
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2021.3052104, IEEE
Transactions on Fuzzy Systems

1

Static Output Feedback Quantized Control for
Fuzzy Markovian Switching Singularly Perturbed

Systems with Deception Attacks
Jun Cheng, Yueying Wang, Ju H. Park,Senior Member, IEEE Jinde Cao,Fellow, IEEE and Kaibo Shi

Abstract—This paper focuses on static output feedback control
for fuzzy Markovian switching singularly perturbed systems
(FMSSPSs) with deception attacks and asynchronous quantized
measurement output. Different from the previous work, both
logarithmic quantizer and static output feedback controller
are dependent on the operation system, by means of hidden
Markov models, their modes run asynchronously with that of
FMSSPSs. Additionally, the deception attacks are guided by a
Bernoulli variable, and nonlinear characteristics are modeled
by the T-S fuzzy model. By resorting to a mode-dependent
Lyapunov functional, several criteria are acquired and strictly
(Q,S ,R)− γ-dissipative of FMSSPSs can be ensured. Finally,
a DC motor model is expressed to illustrate the effectiveness of
the asynchronous control scheme.

Index Terms—Markovian switching singularly perturbed sys-
tems; Quantized control; T-S Fuzzy-based; Deception attacks.

I. I NTRODUCTION

In reality, many dynamic systems are always characterized
by multiple-time scales, which have been well recognized
as singularly perturbed systems (SPSs). Associated with a
small parasitic parameter (SPP), the states of SPSs can be
separated into two parts, namely, fast states and slow ones.
Owing to its strong ability in dividing states, SPSs have been
received increasing attention. So far, many fruitful results have
been reported for SPSs including stability analysis, robust
control, filtering, and so on [1]–[4]. Among them, major
issues are concerned with linear SPSs. When SPSs possess
nonlinear characteristics, it is natural to cast nonlinear into
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SPSs. Following the trend, many effective tools have been
proposed to deal with nonlinear SPSs, for instance, the fuzzy
model method, Euler approach, and graph model technique,
et al. Especially, the Takagi-Sugeno (T-S) fuzzy model has
been proved to be very effective in approximating complex
nonlinear systems, which are consisted of a series of local
linear subsystems associated with membership functions [5]–
[7]. The T-S fuzzy model fills the gap between linear models
and nonlinear ones, and the derived results of linear SPSs can
be extended to nonlinear SPSs. Benefit from these methods,
considerable valuable results on nonlinear SPSs have been
established [8]–[10]. In [8]–[10], the states are assumed to be
fully observed in the studied nonlinear SPSs. Nevertheless, as
implied in [11], the aforementioned assumption is infeasible
in some physical applications. To our knowledge, the static
output feedback control (SOFC) issue for nonlinear SPSs is
quite few, which motivates the present work.

Since the concept of Markov switching systems (MSSs)
were proposed by Krasovskii and Lidskii [12], many physical
systems whose structures or parameters are undergoing with
random abrupt changes can be modeled effectively, and the
growing attention of scholars in many research fields have
been drawn. Because of the advantage in modeling compre-
hensive dynamic systems, many issues have been addressed
for MSSs including stabilization [13]–[15], estimation [16],
filtering [17], robust control [18], [19], and sliding model
control [20]. When Markov switching parameters are involved
in SPSs, namely, Markov switching SPSs (MSSPSs). Very
recently, for MSSPSs, various effective methodologies have
been delivered, for instance, semi-Markov kernel [21], sliding
mode control [22], [23], T-S fuzzy model [24].

Meanwhile, as one can see in [25], [26], the controller/filter
modes share the same switching information with target sys-
tem modes, which means controller/filter runs synchronously
with the system. In reality, such an assumption is not ac-
ceptable because of the coexistence of network-induced delay,
signal quantization, and packet dropout. Also, the operating
system information is difficult to be totally accessible. There-
fore, for MSSs, it is necessary to take asynchronous phe-
nomena into consideration when designing the controller/filter.
Recently, many asynchronous controller/filter design methods
are proposed [27]–[33]. In the previous work [28], a hier-
archical structure approach has been proposed to illustrate
the mismatch between the filter and operational system. In
[30]–[32], a hidden Markovian model (HMM) method has
been applied to demonstrate the non-synchronous between the
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controller and the original system. For instance, in [32], the
HMM method has been adopted in constructing asynchronous
reduced-order model. As stated in [33], the quantization effect
may result in instability, which is proposed in reducing the
number of channel signals and saving resources. However,
major of the reported quantizers are independent of operation
systems [34]. Some useful information ignored may lead to
the conservatism of quantizer. In this regard, it is natural to
consider the mode-dependent quantization effect in studying
MSSPSs, particularly the system switching information is not
completely accessible.

In the networked control systems (NCSs), the signals are
transmitted through a wireless network. The devices including
unmanned aerial vehicles and autonomous ones are undergone
with corrupts by network-induced attacks, such as denial-of
service-attacks [35], [36], cyber attacks [37] and deception
attacks (DAs) [38], [39]. Note that DAs are recognized as the
primary source of attacks because of their severe threats to the
original plant. DAs consist of false signals and wrong control
measures, which are injected in a random way. In view of the
security control problem, DAs cannot be ignored, and DAs
have attracted growing attention in NCSs [40]–[42]. However,
DAs have not been extended to FMSSPSs, to deal with the
existence of random DAs in FMSSPSs by asynchronous SOFC
law is also motivates this study.

Inspired by the aforementioned discussion, the principal
purpose of this work is to tackle the issue of SOFC for T-
S FMSSPSs with DAs. The main contributions of this study
are summarized as follows:

(1) A more general scheme is developed, where the partial
information of FMSSPS is available in both quantizer and con-
troller. Benefit from HMM, as a first attempt, an asynchronous
SOFC law is proposed for FMSSPS subject to asynchronous
quantized measurement output.

(2) The randomly occurring DAs is first considered for
FMSSPS, and a stochastic variable that obeying Bernoulli
distribution is applied to express the incidence rate.

(3) The strictly (Q,S ,R) − γ-dissipative-based method
in SOFC issue is more general, which covers passivity,H∞,
passive and synchronous as special cases.

The notations utilized in the study are standard and similar
to that in [28]. Furthermore,E{·} means the expectation
operator;sym(Z ) symbolizesZ + Z ⊤. diag{·} stands for
the diagonal matrix.

II. PRELIMINARIES AND SYSTEM DESCRIPTION

A. Fuzzy Markov Switching Singularly Perturbed Systems

Fixing a probability space(Ω,F ,P), and considering
MSSPSs approximated by the fuzzy model as below:

Plant rulep: IF ϕ1k is Mp1, · · · , ϕfk is Mpf , THEN

x1(k + 1) =A11(ϑk, p)x1(k) + ǫA12(ϑk, p)x2(k)

+B1(ϑk, p)u(k) +D1(ϑk, p)ω(k)

x2(k + 1) =A21(ϑk, p)x1(k) + ǫA22(ϑk, p)x2(k)

+B2(ϑk, p)u(k) +D2(ϑk, p)ω(k)

y(k) =C1(ϑk, p)x1(k) + ǫC2(ϑk, p)x2(k),

z(k) =F 1(ϑk, p)x1(k) + ǫF 2(ϑk, p)x2(k)

(1)

wherex1(k) ∈ R
n
1 , x2(k) ∈ R

n
2 , u(k) ∈ R

n
u, ω(k) ∈ R

n
w,

y(k) ∈ R
n
y , z(k) ∈ R

n
z respectively symbolize the slow

state, fast state, control input, exogenous disturbance which
belongings tol2[0,∞), measured output and controlled output.
p ∈ {1, 2, · · · , r} and r indicates the number of IF-THEN
rules,ϕqk ∈ {ϕ1k, ϕ2k, · · · , ϕfk} represent the premise vari-
ables,Mpq are the fuzzy sets.ǫ means a small parasitic param-
eter (SPP).ϑk is a stochastic variable (SV) and regarded as a
discrete Markov chain (DMC) withϑk ∈ I = {1, 2, · · · , I}.
The evolution of switching transition probability (STP)ϑk of
plant state is governed byΓ1 = [πij ]:

Pr{ϑk+1 = j | ϑk = i} = πij

wherei, j ∈ I, andπij ∈ [0, 1].
∀i ∈ I, it yields that

∑
j∈I

πij = 1. For ϑk = i
(i ∈ I), one denotesA(ϑk, p) = Aip, whereA(ϑk, p) =
{At,l(ϑk, p), B

s(ϑk, p), C
s(ϑk, p), D

s(ϑk, p), F
s(ϑk, p)}

(t, l, s = 1, 2) are known matrices subject to proper
dimensions.

Let x(k) = [x⊤1 (k) x⊤2 (k)]
⊤. Via the fuzzy blending

technique, the overall FMSSPS can be inferred as below:

x(k + 1) =

r∑

p=1

hp(℘k)(AipEǫx(k) +Bipu(k)

+Dipω(k))

y(k) =

r∑

p=1

hp(℘k)CipEǫx(k)

z(k) =
r∑

p=1

hp(℘k)FipEǫx(k)

(2)

where

Eǫ =

[
In1 0
0 ǫIn2

]
, Aip =

[
A11

ip A12
ip

A21
ip A22

ip

]
,

Bip =

[
B1

ip

B2
ip

]
, Cip = [C1

ip C
2
ip],

Dip =

[
D1

ip

D2
ip

]
, Fip =

[
F 1
ip

F 2
ip

]
.

The normalized fuzzy basis functionshp(℘k) =
gp(℘k)/

∑r
p=1 gp(℘k), Mpq(℘kq) being grade of membership

of ℘kq in Mpq, andhp(℘k) = Πr
q=1Mpq(℘kq). Then, we can

derive thathp(℘k) ≥ 0,
∑r

p=1 hp(℘k) = 1. Throughout the
paper, we denoting

Ahi =

r∑

p=1

hp(℘k)Aip, Bhi =

r∑

p=1

hp(℘k)Bip,

Chi =

r∑

p=1

hp(℘k)Cip, Dhi =

r∑

p=1

hp(℘k)Dip,

Fhi =

r∑

p=1

hp(℘k)Fip.

Accordingly, the T-S fuzzy MSSPS (2) can be reconstructed
as:

x(k + 1) =AhiEǫx(k) +Bhiu(k) +Dhiω(k)

y(k) =ChiEǫx(k)

z(k) =FhiEǫx(k)

(3)
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B. Deception Attacks

In the networked systems, DAs are taking into considera-
tion, which may lead to reconstruct the transmitted information
and result in unstable and uncontrollable of FMSSPSs. Note
that when malicious attack signals are injected, the measured
outputy(k) is eliminated and replaced by a nonlinear function
ξ(k). In short, the model of DAs is introduced as below:

ya(k) = y(k) + α(k)(−y(k) + ξ(k)), (4)

whereα(k) means a Bernoulli SV and governs by the Bernoul-
li distribution, that is,

E{α(k)} = Pr{α(k) = 1} = α,

E{1− α(k)} = Pr{α(k) = 0} = 1− α,

whereα ∈ [0, 1].
Remark 1 Note that the DAs may affect the system per-

formance, and the random feature of DAs is inferred in (4).
Specifically, whenα(k) = 1, (4) is decreased asya(k) = ξ(k),
which indicates that no measured output (MO) signals trans-
mitted and DAs launched successfully. Whenα(k) = 0, (4) is
reduced toya(k) = y(k), which implies that no DAs occur
and MO signals are transmitted successfully.

C. Quantized Measurement Output

Owing to the restriction of the resources, the signals can-
not be completely transmitted to controller. Accordingly, the
measurement output supposed to be quantized by logarith-
mic quantizer before being conveyed. Following this trend,
a mode-dependent static logarithmic quantizer (MDSLQ) is
introduced:

Q(θk, ya(k)) =[Q1(θk, y1a(k)),Q2(θk, y2a(k)),

· · · ,Qt(θk, yga(k))]
⊤,

(5)

where Ql(θk, yla(k)), l ∈ {1, 2, · · · , g} symbolizes the
lth component ofQ(θk, ya(k)) and −Ql(θk, yla(k)) =
−Ql(θk,−yla(k)).

The outputs of MDSLQ is identified by various of quanti-
zation levels as below:

Rl,θk =
{
±v(j)l (θk) : v

(j)
l (θk) = ρjl (θk)vl0,

j = ±1,±2, · · · } ∪ {0},

where vl0 > 0 and ρl(θk) ∈ (0, 1). The quantizer
Ql(θk, yla(k)) is defined as

Ql(θk, yla(k)) =





v
(j)
l ,

v
(j)
l

(θk)

1+σl(θk)
< yla(k) ≤ v

(j)
l

(θk)

1−σl(θk)
,

0, yla(k) = 0,
−Ql(θk,−yla(k)), yla(k) < 0

,

whereσl(θk) =
1−ρl(θk)
1+ρl(θk)

.
With sector bounded technique [32],∀l ∈ {1, 2, · · · , g}, the

quantized measurement output is described by:

Ql(θk, yla(k)) = (I +△l(θk, k))yla(k), (6)

where| △l(θk, k) |≤ ζl(θk).

Defining△(θk, k) = diag{△1(θk, k), · · · ,△t(θk, k)}, it is
clear that

Q(θk, ya(k)) = (I +△(θk, k))ya(k). (7)

Different fromϑ(k), the observed stateθk is determined by
another DMC, which dependent on the original system state
ϑk via a conditional probability matrix (CPM)Γ2 = [χit]

Pr{θk = t | ϑk = i} = χit

∀i ∈ M, t ∈ T = {1, 2, · · · , T }, χit ∈ [0, 1] and
∑

t∈T
χit =

1.
Accordingly, for ϑk = i, θk = t, termsQ(θk, ya(k)), and

△(θk, k) are yield toQt(ya(k)), and△t(k), respectively.

D. Fuzzy State Output Feedback Controller

In this work, an asynchronous fuzzy SOFC is given as
follows:

Controller Rulep: IF ϕ1k is Mi1, · · · , ϕfk is Mpf , THEN

u(k) = K(ηk, p)Qt(ya(k)), (8)

whereK(p, ηk) stands for the controller gains to be deter-
mined. Different fromϑ(k) andθ(k), the controller modeηk
is another DMC and only dependent on modeϑk via a CPM
Γ3 = [τis]:

Pr{ηk = s | ϑk = i} = τis

∀i ∈ I, s ∈ S = {1, 2, · · · , S}, τis ∈ [0, 1] and
∑

s∈S
τis = 1.

Hence, forηk = s, the control law (8) is recognized as

u(k) = KhsQt(ya(k)), s ∈ S, (9)

with Khs =
∑r

q=1 hq(℘k)Kqs.
Forϑk = i, ηk = s, θk = t, substituting (4) and (7) into (9),

the control lawu(k) can be improved as below:

u(k) =(1− α(k))Khs(I +△t(k))ChiEǫx(k)

+ α(k)Khs(I +△t(k))ξ(k).
(10)

Remark 2 It can be seen from (10) that, both controller
modeθ(k) and quantizer modeη(k) are different from system
modeϑ(k), which means controller and quantizer run asyn-
chronously with original FMSSPS. By hidden Markov model
and conditional probabilities,θ(k) and η(k) are dependent
on ϑ(k), which indicates asynchronous mode information of
controller and quantizer can be achieved by observing the
original FMSSPS modes. In addition, the asynchronous levels
are revealed by conditional probabilities.

Remark 3 By absorbing the asynchronous mode informa-
tion, the general control law (CL) (10) can be divided into
following special cases: WhenI = S = T andτii = χii = 1,
the CL (10) is deduced to a mode-dependent synchronous
(MDS) one. WhenI = S, τii = 1, T = 1, or I = T ,
χii = 1, S = 1, it decreased to a partly MDS one. When
S = 1 of T = 1, it diminished to partly mode-dependent
asynchronous one [23], [24]. WhenI = S = 1, it is deduced
to mode-independent one [8], [10]. In summary, the addressed
CL (10) is more general.
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Remark 4 Notably, the HMM is deployed in derivations to
describe the asynchronous phenomena is a reasonable way.
However, it may bring some conservatism. Indeed, there is
another technique, namely, the nonstationary control strategy.
This technique may reduce the conservatism in some sense;
however, the computational complexity will be increased. To
build a tradeoff between the conservatism and complexity is
an open issue.

Inspired by the above discussion, lettingδ(k) =
[x⊤1 (k) ǫx

⊤
2 (k)], and substituting (10) into (3), the closed-loop

FMSSPS can be achieved in (11):

δ(k + 1) =Eǫ(Ahi + (1− α)BhiKhstDhi)δ(k)

+ αEǫBhiKhstξ(k) + EǫChiω(k)

+ (α(k)− α)(EǫBhiKhstξ(k)

− EǫBhiKhstChiδ(k)),

z(k) =Fhiδ(k),

(11)

whereKhst = Khs(I +△t△′
t(k)) with △′

t(k) = △−1
t △t(k)

and△t = diag{ζ1t, ζ2t, · · · , ζgt}.
Defining

Σ
(1)
ist (k) =(Ahi + (1− α)BhiKhstChi)δ(k)

+ αBhiKhstξ(k) +Dhiω(k),

Σ
(2)
ist (k) =BhiKhstξ(k)−BhiKhstChiδ(k).

Then, FMSSPS (11) can be rewritten as follows:

δ(k + 1) =EǫΣ
(1)
ist (k) + (α(k) − α)EǫΣ

(2)
ist (k),

z(k) =Fhiδ(k).
(12)

Remark 4 In this work, the following major difficulties
are encountered: (1) how to deal with the DAs with attack
level α; (2) how to separateKhs from αBhiKhstChi with
asynchronous mode information; (3) how to design controller
with attack effect and small parasitic parameter.

In what follows, the essential assumption, definition and
lemmas are applied to proceed further.

Assumption 1( [42]) To restraint the DAs, the nonlinear
function ξ(k) satisfying the following condition:

‖ ξ(k) ‖≤‖ Uδ(k)) ‖,

whereU is a constant matrix.
Definition 2.1( [32]) The closed-loop FMSSPS (11) is

stochastically stable (SS) whenω(k) = 0, such that

E

{
∞∑

k=0

‖ δ(k) ‖2|δ0,ϑ0

}
<∞. (13)

Definition 2.2( [32]) Under zero initial condition, the
closed-loop FMSSPS (11) is strictly(Q,S ,R)−γ-dissipative
if for any ω(k), such that

E

{
N∑

k=0

J (k)

}
> γ

N∑

k=0

ω⊤(k)ω(k) (14)

where

J (k) = z⊤(k)Qz(k) + 2z⊤(k)S ω(k) + ω⊤(k)Rω(k).

Lemma 2.1.( [3]) Given a scalarǫ > 0 and matricesHt(t =
1, 2, 3), if (1) H1 ≥ 0; (2) H3 < 0; (3) ǫ2H1+ǫH2+H3 < 0
hold simultaneously, such that

ǫ2H1 + ǫH2 + H3 < 0, ∀ǫ ∈ [0, ǫ].

Lemma 2.2.( [44]) If there exist a scalarε and matricesA,
B, C, andD satisfying

[
A B+ εC⊤

∗ −εsym(D)

]
< 0,

then following inequality holds

A+BD−1C+ C⊤D−⊤B⊤ < 0.

Lemma 2.3.( [31]) For given matricesX, Y, andZ with
X = X⊤, then

X+ Z△′
t(k)Y+Y⊤△′⊤

t (k)Z⊤ < 0,

holds, if △′
t(k) satisfying△′⊤

t (k)△′
t(k) ≤ I such thatℵ > 0

and
X+ ℵ−1ZZ⊤ + ℵY⊤Y < 0.

III. M AIN RESULTS

In the following section, some criteria for SS and
(Q,S ,R)− γ-dissipative are established.

Theorem 3.1Given scalarǫ > 0 andα ∈ [0, 1], the closed-
loop FMSSPS (11) is(Q,S ,R) − γ-dissipative, if∀i ∈ I,
s ∈ S, t ∈ T , and p ∈ {1, 2, · · · , r}, there exists matrices
Xi > 0, Uist > 0, such that



−Xi
√
τi1χi1Xi

√
τi1χi2Xi · · · √

τisχitXi

∗ −Qi11 0 · · · 0
∗ ∗ −Qi12 · · · 0
...

...
. . .

...
...

∗ ∗ ∗ ∗ −QiST


 < 0, (15)

Γistpp < 0, (16)

Γistpq + Γistqp < 0, (p < q), (17)

where

Γistpq =

[
Θistpq Υistpq

∗ L

]
,

Θistpq =




Zistp YiΞ
(1)⊤
istpq YiΞ

(2)⊤
istpq V⊤

ip W⊤

∗ X 0 0 0
∗ ∗ X 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −ψI



,

Υistpq =
[
G(1)
ispq ℵ1H(1)⊤

ip G(2)
ispq ℵ2H(2)⊤

ip

]
,

L =diag{−ℵ1I,−ℵ1I,−ℵ2I,−ℵ2I},
Ξ
(1)
istpq = [(Aip + (1 − α)BipKsqCip) αBipKsq Dip] ,

Ξ
(2)
istpq = [−αBipKsqCip αBipKsq 0] ,

X =diag{−X1,−X2, · · · ,−XM}, α =
√
α(1 − α),

4
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Yi = [
√
πi1I

√
πi2I · · · √

πiMI] ,

Vip =[Q−Fip 0 0], W = [ψU 0 0],

Zistp =




−(EǫQistEǫ)
−1 0 F⊤

ipS
∗ −ψI 0
∗ ∗ −R + γI


 ,

G(1)
ispq =

[
0 0 0 (1− α)(YiBipKsq△t)

⊤

−α(YiBipKsq△t)
⊤ 0 0

]⊤
,

G(2)
ispq =

[
0 0 0 α(YiBipKsq△t)

⊤

α(YiBipKsq△t)
⊤ 0 0

]⊤
,

H(1)
ip = [Cip 0 · · · 0] , H(2)

ip = [0 I 0 · · · 0] ,

−Q =Q⊤
−Q−.

Proof. Combining with (16) and (17), it yields that

Γhist =

r∑

p=1

r∑

q=1

hp(℘k)hq(℘k)Γistpq

=

r∑

p=1

h2p(℘k)Γistpp +

r−1∑

p=1

∑

q=p+1

hp(℘k)hq(℘k)

× (Γistpq + Γistqp) < 0,

(18)

where

Γhist =

[
Θ⋄

hist Υ⋄
hist

∗ Lt

]
,

Θ⋄
hist =




Z⋄
hist YiΞ

⋄(1)⊤
hist YiΞ

⋄(2)⊤
hist V⋄⊤

hi W⊤

∗ X 0 0 0
∗ ∗ X 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −ψI



,

Υ⋄
hist =

[
G⋄(1)
his ℵ1H⋄(1)⊤

hi G⋄(2)
his ℵ2H⋄(2)⊤

hi

]
,

Ξ
⋄(1)
hist = [(Ahi + (1− α)BhiKhsChi) αBhiKhs Dhi] ,

Ξ
⋄(2)
hist = [−αBhiKhsChi αBhiKhs 0] ,

V⋄
hi =[Q−Fhi 0 0],

Z⋄
hist =




−(EǫQistEǫ)
−1 0 F⊤

hiS
∗ −ψI 0
∗ ∗ −R + γI


 ,

G(1)
his =

[
0 0 0 (1− α)(YiBhiKhs△t)

⊤

−α(YiBhiKhs△t)
⊤ 0 0

]⊤
,

G⋄(2)
his =

[
0 0 0 α(YiBhiKhs△t)

⊤

α(YiBhiKhs△t)
⊤ 0 0

]⊤
,

H⋄(1)
hi = [Chi 0 · · · 0] .

Utilizing Schur complement (18), it is clear that

Θ⋄
hist +

2∑

l=1

ℵ−1
l G⋄(l)

his G
⋄(l)⊤
his

+

2∑

l=1

ℵlH⋄(l)⊤
hi H⋄(l)

hi < 0,

(19)

By Lemma 2.3, (19) can be recognized as below:

Θ⋄
ist +

2∑

l=1

G⋄(l)
his △′

t(k)H
⋄(l)
hi

+

2∑

l=1

H⋄(l)⊤
hi △′⊤

t (k)G⋄(l)⊤
his < 0.

(20)

Applying Schur complement to (20), we can obtain that

Θ′
hist =




Z⋄

hist YiΞ
(1)⊤
ist YiΞ

(2)⊤
ist V⋄⊤

hi W⊤

∗ X 0 0 0
∗ ∗ X 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −ψI


 < 0, (21)

where

Ξ
(1)

ist =
[
(Ahi + (1− α)BhiKhstChi) αBhiKhst Chi

]
,

Ξ
(2)

ist =
[
−αBhiKhstChi αBhiKhst 0

]
.

Constructing the following Lyapunov function:

V (k, δk, ϑk) = δ⊤(k)Pϑk
δ(k). (22)

Let

∆V (k) =V (k + 1, δk+1, ϑk+1 = j | δk, ϑk = i)

− V (k, δk, ϑk = i).

It is referred from (12) and (22) that

E{∆V (k)}
=E{δ⊤(k + 1)Pjδ(k + 1)− δ⊤(k)Piδ(k)}

=E

{
∑

s∈S

∑

t∈T

τisχitδ
⊤(k + 1)Piδ(k + 1)

− δ⊤(k)Piδ(k)

=E

{
∑

s∈S

∑

t∈T

τisχitΣ
(1)⊤
ist (k)EǫPiEǫΣ

(1)
ist (k)

+
∑

s∈S

∑

t∈T

τisχitα
2Σ

(2)⊤
ist (k)EǫPiEǫΣ

(2)
ist (k)

− δ⊤(k)Piδ(k)},

(23)

wherePi =
∑

j∈M
πijPj .

Defining Pi = (EǫXiEǫ)
−1 and Xi =

∑
j∈M

πijX
−1
j ,

(23) can be reconstructed as

E{∆V (k)} =E

{
∑

s∈S

∑

t∈T

τisχitΣ
(1)⊤
ist (k)XiΣ

(1)
ist (k)

+
∑

s∈S

∑

t∈T

τisχitα
2Σ

(2)⊤
ist (k)XiΣ

(2)
ist (k)

− δ⊤(k)(EǫXiEǫ)
−1δ(k)}.

(24)

Recalling Assumption 1 with condition‖ ξ(k) ‖≤ Uδ(k),
one can get

E{∆V (k)} ≤ϕ⊤(k)E

{
∑

s∈S

∑

t∈T

τisχit

2∑

m=1

Ξ
(m)⊤

ist Xi

×Ξ
(m)

ist

}
ϕ(k)− δ⊤(k)(EǫXiEǫ)

−1δ(k)

+ ψδ⊤(k)U⊤Uδ(k)− ψξ⊤(k)ξ(k),

(25)

5
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where

ϕ(k) =
[
δ⊤(k) ξ⊤(k) ω⊤(k)

]⊤
.

Utilizing Schur complement to (15), one derives that

−X−1
i +

∑

s∈S

∑

t∈T

τisχitQ
−1
ist < 0. (26)

Substituting (26) into (25), it is derived that

E{∆V (k)}

≤ϕ⊤(k)
∑

s∈S

∑

t∈T

τisχitE

{
2∑

m=1

Ξ
(m)⊤

ist XiΞ
(m)

ist

+diag{−(EǫQistEǫ)
−1 + ψU⊤U,−ψI, 0}

}
ϕ(k).

(27)

Whenω(k) = 0, recalling (21), it can be achieved that

E{∆V (k)}

≤ − λmin

(
∑

s∈S

∑

t∈T

τisχit

(
−

2∑

m=1

Ξ̂
(m)′⊤
ist XiΞ̂

(m)′
ist

+diag{−(EǫQistEǫ)
−1 + ψU⊤U,−ψI})

)
δ⊤(k)δ(k)

<− µδ⊤(k)δ(k) < 0,

(28)

where

Ξ̂
(1)′
ist =

[
(Ahi + (1− α)BhiKhstChi) αBhiKhst

]
,

Ξ̂
′(2)
ist =

[
−αBhiKhstChi αBhiKhst

]
,

µ = inf

{
λmin

(
−
∑

s∈S

∑

t∈T

τisχit

2∑

m=1

Ξ
(m)′⊤

ist XiΞ
(m)′

ist

+diag{−(EǫXiEǫ)
−1 + ψU⊤U,−ψI}

)}
.

From k = 0 to ∞, summing up the both sides of (28), we
obtain

E

{
∞∑

k=0

‖ δ(k) ‖2|δ0,ϑ0

}
<
1

µ
(E{V (0, x0, ϑ0)}

− E{V (∞, x∞, ϑ∞)})
<∞.

(29)

By Definition 2.1, it can be concluded that the closed-loop
FMSSPS (11) is SS.

Next, for the supply rateJ (k), recalling (25), it is easily
to achieve that

E{∆V (k)− J (k) + γω⊤(k)ω(k)}

≤ϕ⊤(k)E

{
∑

s∈S

∑

t∈T

τisχit

{
2∑

m=1

Ξ
(m)⊤

ist Xi

×Ξ
(m)

ist + Z⋄
hist

}}
ϕ(k)− δ⊤(k)F⊤

hiQFhiδ(k)

=ϕ⊤(k)
∑

s∈S

∑

t∈T

τisχitΘ
′′
histϕ(k),

(30)

where Θ′′
hist =

∑2
m=1 Ξ

(m)⊤

ist XiΞ
(m)

ist + Zhist −
diag{F⊤

hiQFhi, 0, 0}.
By inequality (21), we getΘ′′

hist < 0. Together with (30),
it is clear that

E{∆V (k)− J (k) + γω⊤(k)ω(k)} < 0 (31)

Summing up both sides of (31) from 0 toN , one has

V (N + 1, δN+1, ϑN+1)− V (0, δ0, ϑ0)−
N∑

k=0

J (k)

+ γ

N∑

k=0

ω⊤(k)ω(k) < 0.

(32)

Under zero initial condition, namely,V (0, δ0, ϑ0) = 0, it
can be seen from (32) that

N∑

k=0

J (k) >γ

N∑

k=0

ω⊤(k)ω(k) + V (N + 1, δN+1, ϑN+1)

>γ

N∑

k=0

ω⊤(k)ω(k)

(33)

By Definition 2.2, the strictly(Q,S ,R) − γ-dissipative
of closed-loop FMSSPS (11) can be guaranteed. The proof is
completed. �

Remark 5 In Theorem 3.1, the established conditions are
dependent on SPPǫ, in which the term(EǫQistEǫ)

−1 cannot
be solved directly. Especially, whenǫ ≪ 1, the criteria in
Theorem 3.1 are called ill-conditioned results. To tackle such
an issue, Theorem 3.2 is inferred.

Theorem 3.2Given scalarǫ > 0 andα ∈ [0, 1], the closed-
loop FMSSPS (11) is(Q,S ,R) − γ-dissipative, if∀i ∈ I,
s ∈ S, t ∈ T , and p ∈ {1, 2, · · · , r}, there exists matrices
Xi > 0, Uist > 0, and matricesYist, such that

Γ̃
(n)
istpp < 0, (34)

Γ̃
(n)
istpq + Γ̃

(n)
istqp < 0, (p < q) (35)

where

Γ̃
(n)
istpp =

[
Θ̃

(n)
istpq Υ̃istpq

∗ Lt

]
, Θ̃

(n)
istpq =

[
Z̃(n)

istp Θ
(2)

istpq

∗ Θ
(1)

]
,

Υ̃istpq =
[
G(1)
ispq ℵ1H̃(1)⊤

ip G(2)
ispq H(2)⊤

ip

]
,

Z̃(1)
istp =



EǫQistEǫ − sym(Yst) 0 Y ⊤

st F
⊤
ipS

∗ −ψI 0
∗ ∗ −R + γI


 ,

Z̃(2)
istp =




I1QistI1 − sym(Yst) 0 Y ⊤
st F

⊤
ipS

∗ −ψI 0
∗ ∗ −R + γI


 ,

Θ
(1)

=diag{X ,X ,−I,−ψI},
Θ

(2)

istpq =
[
YiΞ

(1)⊤
istpq YiΞ

(2)⊤
istpq V⊤

istp W⊤
st

]
,

H̃(1)
ip = [CipYst 0 · · · 0] ,

Ξ
(1)
istpq = [(Aip + (1 − α)BipKsqCip)Yst αBipKsq Dip] ,

Ξ
(2)
istpq = [−αBipKsqCipYst αBipKsq 0] ,

V
istp =[Q−FipYst 0 0], W

st = [ψUYst 0 0],

Eǫ =diag{In1 , ǫIn2}, I1 = diag{In1 , 0}.
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Proof. Applying Lemma 2.1 to (35),
2∑

l=1

ǫ3−l

[
Θ

ℓ(l)
istpq 0

∗ 0

]
+

[
Θ̃

(2)
istpq Υistpq

∗ Lt

]
< 0, (36)

where

Θ
ℓ(l)
istpq =

[
Θ

(1)
Θ

(2)

istpq

∗ Zℓ(l)
ist

]
, (l = 1, 2)

Zℓ(1)
ist =diag{I2QistI2, 0, 0}, I2 = diag{0, In2},

Zℓ(2)
ist =diag{I1QistI2 + I2QistI1, 0, 0}.

Since thatEǫQistEǫ > 0, it is well known that

(EǫQistEǫ − Y ⊤
st )(EǫQistEǫ)

−1

× (EǫQistEǫ − Y ⊤
st )

⊤ ≥ 0.
(37)

Thus, one has

−Y ⊤
st (EǫQistEǫ)

−1Yst ≤ EǫQistEǫ − Y ⊤
st − Yst. (38)

Substituting (38) into (36), it yields
[

Θℓ
istpq Υistpq

∗ Lt

]
< 0, (39)

where

Θℓ
istpq =

[
Θ

(1)
Θ

(2)

istpq

∗ Zℓ
istp

]
,

Zℓ
istp =

[
−Y ⊤

st (EǫQistEǫ)
−1Yst 0 Y ⊤

st F
⊤

ipS
∗ −ψI 0
∗ ∗ −R + γI

]
.

Pre-multiplying diag{I, · · · , I︸ ︷︷ ︸
2M+2

,Y −⊤
st , I, · · · I︸ ︷︷ ︸

6

} and post-

multiplying its transpose to (39), one derives that (39)
guarantees (16) and (17) hold. The proof is completed.�

Theorem 3.3Given scalarǫ > 0 andα ∈ [0, 1], the closed-
loop FMSSPS (11) is(Q,S ,R) − γ-dissipative, if∀i ∈ I,
s ∈ S, t ∈ T , and p ∈ {1, 2, · · · , r}, there exists matrices
Xi > 0, Uist > 0, and matricesYist, Msq andNsq, such that

Γ̂
(n)
istpp < 0, (40)

Γ̂
(n)
istpq + Γ̂

(n)
istqp < 0, (41)

where

Γ̂
(n)
istpq =




Ω
(n)
istpq R(1)

istpq R(2)
istpq

∗ −ε1sym(Nsq) 0
∗ ∗ −ε2sym(Nsq)


 ,

Ω
(n)
istpq =

[
Θ̂

(n)
istpq Υ̂istpq

∗ L

]
,

Θ̂
(n)
istpq =

[
Z̃(n)

istp Θ̂
(2)
istpq

∗ Θ
(1)

]
, (l = 1, 2)

Θ̂
(2)
istpq =

[
YiΞ̂

(1)⊤
istpq YiΞ̂

(2)⊤
istpq V⊤

istp W⊤
st

]
,

R(1)
istpq =

[
(CipYst − NsqCip) 0 0 Yiε1(1− α)(BipMsq)

⊤

− Yiε1α(BipMsq)
⊤ 0 0 (△t − Nsq△t) 0 0 0]⊤,

R(2)
istpq =

[
0 (I − Nsq) 0 Yiε2α(BipMsq)

⊤

Yiε2α(BipMsq)
⊤ 0 0 0 0 (△t − Nsq△t) 0]

⊤,

Ξ̂
(1)
istpq = [(AipYst + (1− α)BipMsqCip) αBipMsq Dip] ,

Ξ̂
(2)
istpq = [−αBipMsqCip αBipMsq 0] ,

Υ̂istpq =
[
Ĝ(1)
istpq ℵ1H̃(1)⊤

ip Ĝ(2)
istpq ℵ2H̃(2)⊤

ip

]
,

Ĝ(1)
istpq =

[
0 0 0 Yi(1− α)(BipMsq△t)

⊤

−Yiα(BipMsq△t)
⊤ 0 · · · 0︸ ︷︷ ︸

6



⊤

,

Ĝ(2)
istpq =

[
0 0 0 Yiα(BipMsq△t)

⊤

Yiα(BipMsq△t)
⊤ 0 · · · 0︸ ︷︷ ︸

6



⊤

.

Additionally, the controller gains can be achieved:

Ksq = MsqN
−1
sq . (42)

IV. N UMERICAL EXAMPLES

In this section, two simulation examples are exhibited to
express the effectiveness of the established results.

A. Example 4.1

Consider the FMSSPS (1) with the following parameters:

[
A11 B11

C11

]
=




−0.14 0.79 −0.03 −0.55 −1.03
0.29 −0.66 0.89 0.40 −0.75
0.16 0.85 −0.50 −0.04 0.29
−1.34 −0.77 −1.23
0.55 0.18 0.26


 ,

[
D⊤

11

F11

]
=

[
−0.19 0.34 0.28
0.26 0.03 −0.85

]
,

[
A12 B12

C12

]
=




−0.41 −0.47 0.19 1.64 −2.11
0.43 −1.27 0.78 1.27 1.4
0.27 −1.53 −0.18 −0.50 0.24
0.55 0 0.54
−1.26 −1.78 0.21


 ,

[
D⊤

12

F12

]
=

[
−1.55 −0.48 0.54
0.57 0.32 −0.19

]
,

[
A21 B21

C21

]
=




−0.34 0.13 −0.27 −0.20 −1.68
0.07 1.85 −1.73 0.17 −0.32
0.49 −0.67 0.38 0.11 −0.17
1.04 −1.97 −0.65
−0.51 0.29 0.14


 ,

[
D⊤

21

F21

]
=

[
−1.15 −1.03 0.17
−0.13 0.80 −0.65

]
,

[
A22 B22

C22

]
=




0.39 −0.76 −0.18 −0.11 −0.91
−1.42 1.22 0.27 −0.26 0.68
−0.27 −0.50 −0.28 0.84 −0.25
0.05 0.03 −1.10
−0.12 0.50 −0.30


 ,

[
D⊤

22

F22

]
=

[
1.75 0.22 −0.47
−0.49 −1.37 −0.40

]
.

The STP matrix of original FMSSPS (2) is given byΓ1:

Γ1 =

[
0.1 0.9
0.8 0.2

]
.

7
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The CPMΓ2 of controller and the CPMΓ3 of quantizer are
chosen as

Γ2 =

[
0.55 0.45
0.4 0.6

]
, Γ3 =

[
0.7 0.3
0.45 0.55

]
.

For U = [0.2 0.3 0.5], ψ = 1, ξ(k) =
col{tanh(0.5x1(k), tanh(0.5x2(k)), tanh(0.5x3(k))}. The
quantized density parametersρ(1) = 0.5485, ρ(2) = 0.7391
and ρ(3) = 0.6667. By solving the inequalities in Theorem
3.3, the optimal dissipative performance (ODP)γ is revealed
in Table I. From Table I, it can be observed that, the
maximum value of ODPγ is decreasing along withα
increases. Meanwhile, the relationship between the maximum
value of SPPǫ and α is shown in Table II. It can be seen
from Table II that, the maximum value of SPPǫ is decreasing
when α increases. Therefore, one concludes from Tables I
and II that, the DAs affects the performance and flexible of
target plant.

TABLE I
ODPγ FOR DIFFERENTα

α 0.1 0.5 0.9
γ 5.3498 5.2679 5.1235

TABLE II
MAXIMUM ǫ OF THE UPPER BOUNDED OFSPPǫ FOR DIFFERENTα

α 0.1 0.5 0.9
ǫ 0.3642 0.3353 0.3129

Choosingγ = 2 andǫ = 0.1, by Theorem 2.3, the controller
gains are gained:

[
K11 K12

K21 K22

]
=




0.1126 −0.0057 0.0252 −0.080
−0.1431 0.0198 0.0079 0.0302
0.1017 −0.0064 0.0153 −0.0956
−0.1486 0.0239 0.0003 0.0162


 .

Under the aforementioned controller gains and initial con-
dition x0 = [−0.4 0.2 0.1]⊤, Figs. 1, 2 and 3 portray,
respectively, the state responses of the closed-loop FMSSPS.
By these figures, one observe all the curves tend to be
convergent, which indicates the FMSSPS is SS.

B. Example 4.2

In the following subsection, a modified DC motor model
(DCMM) [8], [22] is borrowed to illustrate the effectiveness
of the developed results. Associated with equivalent circuit,
the dynamic equation of DCMM is depicted as:

Jl
dυ(t)

dt
=− Cυ(t) + ErLwφ

2(t), (l = 1, 2)

L
dφ(t)

dt
=− ErLwφ(t)υ(t) −Rυ(t) +V(t)

(43)

where

υ(t) : error of angular velocities

φ(t) : error of values

V(t) : error of input voltages

Jl : moment of inertia

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (k)

 

 
x1(k)

Fig. 1. State responses of the closed-loop FMSSPS (x1(k) 100 realizations)
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0

0.05

0.1
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Fig. 2. State responses of the closed-loop FMSSPS (x2(k) 100 realizations)
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−0.02

0
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Fig. 3. State responses of the closed-loop FMSSPS (x3(k) 100 realizations)
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C : viscous friction coefficient

Er : torque/back emf invariable

L : the inductance

Lw : the winding inductance

R : the resistance

The parametersJl(l = 1, 2), C, Er, Lw andR are, respec-
tively, chosen asJ1 = 4×10−3Kg·m2, J1 = 4×10−2Kg·m2,
C = 0.08N ·m/rad/s, Er = 1N ·m/A, Lw = 8 × 10−3H ,
andR = 5Ω.

Letting x1(t) = υ(t), x2(t) = φ(t), u(t) = V(t).
Discretizing the continuous variables of (43) and utilizing a
zero-order, DCMM (43) can be reformulated as below:
[
ẋ1(t)
ǫẋ2(t)

]
=

[
−C/Jl ErCw/Jlx2(t)

−ErLwx2(t) −R

] [
x1(t)
x2(t)

]

+ [0 1]⊤u(t)

(44)

andǫ = L is treated as a SPP.
Similar to [22], the membership functions are employed as:

M1 =
ℑ2 − x2(t)

ℑ2 −ℑ1
, M2 =

−ℑ1 + x2(t)

ℑ2 −ℑ1
,

wherex2(t) ∈ [ℑ1,ℑ2].
With sampling timeT = 5 × 10−2s, DCMM (44) can be

discretized into:

δ(k + 1) =

2∑

p=1

hp(℘k)(AipEǫx(k) +Bipu(k) +Dipω(k)),

where

A11 =

[
0.3549 −2.2023
0.0088 −0.0547

]
, B11 = [−0.1837 0.1957]⊤,

A21 =

[
0.9017 −0.5428
0.0217 −0.0131

]
, B21 = [−0.0276 0.1994]⊤,

A12 =

[
0.3549 2.2023
−0.0088 −0.0547

]
, B12 = [0.1837 0.1957]⊤,

A22 =

[
0.9017 0.5428
−0.0217 −0.0131

]
, B22 = [0.0276 0.1994]⊤,

Dip =[0 1]⊤, (i, p = 1, 2), Eǫ = diag{1, ǫ}.
The STP matrix of original FMSSPS (2) with two modes

is characterized asΓ1:

Γ1 =

[
0.3 0.7
0.55 0.45

]
.

and ξ(k) = col{tanh(0.15x1(k), tanh(0.15x2(k))}. Letting
α = 0.85, the quantized density parametersρ(1) = 0.4815,
ρ(2) = 0.7391 andρ(3) = 0.6667. The CPMΓ2 of controller
and the CPMΓ3 of quantizer are given by

Γ2 =

[
0.4 0.6
0.8 0.2

]
, Γ3 =

[
0.85 0.15
0.5 0.5

]
.

Furthermore, the resting parameters of FMSSPS are chosen
as

Cip =[1 0.6], Fip = [0.3192 0.3192], (i, p = 1, 2)

For different values ofQ, S , andR, it can be categorized
into following cases.

Case I: Dissipative Control.SettingQ = −1, S = −1,
R = 4 andε = 0.5241. By Theorem 2.3, one derives

K11 = 0.3191, K12 = 0.1653,

K21 = 0.1558; K22 = 0.1877.

Case II: H∞ Control. Setting Q = −1, S = 0, R =
γ2 + γ andε = 0.470. By Theorem 2.3, one derives

K11 = 0.2807, K12 = 0.2366,

K21 = 0.1193; K22 = −0.2134.

Case III: Passive Control.SettingQ = 0, S = 1, R = 2γ
andε = 0.1. By Theorem 2.3, one derives

K11 = 0.1351, K12 = 0.0439,

K21 = 0.1052; K22 = −0.1168.

Additionally, to reveal the relationship between the SPPǫ
and Bernouli SVα, in light of other parameters set in Case
I, let α varies between 0.1 and 0.9 with step 0.2, a group of
εmax can be acquired, which displayed in Table III.

TABLE III
MAXIMUM ǫ OF THE UPPER BOUND OFǫ FOR DIFFERENTα

α 0.1 0.3 0.5 0.7 0.9
ǫ 0.6429 0.6219 0.5797 0.5398 0.5216

From Table I, the trend of the SPPǫ and α can be
easily achieved: the higher probability of DA is, the smaller
upper bound of SPP is. One can conclude that the random
feature of DAs plays an important role in affecting the system
performance, which cannot be neglected in designing the
SOFC.

With the initial conditionx0 = [0.6 − 0.1]⊤, and noise
signal

ω(k) =

{
0.2 sin (10k), k ∈ [1, 10]
0, otherwise

Accordingly, by applying the fuzzy-based asynchronous
SOFC law subject to aforementioned gain parameters, the
simulation responses of closed-loop FMSSPS with dissipative
performance are provided in Fig. 4 and Fig. 5, respectively.
From Figs. 4-5, we can conclude that the acquired results and
approaches are efficient.

V. CONCLUSION

In this work, benefit from HMM, an asynchronous SOFC
law has been solved, in which the modes of the loga-
rithmic quantizer and static output feedback controller run
asynchronously with that of FMSSPSs. The designed con-
trollers cover synchronous, partly non-synchronous and mode-
independent ones as special cases. In addition, the deception
attacks are guided by a Bernoulli variable, and nonlinear
characteristics modeled by the T-S fuzzy model. By resort-
ing mode-dependent Lyapunov theory, some mode-dependent
criteria are attained. At last, a practical example has been
borrowed to verify the effectiveness of the asynchronous con-
trol scheme. Notably, the practicability of the attained HMM-
based SOFC strategy is verified by simulation data rather
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Fig. 4. State responses of the closed-loop FMSSPS (x1(k) 100 realizations)
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Fig. 5. State responses of the closed-loop FMSSPS (x2(k) 100 realizations)

than experimental data, which is identified as the potential
drawback of this study. Exploring the experimental test for the
acquired control scheme will be our future work. Meanwhile,
to further extend the gained results to interval type-2 fuzzy
systems also remains an interesting issue.
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