, x2(k) € RY, u(k) € R}, w(k) € R,
HMM method has been adopted in constructing asynchronay#) € R}, 2(k) € R] respectively symbolize the slow
reduced-order model. As stated in [33], the quantization effestaite, fast state, control input, exogenous disturbance which
may result in instability, which is proposed in reducing theelongings td: [0, c0), measured output and controlled output.
number of channel signals and saving resources. Howeverc {1,2,---,r} andr indicates the number of IF-THEN
major of the reported quantizers are independent of operatiotes, ¢, € {@1r, Y25, - -, s} represent the premise vari-
systems [34]. Some useful information ignored may lead #@bles,M,, are the fuzzy sets.means a small parasitic param-
the conservatism of quantizer. In this regard, it is natural &ter (SPP)4; is a stochastic variable (SV) and regarded as a
consider the mode-dependent quantization effect in studyidigcrete Markov chain (DMC) withl, € Z = {1,2,--- ,I}.
MSSPSs, particularly the system switching information is ndthe evolution of switching transition probability (STP). of
completely accessible. plant state is governed Wy, = [m;;]:

In the networked control systems (NCSs), the signals are P 1 = j | O = i} = mi;
transmitted through a wireless network. The devices including Y
unmanned aerial vehicles and autonomous ones are underggred, j € Z, and;; € [0, 1].
with corrupts by network-induced attacks, such as denial-ofVi € Z, it yields that} . m; = 1. For J; =
service-attacks [35], [36], cyber attacks [37] and deceptidh € Z), one denotesA(Jy,p) = A, where A(Jy, p)
attacks (DAs) [38], [39]. Note that DAs are recognized as tHel"” (Vx; p), B*(Vk,p), C° (O, p), D*(Ok, p), F* (V1. p)}

Il .

primary source of attacks because of their severe threats to thé: s = 1,2) are known matrices subject to proper
original plant. DAs consist of false signals and wrong contréimensions. . S _
measures, which are injected in a random way. In view of thelLet z(k) = [z, (k) ;5 (k)]". Via the fuzzy blending

security control problem, DAs cannot be ignored, and pAlgchnique, the overall FMSSPS can be inferred as below:
have attracted growing attention in NCSs [40]-[42]. However, T
DAs have not been extended to FMSSPSs, to deal with the ~ (k+1) =) hy(pn)(Aip Ecx(k) + Biyu(k)

existence of random DAs in FMSSPSs by asynchronous SOFC p=1
law is also motivates this study. + Dipw(k))
Inspired by the aforementioned discussion, the principal r )
purpose of this work is to tackle the issue of SOFC for T- y(k) = hy(pr)Cip Ec(k)
S FMSSPSs with DAs. The main contributions of this study p=1
are summarized as follows: :
(1) A more general scheme is developed, where the partial z(k) :Z hp (o) Fip Ecx (k)

information of FMSSPS is available in both quantizer and con- p=t

troller. Benefit from HMM, as a first attempt, an asynchronolénere

SOFC law is proposed for FMSSPS subject to asynchronous B — L, 0 } A — { A};} A}E ]
quantized measurement output. L0 ey, | AL AT
(2) The randomly occurring DAs is first considered for [ B! e
FMSSPS, and a stochastic variable that obeying Bernoulli By = lep } » Cip =[Gy, O],
distribution is applied to express the incidence rate. - Dllp Il
(3) The strictly (2,.7,%) — ~-dissipative-based method D, = Dgp ] , Fip = [ F‘g’ ] .
in SOFC issue is more general, which covers passit#ity,, L Zip ip
passive and synchronous as special cases. The normalized fuzzy basis functionsi,(px) =

The notations utilized in the study are standard and similas(9x)/ >-,—1 9p(9k): Mpq(91e) being grade of membership
to that in [28]. Furthermore@{-} means the expectationof prq in Myq, andhy, (k) = 15— Mpq(prq). Then, we can
operator;sym(Z’) symbolizesZ + 2 7. diag(-} stands for derive thath,(px) > 0, >> _, hp(px) = 1. Throughout the

the diagonal matrix. paper, we denoting
Il. PRELIMINARIES AND SYSTEM DESCRIPTION Api = Zh,,(pk)Ai,,, By = th(m)Bip,
A. Fuzzy Markov Switching Singularly Perturbed Systems p=1 p=1
Fixing a probability space(Q2, F,P), and considering Chi = h Cip. Dps = h D;
MSSPSs approximated by the fuzzy model as below: " pz::l »(0r)Cip, D ,; p(9%) Dip,
Plant rulep: IF o1y, is My1, -+, psr IS Mpy, THEN ,
w1(k + 1) =AY (O, p)z1 (k) + €A (Vg p)aa (k) Fii =Y hy(91) Fip-
1 1 p=1
+ B (O, p)ulk) + D" (0, p)w (k) Accordingly, the T-S fuzzy MSSPS (2) can be reconstructed
w2 (k 4 1) =A* (O, p)a1 (k) + eA®* (I, p)xa (k) 1 s
+ B2(Oy, p)u(k) + D* (s, p)w(k) z(k+1) =Ap;Ecx(k) + Bpiu(k) + Dpiw(k)
y(k) =C* (Ok, p)a1 (k) + €C*(Iy, p)za(k), y(k) =ChiE.x(k) ©)
(k) =F*(Ok, p)z1 (k) + eF> (O, p)aa (k) 2(k) =Fi Ex(k)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2021.3052104, IEEE
Transactions on Fuzzy Systems

B. Deception Attacks Defining A (6, k) = diag{ A1 (O, k), -+, DNe(Ok, k) }, it s
In the networked systems, DAs are taking into considerd€ar that
tion, which may lead to reconstruct the transmitted information Q0. ya(k)) = (I + A0, k))ya (k). @)

and result in unstable and uncontrollable of FMSSPSs. Note

that when malicious attack signals are injected, the measure®ifferent from(k), the observed statd, is determined by
outputy (k) is eliminated and replaced by a nonlinear functioanother DMC, which dependent on the original system state
(k). In short, the model of DAs is introduced as below: J; via a conditional probability matrix (CPMJy = [y

Ya(k) = y(k) + a(k)(—y(k) + £(k)), (4) Pr{br =t |k =i} = xit
wherea (k) means a Bernoulli SV and governs by the Bernouti € M,t € T = {1,2,--- , T}, xit € [0,1] and}_, .7 xit =
li distribution, that is, 1

Accordingly, fordy = i, 0, = t, termsQ(0x, y.(k)), and
A0y, k) are yield toQ¢(yq(k)), and A (k), respectively.

¢{a(k)} = Pa(k) =1}
¢{1 — a(k)} = P{a(k) =0}
wherea € [0, 1. D. Fuzzy State Output Feedback Controller
Remark 1 Note that the DAs may affect the system per- |n this work, an asynchronous fuzzy SOFC is given as
formance, and the random feature of DAs is inferred in (4ellows:
Specifically, whem(k) = 1, (4) is decreased ag, (k) = £(k), Controller Rulep: IF @1, is My1, -+, i is M,;, THEN
which indicates that no measured output (MO) signals trans-
mitted and DAs launched successfully. Wheh) = 0, (4) is u(k) = K (nk, p)Qe(ya (k)), (8)
reduced toy,(k) = y(k), which implies that no DAs occur
and MO signals are transmitted successfully.

«
1—q,

where K (p, ;) stands for the controller gains to be deter-
mined. Different fromd(k) andé(k), the controller modey,

is another DMC and only dependent on matjevia a CPM

C. Quantized Measurement Output s = [1s]:

Owing to the restriction of the resources, the signals can-
not be completely transmitted to controller. Accordingly, the
measurement output supposed to be quantized by logarith< Z,s € S = {1,2,---, S}, 75 € [0, 1] and)_ s 76 = 1.
mic quantizer before being conveyed. Following this trend, Hence, forn; = s, the control law (8) is recognized as
a mode-dependent static logarithmic quantizer (MDSLQ) is

Priny = s | Op =i} = Tis

introduced: u(k) = KnsQt(ya(k)), s € S, 9)
Q(Gkv ya(k)) :[Ql(okv yla(k))v QQ (9k7 y2a(k)>a (5) with Khs = Z;:l hq(pk)qu.
(O, yga(R))] T Ford, = i,nx = 5,0, = t, substituting (4) and (7) into (9),

the control lawu (k) can be improved as below:
where Q;(0k, yia(k)), I € {1,2,---,¢9} symbolizes the

Ith component of Q(0y,ya(k)) and — 0k, yia(k)) = u(k) =(1 = a(k))Kns(I + A4(k))Chi Ec (k) (10)
—Q(Ok, —y1a(k)). + a(k)Kns(I + Ai(k))E(E).
The outputs of MDSLQ is identified by various of quanti-

) Remark 2 It can be seen from (10) that, both controller
zation levels as below:

moded(k) and quantizer modg(k) are different from system

R0, = {ivf”(@k) : ”l(j) (6x) = pi (Bx)vo, mode(k), which means controller and quantizer run asyn-
chronously with original FMSSPS. By hidden Markov model
j==+1,+£2,---}U{0}, and conditional probabilitiesf(k) and 7(k) are dependent
where vo > 0 and p(6;) € (0,1). The quantizer on ¥(k), which indice_ltes asynchronom_Js mode informa_tion of
10k, y1a(k)) is defined as controller and quantizer can be achieved by observing the
original FMSSPS modes. In addition, the asynchronous levels
() v (0x) v (0x) are revealed by conditional probabilities.

v, < ya(k) < , - .
o Traon < k) S 155, Remark 3 By absorbing the asynchronous mode informa-

Ok, yia(k)) = =
2B 1ak)) (fgl“((@k) B 0’(k)) (k) <0 tion, the general control law (CL) (10) can be divided into
1Pk ~Y1alit)), Yla following special cases: Wheh= S = 7 andr;; = xi; = 1,
wherea; (6;) = L—rzgg:g the CL (10) is deduced to a mode-dependent synchronous
With sector bounded technique [32}, € {1,2, - , g}, the (MDS) one. WherZ = §, 7;; = 1, 7 =1, or I = T,
quantized measurement output is described by: xii = 1, § =1, it decreased to a partly MDS one. When
S =1 of T = 1, it diminished to partly mode-dependent

QO y1a(k)) = (I + 2y(0g, k) yia (k). (6) asynchronous one [23], [24]. Wheh= S = 1, it is deduced
to mode-independent one [8], [10]. In summary, the addressed
where| A (0k, k) |< G (Ok). CL (10) is more general.
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Remark 4 Notably, the HMM is deployed in derivations to Lemma 2.1( [3]) Given a scalat > 0 and matrices#; (t =
describe the asynchronous phenomena is a reasonable wiay, 3), if (1) 24 > 0; (2) #5 < 0; (3) 274 + e+ < 0
However, it may bring some conservatism. Indeed, there hsld simultaneously, such that
another technique, namely, the nonstationary control strategy. ) ~
This technique may reduce the conservatism in some sense; A + ey + A3 <0, Ve e [0,
hoyvever, the computational complexity_will be increaseq. TQLemma 2.2( [44]) If there exist a scalar and matrice,
build a trgdeof‘f between the conservatism and complexﬂyg ¢, and® satisfying
an open issue.

Inspired by the above discussion, letting(k) = A Bteel
[x] (k) exq ()], and substituting (10) into (3), the closed-loop *  —esym(D)
FMSSPS can be achieved in (11):

5(k + ].) =F. (A}” —+ (1 — Q)BhiFhSchi)(S(k)
+ aEeBhiFhstg(k) + Eechiw(k)

<0,

then following inequality holds

A+BD e+ BT <.

+ (a(k) — a)(EeBpiK nst€ (k) (11) Lemma 2.3( [31]) For given matricesk, 2), and 3 with
_ T
— EBniKpstChid(k)), X=X, then
2(k) =Fnid(k), X+30,()Y + 9 A (R)3T <0,
whereK o = Kns(I + AN (k) with Aj(k) = A7 A (k) holds, if Aj(k) satisfyingA;T (k)Aj(k) < I such thatt > 0
and A; = diag{Cie, Cats -+, Cot }- and
Defining X4+R7133T Ry TY <o.

SO (k) =(Ani + (1 — @) BriK nstCii )3 (k)

ist - I
+ aBiKpst&(k) + Dpiw(k),
2(2) (k) :Bhi?hstﬁ(k:) - BhiFhstChié(k)'

15t

. M AIN RESULTS

In the following section, some criteria for SS and
Then, FMSSPS (11) can be rewritten as follows: (2,7, %) — ~-dissipative are established.

Theorem 3.1Given scalare > 0 anda € [0, 1], the closed-
(12) loop FMSSPS (11) i$2, ., %) — ~-dissipative, ifVi € Z,
z(k) =Fpnid(k). se€ S, teT,andp € {1,2,---,r}, there exists matrices
X; >0, Uist > 0, such that

3(k+1) =EZL) (k) + (alk) — ) EEE) (k)

15t 15t

Remark 4 In this work, the following major difficulties

are encountered: (1) how to deal with the DAs with attack —X: 7TuxaXi TuxeXi - /TxaXi
level a; (2) how to separatek,, from aBy,; K. Ch; With * —Qin 0 0
asynchronous mode information; (3) how to design controllef * “Q@nz 0 <0, (15)
with attack effect and small parasitic parameter. : : : :
In what follows, the essential assumption, definition an * * * * —QisT
lemmas are applied to proceed further.
Assumption 1( [42]) To restraint the DAs, the nonlinear Distpp < 0, (16)
function £(k) satisfying the following condition:
I €R) I< US(K)) I, Listpg + Listgp < 0, (P < ), (17)
whereU is a constant matrix. where
Definition 2.1( [32]) The closed-loop FMSSPS (11) is [ Oustpg Yistpg
stochastically stable (SS) wher{k) = 0, such that Listpg = % s } J
oo [ Zity VEWT  p=@T T )T
¢ {Z ” (5(k’) ||2|60,190} < 0. (13) >:tp y AZ/Stpq y 6stpq 61) 0
k=0 Ojistpg = * * X 0 0 ;
Definition 2.2( [32]) Under zero initial condition, the * * * -I 0
closed-loop FMSSPS (11) is strictly?, ., # ) —~-dissipative B * * x =l

if for any w(k), such that
y w(k) Tivipg = [gfj;q mHDT GO NzHﬁf))T} 7

ispq

N N
@{Z /(k)} > VZWT(kﬁw(k) (14) L :diag{—Nll,—NJ,—NgI,—NgI},

k=0 k=0 Egt)pq =[(Aip + (1 — a)Bip KsqCip) aBipKsq Dipl,
where 22), = [-aBy K Cip @Bk, 0],
I (k) =2"(k)2z(k) + 22" (k)L w(k) + w' (k) Bw(k). X =diag{— X1, —Xo, -, —Xu}, @ = a(l —a),
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Yi=lmal mel - /miad], By Lemma 2.3, (19) can be recognized as below:
Vip =[2_Fj, 0 0], W= [$U 0 0],
_(EeQistEe)_l 0 Fz—;z:y Lét + Z gZEi)A/ Z(LZ)
Zistp = * -yl 0 ) (20)
* x =B +1
) + ZHO(”TA/T gZE?T
Giapg =000 (1= a)(ViBipKogNr) "
—a(ViBipKsqoe) " ]T Applying Schur complement to (20), we can obtain that
(2) _ _
Gispg =[00 0 aiBipKegls0) 2, VIS WENT wilowT
T * X 0 0 0
(yiBiszth) } ;zist = * * X 0 0 <0, (21)
HY =[Cp 0 - 0, HD =[0I 0 --- 0], * * * I 0
* * * * —pl
-2=2"9_.
where
Proof. Combining with (16) and (17), it yields that ggt) = [(Ani + (1 = ) BpiK psiChi) aBuiKnst Chil ,
=(2) — P I —n I
U Sist — [_thiKhstChi aBpi K pst 0] .
Thist = h h Tis . . .
st z:lz:l p()hq (1)L istrg Constructing the following Lyapunov function:
pr=1Lgq
(18) V (K, 0, 0%) = 67 (k) Py, 6 (k). (22)
_Zh @k zatpp"'z Z h pk ) i
p=1q=p+1 Let
X (Fistpq + F'Lstqp) <0, AV(/C) ZV(k' +1, 5k+1719k+1 =7 | O, U = Z)
—V(k, 0, 9 = 1).
where

It is referred from (12) and (22) that

[ e, Y9
Dy = | Ot Tt |, e{AV()
- C g Ty m T et gy =&{6"(k+ 1)P;s(k +1) — 0" (k)Pio(k)}
15 t—hist —hist %
N . X 0 00 @{Zznsxﬁf(kﬂ)%a(m1)
hist — * * X OI 8 ’ seSteT
C . e e — 5T (R)PAK) 2
hist = ghzs) R thl)T QZS NQ,HZEQ)T ) {ZZTZL"X”E%t k)Ee P E Efiz(k)
=20 —[(Api + (1 — ) BniKnsChi) aBpiKns D iy
zz; [( hi + ( Oé) hidlhs hz) QDpi A ps hz] , + Z Z Tstzta2E£sz( )E P,E. Egt) (k)
Ehist = [_thiKhsChi aBpiKps O] ; seSteT
Vis =2 Fn; 0.0, 5T (k)Pi3(k)},
) —(EQixE)™" 0  FLY where 2 = 7. v i Pj.
Zhist = * —yI 0 ’ Defining P, = (E.X;E.)~' and 2; = > .. mi; X
* x =X+ J J
(23) can be reconstructed as
g,(f) (000 (1—a)(ViBriKnsLe) " 07 o
—a(ViBniKns ) ]T, AV {;;Tzsxnz“’t R) 218151 (k)
o(2) °
Gii2 =[000 aQiBuKrnt)T + Y nowrs @ m2isZ w4
a(yiBhiKhsAt) 0 O} ; ai&' teT N
HeW = [Chi 0 - 0] =6 (k) (EXiEe) o(k)}
Recalling Assumption 1 with conditioft £(k) ||< Ud(k),
Utilizing Schur complement (18), it is clear that one can get
o+ SN €12 () < 09 { T3 r 5
(19) Sit J (k) = 6T () (B X 8(k) 2
X2 [%2) - e\ lve
+ Z N H DT <, '

+ 8T (KU TUS(K) — ¢ (k)E(k),
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where

-
p(k)=[0T(k) ¢ (k) w' (k)]
Utilizing Schur complement to (15), one derives that

infl + Z Z TiintQ;s% < 0. (26)
SESLET
Substituting (26) into (25), it is derived that
¢{AV(E)}
> _ T
<) S0 maxie® { S E 2w (27)
seSteT m=1

+diag{ —(BQist Ee) ™' + U U, —I,0}} (k)
Whenw(k) = 0, recalling (21), it can be achieved that

E{AV(k)}
2
m)/T =(m)r
- mln ZZTL‘SX“: - Z el; —ist
(sES teT < m=1 (28)

+diag{—(EQistEe) ™t + U U, —¢I})) 6" (k)s(k)
< —pus" (k)s(k) <0,
where
B = [(Ani + (1 — a)BpiKnstChi) aBniKpal,
2 = [—aBpi K st Chi thiFhst]

. m)/T =(m
1 :mf{ min < Z ZTZSXLt Z Zst)’ %:Z(.St)/
s€S tGT

+diag{—(E.X;E) " + wUTU, —yI})}.

Summing up both sides of (31) from 0 19, one has

V(N +1,0n41,9Nn+41) — V(0,80,70) Z J(k
k=0
N (32)
+9Y w (kw(k) <0
k=0

Under zero initial condition, namely/ (0, do, o) = 0, it
can be seen from (32) that

S A0 2 3w

k=0 k=0
N
>y w' (k)w(k)
k=0

By Definition 2.2, the strictly(2,., #) — ~-dissipative
of closed-loop FMSSPS (11) can be guaranteed. The proof is
completed. |

)+ V(N +1,6n41,9n41)
(33)

Remark 5 In Theorem 3.1, the established conditions are
dependent on SPE in which the term(E.Q;s E.)~* cannot
be solved directly. Especially, when< 1, the criteria in
Theorem 3.1 are called ill-conditioned results. To tackle such
an issue, Theorem 3.2 is inferred.

Theorem 3.2Given scalare > 0 anda € [0, 1], the closed-
loop FMSSPS (11) i$2,.,%) — ~-dissipative, ifVi € Z,
se S, teT,andp € {1,2,---,r}, there exists matrices
X; >0, U;ss > 0, and matricesY;,, such that

From k = 0 to oo, summing up the both sides of (28), we

obtain

{Z oK) |l |50,190} <%(L’3{V(07$0ﬂ90)}

— &{V(00, Zoo, Uo0) })

<00.

(29)

By Definition 2.1, it can be concluded that the closed-loogistpq

FMSSPS (11) is SS.
Next, for the supply rate# (k)
to achieve that

C{AV (k) —

.

, recalling (25), it is easily

=(m)T

J (k) +yw T (k)w(k)}
S s { DE

SsEStET m=1
XEi + Ziiae ) | o(k) = 8T (B)F 2Fnio (k)

B)D > misxatOfisep (),

seESteT

2;
(30)

=o' (
where Oy, Yt Egz)T%EEZtL) + Zhist
diag{ F}); 2F};,0,0}.
By inequality (21), we ge®/}.., < 0. Together with (30),
it is clear that

E{AV (k) —

I (k) +yw T (k)w(k)} <0 (31)

T7(n)
I, <0, (34)
Egt)pq + Fggt)qp < 0’ (p < Q) (35)
where
= (n = n) =(2)
~(n) 61('52 Tistpq o) Zz(st?u eistpq
Y = Pq , O,y )
istpp % L istpg — y =)
a (DT ~(2) )T
[gzqu Rty gisznq Hip } )
EeQistEe - Sym(@st) 0 %IFZ—pry
Z0) = % I 0 ,
| * * % +~I
N [ TiQiseTyi —sym(Py) 0 [ F S
5 - : 0"
| * —Z + 1
0" —diag{x, X, —1, I},
=2 —(1)T _](2 T
eistpq - [ 1 —istpq —istpq szstp Wst } )
H) =[Cip P 0 0,
"ﬁgq [(Aip + (1 — a)Bip K5qCip) st aBipKsq Dip) s
(2
{gt;q [—aBiyKyCipPsr aBipKay 0],

zstp [Q F‘ngst 0 0] Wgt = W)U@St 0 0]7
E- =diag{I,,,el,, }, Z; = diag{I,,,0}.
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=(1)

Proof. Applying Lemma 2.1 to (35), Eistpg = [(AipZst + (1 — @) Bip Ms4Cip) aBipMsq Diy),
2 ~ =02 __=p =B
ZGB—l [ efgqu 0 :| + [ ®§§2pq Tist;l)q :| <0 (36) “istpq _[ an%quw Oész%sq O]’
’ ~~ ~(1 ()T A(2 77 (2)T
=1 * 0 * Et TiStPCI = [gi(st)pq NlHEp) gi(st)pq NQHEI)) ?
where A1
50 g Gistpa = [000 Vi(1 = ) (Bipetlg )T
oy © eistpq — T
®istpq - Ze(l) ) (l - 17 2) T
ist 7yia(Bip%qut) 0---0 )
o1y g . ——
Zist :dlag{IgQistIg, 0, 0}, Ty = dlag{O, InQ}, 6
(2
Zfs(tQ) :diag{IlQistIg +I2QistII; 0, 0} gi(st)pq = [O 00 y’ia(B’il)%qut)T
Since thatE.Q;s: E. > 0, it is well known that T
v . T DY
(EeQistEe - %I)(EeQistEe)_l (37) yza(sz%qut) u
x (BEQiwBe —#])T > 0. ’

Thus, one has Additionally, the controller gains can be achieved:

_g/’s;r(EeQistEe)ilg/st S EeQistEe - @5? - g/st- (38) qu = %sqe/i/st;l- (42)

Substituting (38) into (36), it yields

0
[ Oistpq sztpq } <0, (39) IV. NUMERICAL EXAMPLES
* t In this section, two simulation examples are exhibited to
where express the effectiveness of the established results.
=(1) =2
@fstpq = [ © ®il§tpq ,
o Ziayp A. Example 4.1
T — T T

2t l — Yt (EEQistf) & ?N Vi Ig@y ] Consider the FMSSPS (1) with the following parameters:

istp -

* * A+l r—0.14 0.79 —0.03 | —0.55 —1.03

Pre-multiplying diadZ,---,1,%,;",I,---I} and post- [ A | B ] 029 -066 089 | 040 -—0.75

_— N —’7 =| 016 08 —050]-004 029 |,
S 2M 12 6 Cn ] —134 —077 —123
multiplying its transpose to (39), one derives that (39) | 055 018  0.26
guarantees (16) and (17) hold. The proof is completedll [ DL 1 [ -019 034 0.28
. Fii |~ | 026 003 —0.85 ] ’

Theorem 3.3Given scalare > 0 anda € [0, 1], the closed- it 041 —047 0419 | 164 9011
loop FMSSPS (11) i$2,.7,%) — ~-dissipative, ifVi € Z, ) 043 —197 078 | 197 14
s€S,teT,andp € {1,2,---,r}, there exists matrices [ Az | Biz | _ | (97 _1m3 018 | —050 0.4 :
Xi >0, Ui > 0, and matricesYs;, .#,, and. 4,4, such that Ci2 _ 0.55 0 0.54

A g (40) | —1.26 —1.78 0.21
istpp ’ [ D/, | B [ —1.55 —0.48 0.54
= (n) = (n) Fis | | 0.57 0.32 —-0.19 |’
Vistpg  Listgp <0 4D © 7 034 013 027|020 —1.8
where A By 0.07 1.85 —1.73 | 0.17 —0.32
Q) e e [ 2721 =] 049 —0.67 038 | 011 —0.17 |,
A(n) 15tpq 15tpq 1stpq C'21 ] 1.04 —1.97 —-0.65
Disipg = * —e1sym(Ayy) 0 ol | —051 020 0.4
* * —e2SyM( s . r
- 28ym(-4sq) DI ] _[-115 -103 017 ]
o Ottty Yistpg } Fy |~ | —013 080 —0.65
el * T 039 —0.76 —0.18 | —0.11 —0.91
=(n) 2) 1 —1.42 122 027 | —026 0.68
(:)(nt) Zistp G)_Zstpq L (=1,2) [ A | Bo | _ | 097 050 —028| 0.84 —025 ,
istpa « © C2o ] 005 003 —110 ‘
r —0.12  0.50 —-0.30
A2 _ |y 2T 1, Z(2)T T T B} -
Oistpg = |V i istpg Y1 istpg Vistp Wat } ’ [ D, ] [ 175 022 —047 ]
Rispg = [(CipPat = H5qCip) 00 Vig1 (1 = a) (BipMag) Foo || 7049 =137 =040 ]
— Yier@(BipMsg)" 00 (Ay— NogN) 000] T, The STP matrix of original FMSSPS (2) is given by:
2
Ry = [0 (I = Aey) 0 Vie2o(Bipteg)” r_[o01 09
Viea@(BipMsq)T 0000 (A — HegNy) 0], 7108 02|
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The CPMT'; of controller and the CPM'3 of quantizer are

chosen as
r,_[055 0457 [ 07 03 T T T T T =
271 04 06 2727045 055 |°

For U = [02 03 05], v = 1, &k) =

col{tanh(0.5z1 (k), tanh(0.522(k)), tanh(0.523(k))}.  The
quantized density parametes§l) = 0.5485, p(2) = 0.7391

and p(3) = 0.6667. By solving the inequalities in Theorem
3.3, the optimal dissipative performance (ODPJs revealed

in Table I. From Table |, it can be observed that, the
maximum value of ODP~y is decreasing along withy
increases. Meanwhile, the relationship between the maximum
value of SPPe and « is shown in Table Il. It can be seen
from Table Il that, the maximum value of SRRs decreasing

I I I I I I I
6 8 10 12 14 16 18 20

when « increases. Therefore, one concludes from Tables | Time (9

and Il that, the DAs affects the performance and flexible of

target plant Fig. 1. State responses of the closed-loop FMSSR®k) 100 realizations)
TABLE |

ODP~ FOR DIFFERENT«x

a 0.1 05 0.9
y 5.3498 5.2679 5.1235 02 —
0.15
TABLE ||
MAXIMUM € OF THE UPPER BOUNDED OFSPPe FOR DIFFERENT«x
0.1r
o 0.1 0.5 0.9
G 0.3642 0.3353 0.3129
0.05r
Choosingy = 2 ande = 0.1, by Theorem 2.3, the controller ol
gains are gained:
0.1126  —0.0057 | 0.0252  —0.080 N
0.0079 0.0302 o 2 4 6 8 10 12 14 16 18 20

Time (k)

Ki |Kip ] | —0.1431  0.0198
= |7 0.1017 —0.0064‘0.0153 —0.0956

—0.1486  0.0239 | 0.0003  0.0162
. . o Fig. 2. State responses of the closed-loop FMSSR®k) 100 realizations)
Under the aforementioned controller gains and initial con-
dition g = [-0.4 0.2 0.1]T, Figs. 1, 2 and 3 portray,
respectively, the state responses of the closed-loop FMSSPS.
By these figures, one observe all the curves tend to be
convergent, which indicates the FMSSPS is SS.

Ko | Koo

0.1

=0

B. Example 4.2

0.08

In the following subsection, a modified DC motor model
(DCMM) [8], [22] is borrowed to illustrate the effectiveness 0.06
of the developed results. Associated with equivalent circuit,
the dynamic equation of DCMM is depicted as: 0.04"
du(t
3 _ o) + €, 2,070, (1 = 1,2)
dt
as(t) “3)
ST = - €r‘£1t)¢(t)v(t) - mv(t) + SU(t) or W:
where ool Lo

I I I I I I I
2 4 6 8 10 12 14 16 18 20

v(t) : error of angular velocities Time (k)

o(t) : error of values

%(t) - error of input voltages Fig. 3. State responses of the closed-loop FMSSR$K) 100 realizations)
J: : moment of inertia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2021.3052104, IEEE
Transactions on Fuzzy Systems

¢ : viscous friction coefficient Case |: Dissipative ControlSetting2 = —1, .7 = —1,

¢, : torque/back emf invariable Z% = 4 andz = 0.5241. By Theorem 2.3, one derives
£ : the inductance K1 =0.3191, Ki» =0.1653,
£, : the winding inductance Koy = 0.1558; Koo = 0.1877.

9 : the resistance Case Il: H,, Control. Setting 2 = —1, .%¥ = 0, Z =

The parameterg; (I = 1,2), ¢, &,, £, andR are, respec- ~% 4+~ and? = 0.470. By Theorem 2.3, one derives

tIV9|y, Chosen asl == 4X 1073Kg'm2, 31 == 4X 1072Kg~[7n2, Kll — 028077 K12 — 02366,
¢ = 0.08N -m/rad/s, €& = 1N -m/A, £, =8 x 1073H,
andR — 50. Kgl = 01193, K22 = —0.2134.

Letting z1(t) = wv(t), x2(t) = o(t), u(t) = B(t). Case llI: Passive ControlSetting2 =0, . =1, #Z = 2y
Discretizing the continuous variables of (43) and utilizing andz = 0.1. By Theorem 2.3, one derives
zero-order, DCMM (43) can be reformulated as below: K1y = 01351, Kyp = 0.0439,

[ i1 (t) ] :{ —C/3 .y, Aima(t) ] [ 28 ] ” Ko1 = 0.1052; Koo = —0.1168.

€t (t) — €, Lyx2(t) -R iy S
Tt Additionally, to reveal the relationship between the SPP
+10 1] u() and Bernouli SVq, in light of other parameters set in Case
ande = £ is treated as a SPP. I, let o varies between 0.1 and 0.9 with step 0.2, a group of
Similar to [22], the membership functions are employed as;,.x can be acquired, which displayed in Table IlI.
oo Sz, =St aa(t) TABLE Il
L= Ty — Iy 2= Sy — 7 MAXIMUM € OF THE UPPER BOUND OF FOR DIFFERENT
wheres(t) € [S1, 3ol o 01 03 05 07 09
With sampling timeT’ = 5 x 1025, DCMM (44) can be ¢ 06429 0.6219 05797 0.5398 0.5216
discretized into:
2
5(k+1) :th(pk)(AipEéa:(k)+Bz-pu(k)+Dipw(k)), From Table I, the trend of the SPP and « can be

easily achieved: the higher probability of DA is, the smaller
upper bound of SPP is. One can conclude that the random
i feature of DAs plays an important role in affecting the system
Ay = 0.3549 —2.2023 ] ,Bi; = [0.1837 0.1957]1 performance, which cannot be neglected in designing the

p=1
where

| 0.0088 —0.0547 SOFEC.
[ 0.9017 —0.5428 B - With the initial conditionzy = [0.6 — 0.1]7, and noise
Aoy = | 00217 —0.0131 ] , Ba1 =[—0.0276 0.1994] ', signal

0.3549  2.2023

Ayg = ] By = [0.1837 0.1957) T, w(k) = { 0.2 sin (10k) € [1, 10]

| —0.0088 —0.0547 0, otherwise
Ayy = [ 0.9017  0.5428 ] . Boo = [0.0276 0.1994] Accordingly, by applying the fuzzy-based asynchronous
| —0.0217  —-0.0131 SOFC law subject to aforementioned gain parameters, the
Dy =[01]", (i,p=1,2), E. = diag{1,¢}. simulation responses of closed-loop FMSSPS with dissipative

erformance are provided in Fig. 4 and Fig. 5, respectively.
rom Figs. 4-5, we can conclude that the acquired results and
approaches are efficient.

The STP matrix of original FMSSPS (2) with two modeg
is characterized aB;:

. _[ 03 0.7 ]
1 0.55 045 |- V. CONCLUSION

and ¢(k) = col{tanh(0.15z1(k), tanh(0.1522(k))}. Letting In this work, benefit from HMM, an asynchronous SOFC
a = 0.85, the quantized density parameterd) = 0.4815, law has been solved, in which the modes of the loga-
p(2) = 0.7391 andp(3) = 0.6667. The CPMT'; of controller rithmic quantizer and static output feedback controller run

and the CPMI's of quantizer are given by asynchronously with that of FMSSPSs. The designed con-
trollers cover synchronous, partly non-synchronous and mode-

0.4 0.6 0.85 0.15 . . - .
Iy = 08 02 | I's = 05 05 independent ones as special cases. In addition, the deception

attacks are guided by a Bernoulli variable, and nonlinear
Furthermore, the resting parameters of FMSSPS are chos@aracteristics modeled by the T-S fuzzy model. By resort-
as ing mode-dependent Lyapunov theory, some mode-dependent
_ _ . criteria are attained. At last, a practical example has been
Cip =[1 0.6], Fip = [0.3192 0.3192], (i, p = 1,2) borrowed to verify the effectiveness of the asynchronous con-
For different values of2, ., and#, it can be categorized trol scheme. Notably, the practicability of the attained HMM-
into following cases. based SOFC strategy is verified by simulation data rather
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