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Static Output Feedback Sliding Mode Control
Design via an Artificial Stabilizing Delay

Alexandre Seuret, Christopher Edwards, Sarah K. Spurgeon, Senior Member, IEEE, and Emilia Fridman

Abstract—It is well known that for linear, uncertain systems, a
static output feedback sliding mode controller can only be deter-
mined if a particular triple associated with the reduced order dy-
namics in the sliding mode is stabilizable. This paper shows that
the static output feedback sliding mode control design problem can
be solved for a broader class of systems if a known delay term is
deliberately introduced into the switching function. Effectively the
reduced order sliding mode dynamics are stabilized by the intro-
duction of this artificial delay.

Index Terms—Discretized Lyapunov–Krasovskii functionals, ex-
ponential stability, output feedback, sliding mode control, stabi-
lizing delay, time delay systems.

I. INTRODUCTION

I N many practical situations, all the states are not available
to the controller. In some circumstances it is impossible or

prohibitively expensive to measure all of the process variables.
With this in mind, many authors have developed methods to con-
trol systems only using output feedback, of which one approach
is the output feedback sliding mode control paradigm [5].

The idea developed in this paper is to broaden the class of
systems for which a static output feedback based sliding mode
controller can be developed based on a recent result from time
delay systems. In [7], [11], the authors show that for some sys-
tems, the presence of delay can have a stabilizing effect. This af-
fords the possibility of taking a system which is not stabilizable
by static output feedback without delay and finding a constant
delay strictly greater than 0 such that the system is stable. In
this case, a stabilizing delay is introduced into the dynamics to
effect output feedback stability.

This design concept is not new. Several authors have consid-
ered this possibility. For example in [15], [17], [18] it has been

Manuscript received June 22, 2007; revised April 15, 2008. Current version
published February 11, 2009. This work was supported in part by the Euro-
pean Commission through the HYCON Network of Excellence, the Swedish
Foundation for Strategic Research, the Swedish Research Council, Automatic
Control Department, KTH, SE-10044, Stockholm Sweden, by EPSRC Platform
Grant EP/D029937/1 entitled “Control of Complex Systems,” and by EPSRC
Grant Reference entitled “Robust Output Feedback Sliding Mode Control for
Time-delay systems.” Recommended by Associate Editor A. Ferrara.

A. Seuret is with the GIPSA-Laboratory, French Association of Scientific
Researcher (CNRS), Grenoble 38042, France (e-mail: seuret@kth.se).

C. Edwards and S. K. Spurgeon are with the Control and Instrumentation
Research Group, Department of Engineering, University of Leicester, Leicester
LE1 7RH, U.K. (e-mail: ce14, eon@le.ac.uk).

E. Fridman is with the Department of Electrical Engineering-Systems, Tel-
Aviv University, Tel-Aviv 69978, Israel (e-mail: emilia@eng.tau.ac.il).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2008.2010889

shown that introducing a delay in an output feedback controller
can stabilize a system which cannot be stabilized without delay.
This property has already been noted in the production of pro-
teins in a cell [13]. When researchers try to model this produc-
tion without delay, the solutions oscillate and do not correspond
to the known physical behaviour. By introducing a delay corre-
sponding to the intracellular transport by convection, the solu-
tions correspond more closely to the known behavior.

The novelty in this paper is in overcoming the output feed-
back stabilizability assumption [2] in the design of sliding mode
controllers by static output feedback. The authors propose a new
switching function which contains an additional term which is
linear in the delayed output. This is shown to be constructive in
stabilizing the reduced order sliding mode dynamics. It is then
shown that a sliding motion can be reached in finite time.

The article is organized as follows. The Section II presents
the problem formulation. Section III formulates the definition
of a new sliding function which contains an artificial delay. In
Section IV, the problem of exponential stability of the reduced
order sliding motion with constant delay using discretized
Lyapunov-Krasovskii functionals is solved. Section V deals
with the exponential stabilization of non-delayed systems by a
sliding mode controller including delay. In the last section, a
numerical example demonstrates the design of the gains and the
effect of the choice of the delay in the sliding mode controller.

Throughout the article, the notation for
means that is a symmetric and positive definite matrix.

is the concatenated matrix formed from the
matrices . The symbol represents the identity ma-
trix. The notations and refer to the Euclidean vector norm
and its induced matrix norm, respectively. For any function
from , we denote .

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider the linear uncertain system without delay

(1)

where , and with ,
corresponds to the state, control and output variables respec-
tively. The function represents the matched distur-
bances and is assumed to satisfy:

(2)

where is a known function.
The matrices , , are as-

sumed to be known. It is also assumed that the pair is
controllable and the input and the output matrices and are
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full rank. In addition, it is assumed . Then from
[2], [4], there exists a change of variables such that the system
has the following representation:

(3)

where , is nonsingular and
is an orthogonal matrix. In [2] a sliding surface

(4)

is proposed, where , and
is a nonsingular matrix. The sliding motion is

governed by the choice of . If a further coordinate change is
introduced based on the nonsingular transformation
with defined by:

(5)

where , then, as argued in [2], the
dynamics of the reduced order sliding motion is governed by

(6)

The fictitious system is assumed to be output
stabilizable i.e., there exist a matrix such that the matrix

is Hurwitz. It is shown in [2] that a neces-
sary condition for to be stabilizable is that the
invariant zeros of lie in the open left half-plane. How-
ever the design of an output feedback gain such that the ma-
trix is Hurwitz is not always straightforward and
may be impossible. Consider for instance the system (6) with

which is from [1], [2]. In this case, the output feedback stabi-
lization problem becomes the problem of finding a scalar such

that the matrix has strictly negative eigenvalues,

which is clearly not possible. In this situation, some authors
[1], [3], [5] have employed a compensator in order to stabilize
the system. However, these methods increase the order of the
controller and have an associated computational overhead both
in terms of design and implementation. The proposed method
seeks to introduce an artificial delay in the system such that the
system can be stabilized by static output feedback without the
need to introduce a compensator.

III. DESIGN OF A NEW SLIDING MODE SURFACE

In this section, the design of a new type of sliding surface will
be discussed. The objective is to define a sliding surface of the
form of (4) but which introduces a delay in the reduced order
dynamics. Consider

(7)

where as before the matrix and where
, . Here, without loss of gener-

ality, the matrices and are chosen as . In (7), is an arti-
ficial, fixed and known delay which has to be chosen to stabilize
the reduced order dynamics in the sliding mode and represents
a design parameter. The existence of such a delay and construc-
tive methods to choose it will be discussed in a latter section.
Instead of (5), consider the coordinate change :

By construction the switching function associated with is
. This leads to:

(8)

(9)

Remark 1: It is important to note that the system (8) is a
particular delay system. Since the delay is artificially introduced
in the sliding manifold, the delay is known and can be chosen
to improve the stability of the closed-loop system.

Remark 2: The sliding mode dynamics are given by (8) with
. This is a retarded system, where the delay is known

and can be selected to stabilise, or enhance the stability of, the
reduced order sliding motion.

Remark 3: Note that the range space dynamics given in
(9) contain several delayed terms and two different delays,

and . However is a design parameter in the particular
formulation presented here, and thus is perfectly known to
the controller.

The last two lines of (9) only depend on the known output
information, and , where , and thus
the following output feedback control law can be defined:

(10)

where , , , 2 and is a Hurwitz matrix.
The term is the discontinuous injection defined by

if
otherwise

(11)

where is a symmetric positive definite matrix in and

(12)
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where is a positive scalar gain. The closed loop system satisfies
the following equations

(13)

Remark 4: Note that the control law (10) does not have a
heavy computational overhead.

IV. EXPONENTIAL STABILITY OF THE CLOSED LOOP SYSTEM

A. Exponential Stability of the Reduced Order System

Consider the linear system with constant delay:

(14)

where is the state and where
and are constant matrices with

appropriate dimensions. System (14) represents the dynamics
of the reduced order system (8) when . Therefore,
the sliding surface (7) underpins the stabilization of the sliding
mode dynamics by using the delayed term .

System (14) is said to be exponentially stable [14], [16] with a
decay rate and an exponential gain if the following
exponential bound holds:

(15)

where is the solution of (14), starting at time from
the initial function . Note that both and must be
independent of .

Consider the change of variable as in [19],
[21]. Effectively, asymptotic convergence of the states im-
plies exponential convergence of at a prescribed rate. Then
it is easy to see that in the case of constant delay, (14) becomes

(16)

Consider the following theorem based on the discretized
Lyapunov-Krasovskii functional proposed in [11].

Theorem 1: System (14) is exponentially stable with the
decay rate if there exist matrices ,

, , , , , , , which
satisfy the LMI conditions (17) and (18) with

(17)

and

(18)

where the matrix is given by

(19)

and where is given by

where

...
...

. . .
...

and where for

...
...

. . .
...

Proof: Consider the following Lyapunov-Krasovskii
functional:

(20)
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where , ,
, , and are con-

tinuous matrix functions. From [12] (p. 185) is positive def-
inite if the LMI (18) holds. Then the proof follows along the
lines of [7] using a descriptor representation [9] and Gu-dis-
cretization [11]. It follows that converges asymptotically to
the solution and consequently, the variable converges
exponentially to the solution with the decay rate . See
the Appendix for more details.

Remark 5: Note that Theorem 1 is an extension of Theorem
2.1 from [7] to the exponential stability case. However the ex-
ponential stability considerations allow the performance and the
convergence of the solutions to be characterized, which will be
efficient for the design of the output feedback controller.

Remark 6: In the definition of the delayed sliding manifold
(7), the delay is chosen to be constant. If for some reason the
chosen delay needs to be time-varying, then a time-varying gain

will appear in the control law and the change of vari-
ables ‘ ’ will affect system (16) as the exponential gain
will also be time-varying. However this situation can also be
dealt with: see for example [19] or [20].

B. Illustrative Example

Consider system (14) [8], [10] with

As in [8], Theorem 1 cannot guarantee that this system is
asymptotically stable, i.e. for , if the delay is less than

. The relationship between the delay and
the maximum admissible decay rate is given in Fig. 1. The
maximal decay rate results from the following optimization
problem (see the Appendix, section B for more details):

Fig. 1 shows that the conservatism of the condition from The-
orem 1 reduces when the number of discretizations is in-
creased. This is due to the fact that when increases, the de-
gree of freedom to define the Lyapunov-Krasovskii functional
also increases. Note that for all the discretizations, there exists a
optimal delay which corresponds to the maximal decay rate. In
a system where the delay can be chosen, as in system (13) pre-
sented in Section III, this form of graph can help to determine
the optimal delay. Compared to the asymptotic result proposed
in [8], Theorem 1 allows the existence of an optimal delay to be
shown. This delay corresponds to the best performance in terms
of stability.

Remark 7: Note that the ‘optimal delay’ is relative to the
number of discretizations used in Theorem 1. In Fig. 1 the
optimal delay when is different from the one when

. In the sequel the statement ‘optimal delay’ will be used to
express the delay which corresponds to the fastest decay rate
with respect to a certain level of discretization.

Fig. 1. Relation between � and � with respect to � .

C. Stabilization of the Closed Loop System

This section focusses on the stability of the whole system
(13). In particular, it needs to be established that in finite
time, i.e. a sliding motion is achieved.

Theorem 2: System (13) is exponentially stable for given
output feedback gains and with decay rate if there exist

, , , , , , in
and which satisfy the LMI

condition (21) and (18) with

(21)

where the matrix is given by (19) and where
and .

Proof: Consider new variables and
. The new closed-loop system satisfies the

following equations:

(22)

Consider the Lyapunov-Krasovskii functional

where is defined in (20) and where

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 07:37 from IEEE Xplore.  Restrictions apply.



260 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 2, FEBRUARY 2009

From [7] and following the line of the proof proposed in the
Appendix, differentiating along the trajectory of (22a) leads
to the following inequality:

(23)

where is defined in (19) and the functions and are defined
in the Appendix.

Differentiating along the trajectory of (22a) leads to:

(24)

Then by combining (23) and (24) and by defining
, the fol-

lowing inequality holds:

(25)

where is given by:

From (12), note that
. The last term is thus negative. Applying

Proposition 5.21 from [12] to (25) it can be concluded that
if LMI (21) holds.

D. Reachability of the Sliding Manifold in Finite Time

Corollary 1: An ideal sliding motion takes place on the sur-
face in the domain

where is a small scalar satisfying .
Proof: Consider the following Lyapunov function

. By differentiating along the trajectories of
(13b), it follows that:

Since the matrix is Hurwitz, can be chosen such that
. By taking an upper bound on the second

and third term, the following inequality holds:

If the system satisfies the conditions from Theorem 2, the
state converges to the solution with an exponential
decay rate. It follows that the domain is reached in finite
time. Since the gain of the sliding function is defined as

, the following inequality holds:

This concludes the proof.

E. Comments on the Design of the Output Feedback Gain

As usual, the problem of designing the output feedback gain
is not straightforward. Moreover the LMI (21) is not in an ap-
propriate form for synthesis purposes because the gains and

appear in different ways in than in and
. Congruence and other ‘classical’ LMI trans-

formations will probably not facilitate constructive conditions.
A constructive method at this time is to test the stability of the
closed-loop system for a given set of values of and is dis-
cussed in the Appendix.

V. EXTENSION TO UNCERTAIN SYSTEMS

Consider now the case when the system (3) is uncertain and
time varying. Instead of the known matrices for , 2,
the following representation is introduced:

(26)

where and is non sin-
gular. The other matrices in (26) are assumed to have appro-
priate dimensions. It is assumed that, for all ,
the pair of matrices is controllable. The scalar
functions are such that:

(27)
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As it is possible to remove some uncertainties, the system is
rewritten as:

(28)

where the matched uncertainties are represented by:

This leads to

(29)

Note that the last two lines of the previous equation only de-
pend on the output information and thus the following output
feedback control law can be defined:

(30)

where is a Hurwitz matrix. The closed loop system satisfies
the following equations:

(31)

where

Since depends on , and only, there exist positive func-
tions and such that:

The discontinuous control component is still defined by (11)
but the gain is now defined by:

(32)

where is a positive scalar gain.
Noting that (31) is polytopic and of the same form as (31), and

that Theorem 2 is linear with respect to the matrix definition, the
following result holds:

Theorem 3: System (31) is exponentially stable for given
output feedback gains and with decay rate if there exist

, , , , , ,
in and which satisfy the
LMI condition (21) and (18) for all vertices with

.
Then the following corollary holds:
Corollary 2: An ideal sliding motion takes place in the do-

main given by

where is a small scalar satisfying .
Proof: The proof is similar to the previous one.

VI. EXAMPLE

Consider the non-delayed system (3) with the definitions:

As in [2], this system is not output stabilizable using traditional
static (ie. non delayed output feedback). The objective remains
here to design the controller (10) with appropriate gains ,

and an artificial delay such that the closed-loop
system is exponentially stable with decay rate .

A. Design of the Output Feedback

This section proposes a method to obtain the optimal con-
troller . The idea is to test if, for a set of values of
and , the LMIs from Theorem 2 have a solution and if it is
possible to find the delay which ensures the greatest exponential
decay rate.

After checking the resolution of the LMIs from Theorem 2,
a solution can only be found when lies in the interval [ 6;
2] and in [0; 8]. For each value of the gains and , an
optimization process, detailed in Appendix B, is used to obtain
the best value of by tuning upwards from zero until the
LMIs are not satisfied. The optimal delay will be the one which
delivers the largest , using the same method as in Example 1.
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Fig. 2. Maximum decay rate � with respect to � and � for � � �.

For this particular example the optimization problem is reduced
to the following one:

Fig. 2 shows the relation between the output feedback gains
and the decay rate using Theorem 2 with . The size of
the set increases when the discretization number increases.
Fig. 2 also shows that the graph has a maximum at
and . This selection of gains and ensures the
system is exponentially stable with a decay rate . The
corresponding optimal delay is .

For the optimized gains are and
. The corresponding optimal delay is . For these

parameters the decay rate is . Theorem 2 also ensures
for that the same gains and
exponentially stabilize the system (3) with a decay rate

with the optimal delay .
Remark 8: For , the computation of the conditions

from Theorem 2 become very heavy. The optimization problem
has not been tested for .

B. Simulation Results

In the results which follow system (3) is controlled using (10)
with , and .

Fig. 3 shows the state, the input and the sliding function. The
state converges exponentially to with an exponential
decay rate . The sliding function converges to
in finite time. The evolution of the control signal is shown in
Fig. 3.

In Fig. 4, different delays are used to show robustness to
changes in the delay. For too small values, e.g. , or
too large a delay e.g. , the system is unstable. However
when or 0.6, which are sufficiently close to the optimal

Fig. 3. Simulation results for � � �����, � � ���� and � � ����.

Fig. 4. Simulation results for different values of the delay � .

delay , the system is still stable. {This behavior is con-
sistent with the results of Example 1 (see Fig. 1). For given
and , exponential stability is ensured for delays sufficiently
close to the optimal value of the delay, but the exponential decay
rate is lower.

VII. CONCLUSION

A new sliding mode controller has been suggested for systems
for which finding a traditional static output feedback sliding
mode controller is not possible. The controller introduces a sta-
bilizing delay in the closed loop system. The controller is simple
and does not require heavy real-time computation. An example
is used to demonstrate a method to design the gains and the delay
of the controller. The robustness with respect to the delay has
been shown in the example. A straightforward extension ensures
robust stabilization with respect to disturbances and to param-
eter uncertainties.
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APPENDIX

A. Proof of Theorem 1

The following is not a new result, but the inclusion of a sketch
of the proof of the discretization theorem is included to im-
prove readability. Based on the results of [8], the first part of the
proof of exponential stability consists of expressing the deriva-
tive of the Lyapunov Krasovskii functional appropriately. The
next step of the proof focusses on the application of the dis-
cretization process of Gu [10].

Consider system (16) in a descriptor representation with the
extended state vector . This can be
written as:

The first term of the Lyapunov Krasovskii functional can
be rewritten in the form:

where .

Differentiating the Lyapunov functional along the trajec-
tories of (16) leads to:

(33)

Rewriting the first term of (33) using the descriptor represen-
tation [6], and integrating by parts in (33), the following equality
can be established:

(34)

where and has the form in (19)
with , , and instead of , , and

respectively. The Lyapunov functional is now expressed in
an appropriate representation to apply the discretization.

The discretization divides the delay interval into
segments , of equal length .
This divides the square into small
squares . Each small square is further
divided into two triangles.

The continuous matrix functions and are chosen to
be linear within each interval and the continuous matrix func-
tions is chosen to be linear within each triangle. The
proposed matrix functions are:

for and . Simple definitions of the
derivative of the matrix functions can be obtained which are,
for appropriate and :

(35)

Thus, the Lyapunov Krasovskii functional is completely de-
termined by the matrices , , and , .
From [12], the condition is satisfied if LMI (18) is
satisfied. Using conditions (35), the following equations hold:
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where , and
. Then (19), (34) and (35) imply [12]:

where
. Applying Proposition 5.21 from [12], it can be concluded

that if LMI (17) is satisfied.

B. Optimization Programs

The following table presents a schematic of the optimization
program developed for Theorem 1 and 2. The variables and

represent the grid size used during the search.

Theorem 1

Choose ;

; ;

for

;

while Theorem1 is satisified

if ,

;

;

end

;

end

end

Theorem 2

Choose ;

; ;

for

for

for

;

while Theorem2 is satisified

if ,

;

;

end

;

end

end

end

end
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