
Static Prediction of Heap Space Usage for
First-Order Functional Programs

Martin Hofmann Steffen Jost

LMU München, Institut für Informatik
Oettingenstraße 67, 80538 München, Germany�
mhofmann, jost

	
@informatik.uni-muenchen.de

ABSTRACT
We show how to efficiently obtain linear a priori bounds on
the heap space consumption of first-order functional pro-
grams.
The analysis takes space reuse by explicit deallocation into

account and also furnishes an upper bound on the heap us-
age in the presence of garbage collection. It covers a wide
variety of examples including, for instance, the familiar sort-
ing algorithms for lists, including quicksort.
The analysis relies on a type system with resource anno-

tations. Linear programming (LP) is used to automatically
infer derivations in this enriched type system.
We also show that integral solutions to the linear pro-

grams derived correspond to programs that can be evaluated
without any operating system support for memory manage-
ment. The particular integer linear programs arising in this
way are shown to be feasibly solvable under mild assump-
tions.

Categories and Subject Descriptors
F.3.2 [Logics and Meanings of Programs]: Seman-
tics of Programming Languages—Program analysis; D.1.1
[Programming Techniques]: Applicative (functional)
programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Dynamic storage manage-
ment

General Terms
Languages, Theory, Reliability, Performance.

Keywords
Functional Programming, Resources, Heap, Garbage Collec-
tion, Program Analysis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-628-5/03/0001 ...$5.00.

1. INTRODUCTION
This paper addresses the following problem. Given a func-
tional program containing a function f of type, say, L(B) →
L(B), i.e., turning lists of booleans into lists of booleans find
a function υ such that the the computation f(w) requires
no more than υ(w) additional heap cells.
In this generality, the problem admits the following trivial

solution: We can instrument the code for f by a counter
that is augmented each time we require allocation of a heap
cell. The function υ is then the function computed by this
instrumented code followed by a projection that discards the
output and only keeps the value of the counter.
Even if we require that υ depend only on the length of the

input w and not w itself, we could for a given input length l
run the instrumented code on all boolean lists of length l and
take the maximum. We still have a computable function
that bounds the heap space required by the computation
of f .
This trivial solution suffers from two flaws. First, eval-

uating υ requires as many resources as evaluating f itself.
Moreover, even though the code for υ constitutes a math-
ematical description of the bounding function υ, it is in a
form that allows one to say very little about its global be-
haviour. Both flaws are unacceptable in a scenario where
independently verifiable certificates on resource usage of mo-
bile code are desired [14, 1].
What one would rather expect in this situation is a state-

ment of the form: running f on an input of length n will
require no more than b(n) heap cells where b(n) is an expres-
sion like 3n+7 or 2.5n3+4n2 or 21.5n. It is only from such an
expression that one can glean immediate information about
the expected behavior of the code to be run.
In this paper we describe a method for automatically ob-

taining linear bounds on the heap space usage of functional
programs. Of course, it is undecidable whether a given pro-
gram admits such a linear bound, so we must accept certain
restrictions. We claim, however, that the restrictions we
make are quite natural and moreover, our analysis is prov-
ably efficient in this case.
An important limitation of our work is that only first-

order programs are considered. This means that a program
is a mutual recursive definition of first-order top level func-
tions. While perhaps being against the credo of functional
programming it offers us surprising benefits and moreover
many uses of higher-order functions are actually a defini-
tional extension of first-order functional programming: in
principle one can eliminate them by code duplication. We

185

comment on this and on the difficulties encountered with
fully general higher-order functions later in Section 11.

1.1 Overview of results
We assume an operational semantics that maintains a free-
list which is reduced whenever a constructor function like
cons is evaluated. On the other hand, we assume that cer-
tain pattern matches returns the matched cell to the freelist
which accordingly increases in the branches of the match. If
we try to evaluate a constructor under an insufficiently large
freelist the evaluation gets stuck.
We then devise an annotation of typing derivations with

nonnegative rational values which allows for prediction of
the freelist size required to evaluate the program. For in-
stance, if we derive x : L(L(B, 1) , 2) , 3 � e : L(B, 4) , 5
then this signifies that if we evaluate e in a situation which
binds x to a list [l1, . . . , lm] then a freelist of size at least
3+ 2m+1

P
i|li| suffices to prevent evaluation from getting

stuck. If the evaluation terminates with a result l then the
freelist will have size 5 + 4|l|. Here |·| denotes the length of
a list.
We note two crucial features: First, the size estimate for

the freelist left after evaluation is given as a function of
the result type rather than the input. Second, estimates
do not just depend on the overall size of arguments but
may attach different weight to various parts of the data.
In the example the length of the input list counts twice,
whereas the lengths of the component lists only count once.
We find that these features allow for a surprisingly smooth
compositional formulation of the annotations.
Given a concrete program P we then set up a “skeleton”

of an annotated derivation which contains variables in place
of actual annotations. The various side conditions in our
rules then take the form of linear inequalities between these
variables. We thus obtain a linear program L(P) whose solu-
tions are in one-to-one correspondence to valid annotations.
As is well-known such solutions can be efficiently computed.
We also show that integral solutions to the L(P) are in

1-1 correspondence to enriched versions of P in the pro-
gramming language LFPL [8] which bypasses memory man-
agement by explicitly passing around memory cells as part of
the data. Programs in LFPL largely behave like imperative
programs that modify heap-allocated data in-place rather
than claiming fresh memory for results of computations and
returning unused memory. In this way, our inference can
also be viewed as type inference for LFPL.
It must be said, though, that not all possible LFPL pro-

grams arise as reconstructions from solutions of the con-
straint system. The problem of reconstructing arbitrary
LFPL programs is considered in more detail in [11].
While obtaining integral solutions to linear programs is

in general NP hard, we prove that in several important and
natural sub-cases of our setting they can be obtained effi-
ciently.
We emphasize that our functional programs are not neces-

sarily required to be linearly typed. Indeed, we have a con-
traction rule corresponding to aliasing that allows us to iden-
tify two variables provided we split the resource annotations
accordingly. For example, if we have x:L(B, 3) , y:L(B, 6) , 5 �
e : C, 6 then the contraction rule allows us to derive
z:L(B, 9) , 5 � e : C, 6. Operationally, x, y point to a shared
memeory region.
If we use this contraction rule then validity of our analysis

relies on the following semantic condition: if at any point in
the evaluation of a program a heap cell is deallocated in a
destructive pattern match then this cell must not be acces-
sible from the variables occurring in the remaining program
fragment. We speak of benign sharing in this case. A viola-
tion of the property is called malignant sharing.
Notice that if a program exhibits malignant sharing then it

will not necessarily crash due to null pointer access because
it might not actually follow the path to the dangling refer-
ence even though this is possible. One may thus compare
benign sharing to the property ensured by garbage collec-
tion.
We formalise benign sharing on the level of the operational

semantics as a judgment S, σ � e ❀bs v, σ′ which asserts
that in stack S and heap σ the evaluation of e results in
value v and new heap σ′ and, moreover, all sharing during
that evaluation is benign.
For particular programs we may be able to assert benign

sharing by inspection or logical reasoning. More interest-
ingly, we would like to guarantee it by some static type
system. We already know that linear typing, i.e., the ab-
sence of contraction, provides such a guarantee; we conjec-
ture that the more general read-only type systems and anal-
yses described in [2, 12, 15, 18] all are able to provide such a
guarantee as well, by suitably restricting but not altogether
excluding the contraction rule.
The important point here is that the semantic formalisa-

tion of benign sharing makes no reference to resource an-
notations so that discharging the extra assumption made is
orthogonal to the work described in this paper.
We also mention that, of course, we can recursively define

cloning functions in the strictly linear fragment, for instance
clone : L(B, 2) → L(B, 0)⊗L(B, 0). The two copies returned
are not aliased but one of them is constructed using fresh
heap space.

Notation: The set of natural numbers denoted N is
assumed to contain zero. We let Q+ denote the set of non-
negative rational numbers.
If f is a finite function we write f \x for f� (dom f \{x}),

that is, the restriction of f to its domain less the element x.
We write f [x
→v] to denote the finite function that maps x
to v and acts like f otherwise.
FV(e) denotes the set of free variables occurring within

the term e. The substitution of a free variable v by t in
term e is denoted by e[t/v].
If l denotes a list, then |l| denotes the length of the list.

Equivalently, |l| is the number of nodes of l in a machine
representation.

Acknowledgements: Part of this research was carried
out within the EU project IST-2001-33149 “Mobile Resource
Guarantees”. We also acknowledge financial support by the
Deutsche Forschungsgemeinschaft (DFG).

2. FUNCTIONAL LANGUAGE
We define a first-order typed functional language LF as fol-
lows.

zero-order types: A ::= 1 | B | L(A) | A⊗ A | A+ A

first-order types: F ::= (A, . . . , A) → A

Here B is the type of Booleans, L(A) is the type of lists
with entries from A, sum and product are denoted by +,⊗.
Finally, 1 is a singleton type. We can also include labelled

186

trees, but refrain from doing so to save space. However, one
of our examples uses trees.
Since we are interested in memory consumption, we define

at this point a function SIZE : LF-type → N for later use:

SIZE (1) = SIZE (B) = SIZE (L(A)) = 1
SIZE (A⊗ C) = SIZE (A) + SIZE (C)
SIZE (A+ C) = 1 + max

�
SIZE (A) ,SIZE (C)

�

To save space we omit the grammar for LF terms as well as
the typing rules. Both can be reconstructed from the typing
rules for the annotated version LF�, given in Section 4.
All that needs to be done is to remove all reference to

resource constraints as shown in the following example of
the two variable rules.

x ∈ dom(Γ)

Γ �Σ x:Γ(x)
(LF:Var)

x ∈ dom(Γ) n ≥ n′

Γ, n �Σ x:Γ(x), n′ (LF�:Var)

We draw attention to the presence of the two pattern
matching constructs match and match′ governed by rules
LF�:List-Elim and LF�:List-Elim’. These rules differ only
in the resource annotations so that both pattern matches
have identical LF-typing rules. The semantics of match is
a destructive one: the list node being matched against is
deallocated afterwards; in a match′ the matched node is
preserved for subsequent use.
We also point out that the typing rules for LF�, hence the

typing rules for LF, are formulated in a linear style. That is,
multiple occurrences of a variables are explicitly introduced
via the rule LF�:Share. For convenience, we give the LF-
version here:

Γ, x:A, y:A �Σ e:C

Γ, z:A �Σ e[z/x, z/y]:C
(LF:Share)

An LF program P consists of a signature Σ and a col-
lection of terms ef for each f ∈ dom(Σ) such that for
all f ∈ dom(Σ) one has y1:A1, . . . , yk:Ak �Σ ef :C when
Σ(f) = (A1, . . . , Ak) −→ C. In concrete examples we indi-
cate the association of defining terms with function symbols
by writing down equations of the form f(y1, . . . , yk) = ef .
We usually consider a fixed but arbitrary program P

throughout the following.
We denote by LFlin the fragment of LF which neither

contains the term constructor match′ nor the typing rules
LF:Share, LF:List-Elim’. Note that LFlin is an affine lin-
ear functional language.

2.1 Examples
Throughout the examples, the type A is any fixed (but arbi-
trary) LF-type. In an implemented version of LF one would
presumably want to allow type variables and possibly even
polymorphic quantification over these.

Example 1. The following example defines a function that
reverses the order of the elements in a list of booleans.

reverse : (L(A)) −→ L(A)

rev aux : (L(A) , L(A)) −→ L(A)

reverse(l) = rev aux(l, nil)

rev aux(l, acc) = match l with
| nil ⇒ acc
| cons(h, t) ⇒ rev aux(t, cons(h, acc))

We furthermore define reverse′ and rev aux′ similarly, just
replacing match by match′ .

Example 2. The next example corresponds to the well-
known insertion sort algorithm:

sort : (L(A)) → L(A)

ins : (A, L(A)) → L(A)

leq : (A⊗ A) → B ⊗ (A⊗ A)

ins(n, l) = match l with
| nil ⇒ cons(n, nil)
| cons(h, t) ⇒
match leq(n, h) with b⊗ �

n′ ⊗ h′�⇒
if b then cons(n′, cons(h′, t))

else cons(h′, ins(n′, t))

sort(l) = match l with | nil ⇒ nil
| cons(h, t) ⇒ ins(h, sort(t))

To simplify notation we have used some syntactic sugar in
these examples: notably we allow nesting of terms which ex-
pands into nested let-constructs and also allow nested pat-
terns as in line 4 of ins which expand into a sequence of
nested matches.
Here we assume the comparison function leq to return its

arguments so that this example makes sense in the fragment
LFlin.

Example 3. The function clone doubles its input:

clone : (L(B)) → L(B) ⊗ L(B)

clone(l) = match l with |nil ⇒ nil ⊗ nil | cons(h, t) ⇒
match clone(t) with t1 ⊗ t2 ⇒

if h then cons(tt, t1)⊗ cons(tt, t2)

else cons(ff, t1)⊗ cons(ff, t2)

Example 4. The function tos replaces each third element
of a list by a value depending on its two predecessors, so it
does not change the length of the list, but this implemen-
tation of tos is composed of two auxiliary functions, which
do change the length of the list in between. Namely, sec
deletes every third element whereas tpo inserts a new ele-
ment in every third position.
The significance of the type B ⊗ B as opposed to B or an

unspecified type will be explained in Section 7.

tos : (L(B ⊗ B)) −→ L(B ⊗ B)

sec : (L(B ⊗ B)) −→ L(B ⊗ B)

tpo : (L(B ⊗ B)) −→ L(B ⊗ B)

187

tos(l) = tpo(sec(l))

sec(l) = match l with
| nil ⇒ nil
| cons(h1, t1) ⇒ match t1 with

| nil ⇒ cons(h1, nil)
| cons(h2, t2) ⇒ match t2 with

| nil ⇒ cons
�
h1, cons(h2, nil)

�
| cons(h3, t3) ⇒ cons

�
h1, cons(h2, sec(t3))

�

tpo(l) = match l with
| nil ⇒ nil
| cons(h1, t1) ⇒ match t1 with

| nil ⇒ cons(h1, nil)
| cons(h2, t2) ⇒
cons

�
h1, cons

�
h2, cons(h1, tpo(t2))

��

3. OPERATIONAL SEMANTICS
We use a freelist containing available heap cells. We treat
this freelist simply as an integer value giving the number of
free words.
Issues of alignment are assumed to be dealt with by an ap-

propriate defragmentation routine to be launched whenever
a request for t aligned words cannot be met although the
freelist has size larger or equal than t. Admittedly, defrag-
mentation is costly to implement. If desired, we can avoid
fragmentation by assuming that all allocated blocks are of
the same size. See also the remark on garbage collection at
the end of this section.
Let Loc be a set of locations which model memory ad-

dresses on a heap abstracted over possible renaming that
may become necessary upon defragmentation. We use � to
range over elements of Loc. Next we define a set of val-
ues Val, ranged over by v which occur as values of program
variables, results, and values bound to locations in a heap.

v ::= c | � | NULL | (v, v) | inl(v) | inr(v)

A value is either a boolean constant c, a location �, a null
value NULL, a pair of values (v, v) or a value marked with
either inl or inr. Occasionally we use a short hand notation
for tuples, e.g. we write (v, v, v) instead of (v, (v, v)).
We assume that the LF type derivation is implicitly ac-

cessible (e.g. by adding a pointer to a type to each value as
is done in Java), hence we allow ourselves to extend the size
function to SIZE : Val → N. The idea is that value v occupies
SIZE (v) words when stored in the heap. We are aware that
this is not rigorous, however, the reduction on notational
clutter outweighs the formal disadvantages by far.
A stack S:Var ⇀ Val is a finite partial mapping from vari-

ables to values, and a heap σ:Loc ⇀ Val is a finite partial
mapping from locations to values. Evaluation of an expres-
sion e takes place with respect to a given stack and heap,
and yields a value and a possibly updated heap. Moreover,
the size of the freelist may shrink or grow upon evaluation.
Thus we have a relation of the form m,S, σ � e ❀ v, σ′,m′

expressing that the evaluation of e under stack S and heap
σ succeeds in the presence of a freelist of size m and results
in value v. As a side effect the heap is modified to σ′ and
the size of the freelist becomes m′. The values m and m′

are arbitrary natural numbers.

The stack is extended with additional variable bindings
whenever we enter a new scope, inside subterms in the
premises of the evaluation rules. When we evaluate a func-
tion body we use a stack which only mentions the actual
parameters, intuitively preventing access beyond the stack
frame. Notice that the stack may contain pointers into the
heap (i.e., locations), but there are no pointers going from
the heap into the stack.
The operational semantics is given with respect to a fixed

signature and program.

m,S, σ � ∗ ❀ NULL, σ,m (❀�:Unit)

m,S, σ � c ❀ c, σ,m (❀�:Const)

m,S, σ � x ❀ S(x), σ,m (❀�:Var)

S(x1) = v1 · · · S(xn) = vn

m, [y1
→v1, . . . , yn
→vn], σ � ef ❀ v, σ′,m′

the yi are the symbolic arguments of ef

m,S, σ � f(x1, . . . , xn) ❀ v, σ′,m′ (❀�:Fun)

m,S, σ � e1 ❀ v1, σ0,m0

m0, S[x
→v1], σ0 � e2 ❀ v, σ′,m′

m,S, σ � let x=e1 in e2 ❀ v, σ′,m′ (❀�:Let)

S(x) �= 0 m,S, σ � et ❀ v, σ′,m′

m,S, σ � if x then et else ef ❀ v, σ′, m′ (❀�:If-t)

S(x) = 0 m,S, σ � ef ❀ v, σ′,m′

m,S, σ � if x then et else ef ❀ v, σ′,m′ (❀�:If-f)

m,S, σ � x1 ⊗ x2 ❀
�
S(x1), S(x2)

�
, σ,m (❀�:Pair)

S(x) = (v1, v2) m,S[x1
→v1][x2
→v2], σ � e ❀ v, σ′,m′

m,S, σ � match x with (x1 ⊗ x2) ⇒ e ❀ v, σ′,m′

(❀�:Match-Pair)

m,S, σ � inl(x) ❀ inl
�
S(x)

�
, σ,m (❀�:Inl)

m,S, σ � inr(x) ❀ inr
�
S(x)

�
, σ,m (❀�:Inr)

S(x) = inl(v′) m,S[y
→v′] � e1 ❀ v, σ′,m′

match x with | inl(y) ⇒ e1
| inr(y) ⇒ e2 ❀ v, σ′,m′

(❀�:Match-Inl)

S(x) = inr(v′) m,S[y
→v′] � e2 ❀ v, σ′,m′

match x with | inl(y) ⇒ e1
| inr(y) ⇒ e2 ❀ v, σ′,m′

(❀�:Match-Inr)

m,S, σ � nil ❀ NULL, σ,m (❀�:Nil)

v =
�
S(xh), S(xt)

�
� �∈ dom(σ)

m+ SIZE (v) , S, σ � cons(xh, xt) ❀ �, σ[�
→v],m
(❀�:Cons)

S(x) = NULL m,S, σ � e1 ❀ v, σ′,m′

m,S, σ � match x with | nil ⇒ e1

| cons(xh, xt) ⇒ e2

❀ v, σ′, m′

(❀�:Match-Nil)

188

S(x) = � σ(�) = (vh, vt) m0 = m+ SIZE (σ(�))
m0, S[xh
→vh][xt
→vt], σ \ � � e2 ❀ v, σ′, m′

m,S, σ � match x with | nil ⇒ e1

| cons(xh, xt) ⇒ e2

❀ v, σ′,m′

(❀�:Match-Cons)

S(x) = NULL m,S, σ � e1 ❀ v, σ′,m′

m,S, σ � match′ x with | nil ⇒ e1

| cons(xh, xt) ⇒ e2

❀ v, σ′,m′

(❀�:Match’-Nil)

S(x) = � σ(�) = (vh, vt)
m,S[xh
→vh][xt
→vt], σ � e2 ❀ v, σ′,m′

m,S, σ � match′ x with | nil ⇒ e1

| cons(xh, xt) ⇒ e2

❀ v, σ′,m′

(❀�:Match’-Cons)

The only rules that deserve an explanation are the ones
pertaining to the match constructs for lists. It is assumed
that the match construct immediately deallocates the node
matched against, whereas it is preserved in a match′ con-
struct. Accordingly the freelist grows in the branches of a
match whereas it stays the same in a match′ . At this point,
the programmer decides which one to use. It is conceiv-
able that this decision can be automated in such a way that
the best possible resource behaviour is obtained. This is,
however, left for future research.
Note that given m,S, σ, e it need not be the case that

there exist v, σ′,m′ with m,S, σ � e ❀ v, σ′,m′ for one of
the following reasons:

• Non-termination (this manifests itself as an infinite
backwards application of rule ❀�:Fun)

• Wrong elements in stack or heap, e.g. a Boolean where
either NULL or a pair is expected.

• Insufficiently large freelist, e.g. m = 0, e = cons(1, nil).

We choose to accept nontermination and rely on a standard
typing discipline to deal with wrong elements. The main
contribution here is to devise static methods that ensure
absence of insufficiently large freelists.
We remark at this point that the judgement m,S, σ � e ❀

v, σ′, m′ admits the following alternative interpretation. If
we evaluate e using a garbage collector which collects after
every pattern match then the heap size during the evaluation
will not exceed the initial heap size by more than m.

3.1 Operational semantics without freelist
In order to be able to formally state correctness of the static
analysis we are going to describe, it is convenient to in-
troduce an auxiliary operational semantics which does not
rely on freelists. To this end, we introduce a judgment
S, σ � e ❀ v, σ′ which intuitively reads as “in stack S and
heap σ expression e evaluates to result v and leaves heap
σ′”. The rules defining this judgment are like the ones that
define the instrumented judgment m,S, σ � e ❀ v, σ′,m′

but without all reference to freelist sizes. For example, we
have the rule

v =
�
S(xh), S(xt)

�
� �∈ dom(σ)

S, σ � cons(xh, xt) ❀ �, σ[�
→v]
(❀:Cons)

We can understand this judgment as formalizing evaluation
in a C-like environment where space is allocated whenever
a cons-cell is formed and deallocated whenever we match
against a cons-cell.
In earlier work [8, 2] it was shown that under a linear

typing discipline, in particular in LFlin, this judgment rep-
resents the intended functional semantics. In this paper, we
will rely on the essence of these earlier results and do not
speak about functional semantics at all. More precisely, we
will establish a result of the following kind.

Correctness property. If Γ �Σ e:A in LF and our
static analysis derives a minimum freelist size n then when-
ever S, σ � e ❀ v, σ′ without malignant sharing then for all
m ≥ n there exists m′ such that m,S, σ � e ❀ v, σ′,m′.

3.2 Formalisation of benign sharing
We define a variant of the operational semantics: S, σ �
e ❀bs v, σ′ which differs from the original operational se-
mantics in that it prohibits malignant sharing in the sense
described in the Introduction.
The auxiliary function R : heap × Val −→ P(Loc) is de-

fined as follows:

R(σ, c) = ∅ R(σ,NULL) = ∅
R(σ, (v1, v2)) = R(σ, v1) ∪R(σ, v2) R(σ, inl(v)) = R(σ, v)

R(σ, �) = {�} ∪ R(σ, σ(�)) R(σ, inr(v)) = R(σ, v)

We set R(σ, σ(�)) := ∅ when � �∈ dom(σ). We extend R
to stacks by: R(σ, S) :=

S
x∈dom S R�σ, S(x)�. Intuitively,

R(σ, S) is the set of locations accessible from S.
The judgment S, σ � e ❀bs v, σ′ is now inductively de-

fined by the rules for the ordinary (resource-free) operational
semantics except for the rules ❀:Let and ❀:Match-Cons
which are replaced by the following ones. The rules concern-
ing match′ are not altered.

S, σ � e1 ❀bs v1, σ0

S[x
→v1], σ0 � e2 ❀bs v, σ′

σ�R(σ, S′) = σ0�R(σ, S′) S′ = S�FV(e2)

S, σ � let x=e1 in e2 ❀bs v, σ′ (❀bs:Let)

S(x) = � σ(�) = (vh, vt)
� �∈ R�σ, S[xh
→vh][xt
→vt]�FV(e2)

�
S[xh
→vh][xt
→vt], σ \ � � e2 ❀bs v, σ′

S, σ � match x with | nil ⇒ e1
| cons(xh, xt) ⇒ e2 ❀bs v, σ′

(❀bs:Match-Cons)

Since these rules have strengthened preconditions com-
pared to their counterparts we clearly have

Lemma 1. σ, S � e ❀bs v, σ′ =⇒ σ, S � e ❀ v, σ′

Let us consider short program fragments illustrating malig-
nant sharing: let x=reverse(y) in y, where reverse is de-
fined as in Example 1. The function reverse reverses the list
y destructively, hence the rule ❀bs:Let is not applicable, as
y is contained in the reachable region and changes after eval-
uation of reverse(y). Note that the rule ❀:Let would go
through. If the fragment would call reverse′ instead, which
produces a reversed copy via the use of match′ instead of
match, the program fragment above would be acceptable.
However, the difference would be revealed in the different
resource consumption as will be shown in Section 4.1.

189

Now consider the fragment let x=y in x++ y, where the
infix ++ denotes list concatenation (see definition in Exam-
ple 7). Here the rule ❀bs:Let would be applicable, but fails
since x++ y cannot be evaluated, unless S(y) = NULL. The
reason is that the evaluation of x++ y deallocates x, but the
locations reachable from x can also be reached via y, hence
the precondition added to ❀bs:Match-Cons is violated. Of
course, we could define a copying version of “append” us-
ing match′ . Note that our semantics does not cater for in
place update. We can either create a new cell or deallo-
cate a cell, but never change the contents of an existing cell.
This precludes, in particular, the creation of circular data
structures.
The annotated version ❀bs

� is formulated similarly, the
resource related constraints do not change.

4. LF WITH RESOURCE ANNOTATIONS
In this section we introduce resource annotations for LF
which will allow us to predict the amount of heap space
needed to evaluate a program. This prediction will be a
linear expression involving the sizes of the arguments.
We call this annotated version LF�. Accordingly, the lin-

early typed fragment not containing the rule LF�:Share and
the match′ -term constructors will be called LFlin

� .
The types of LF� are given by the following grammar:

pure zero-order: P ::= 1 | B | P ⊗ P | R+R | L(R)

rich zero-order: R ::= (P, k) (for k ∈ Q+)

first-order: F ::= (P, . . . , P, k) → R (for k ∈ Q+)

The underlying LF-type |A| of LF�-type A is de-
fined by removing all resource annotations, for example
|L(L(B, 5) , 7)| = L(L(B)).
Furthermore we define SIZE : LF�-type → N by

SIZE (A) := SIZE (|A|), thus SIZE (A) does not depend on
the annotations contained in A.
Let Σ be an LF� signature mapping a finite set of func-

tion identifiers to LF� first-order types, Γ be an LF� typing
context mapping a finite set of identifiers to LF� pure zero-
order types, and let n, n′ be positive rationals. An LF� typ-
ing judgment Γ, n �Σ e:A,n′ then reads “under signature Σ,
in typing context Γ and with n memory resources available,
the LF� term e has type A with n′ unused resources left
over”. In each of the following typing rules, let furthermore
A,B,C denote arbitrary LF� zero-order types and n, k, p,
possibly decorated, denote arbitrary values in Q+ .

n ≥ n′

Γ, n �Σ ∗:1, n′ (LF�:Const Unit)

c a boolean constant n ≥ n′

Γ, n �Σ c:B, n′ (LF�:Const Bool)

x ∈ dom(Γ) n ≥ n′

Γ, n �Σ x:Γ(x), n′ (LF�:Var)

Σ(f) = (A1, . . . , Ap, k) −→ (C, k′)
n ≥ k n− k + k′ ≥ n′

Γ, x1:A1, . . . , xp:Ap, n �Σ f(x1, . . . , xp):C, n′ (LF�:Fun)

Γ1, n �Σ e1:A,n0 Γ2, x:A,n0 �Σ e2:C, n′

Γ1,Γ2, n �Σ let x=e1 in e2:C, n′ (LF�:Let)

Γ, n �Σ et:A,n′ Γ, n �Σ ef :A,n′

Γ, x:B, n �Σ if x then et else ef :A,n′ (LF�:If)

n ≥ n′

Γ, x1:A1, x2:A2, n �Σ x1 ⊗ x2:A1 ⊗ A2, n
′ (LF�:Pair)

Γ, x1:A1, x2:A2, n �Σ e:C, n′

Γ, x:A1 ⊗A2, n �Σ match x with x1 ⊗ x2 ⇒ e:C, n′

(LF�:Pair-Elim)

n ≥ kl + n′

Γ, x:A,n �Σ inl(x):(A,kl) + (B, kr), n
′ (LF�:Inl)

n ≥ kr + n′

Γ, x:B,n �Σ inr(x):(A, kl) + (B, kr), n
′ (LF�:Inr)

Γ, y:A,n+ kl �Σ e1:C, n′ Γ, y:B,n+ kr �Σ e2:C, n′

Γ, x:(A, kl) + (B, kr), n �Σ match x with | inl(y) ⇒ e1

| inr(y) ⇒ e2

:C, n′

(LF�:Sum-Elim)

n ≥ n′

Γ, n �Σ nil:L(A, k) , n′ (LF�:Nil)

n ≥ SIZE (A⊗ L(A, k)) + k + n′

Γ, xh:A, xt:L(A, k) , n �Σ cons(xh, xt):L(A, k) , n′

(LF�:Cons)

Γ, n �Σ e1:C, n′

Γ, xh:A, xt:L(A,k) , n+ SIZE (A⊗ L(A,k)) + k �Σ e2:C, n′

Γ, x:L(A, k) , n �Σ match x with | nil ⇒ e1

| cons(xh, xt) ⇒ e2

:C, n′

(LF�:List-Elim)

Γ, n �Σ e1:C, n′

Γ, xh:A,xt:L(A, k) , n+ k �Σ e2:C, n′

Γ, x:L(A, k) , n �Σ match′ x with | nil ⇒ e1

| cons(xh, xt) ⇒ e2

:C, n′

(LF�:List-Elim’)

Γ, x:A1, y:A2, n �Σ e:C, n′

Γ, z:A1 ⊕ A2, n �Σ e[z/x, z/y]:C, n′ (LF�:Share)

where A1 ⊕ A2 is defined as follows when |A1| = |A2|:
1 ⊕ 1 = 1 B ⊕ B = B

(A, k1)⊕ (C, k2) =
�
A⊕ C, k1 + k2

�

(A1 ⊗ C1)⊕ (A2 ⊗ C2) = (A1 ⊕ A2)⊗ (C1 ⊕C2)

(A1 + C1)⊕ (A2 + C2) = A1 ⊕ A2 + C1 ⊕ C2

L(A)⊕ L(C) = L(A⊕ C)

We observe that the following type rule is admissible:

Γ, n �Σ e:A,n0 n′ ≤ n0 + k

Γ, n+ k �Σ e:A,n′ (LF�:Waste)

If P is an LF� program, then |P | denotes the underlying LF
program:

Lemma 2. Γ, n
LF�

�Σ e:C, n′ =⇒ |Γ|
LF

� |Σ| e:|C|

190

4.1 Examples
We revisit the Examples presented in 2.1. Since the term
languages of LF and LF� are identical, we just give the
proper LF� signatures here. Again, A denotes a fixed pure
LF�-type; let a ∈ Q+ be fixed (but arbitrary) as well.

Example 1.

reverse : (L(A,a) , 0) −→ (L(A, a) , 0)

rev aux : (L(A,a) , L(A,a) , 0) −→ (L(A, a) , 0)

While reverse reverses its input in place at no additional
resource costs, reverse′ copies its argument so that it can
be reused. For a0 = a+ SIZE (A⊗ L(A)) = a+ SIZE (A)+1
we obtain the typing

reverse
′ : (L(A,a0) , 0) −→ (L(A,a) , 0)

rev aux
′ : (L(A,a0) , L(A, a) , 0) −→ (L(A,a) , 0)

In the explicit case A = B and a = 0 (hence a0 = 2), we
see that reverse can be computed without any additional
resources, while reverse′ consumes 2n previously unused
cells if run on an input list of length n (which itself already
occupies 2n cells).

Example 2. Let again a0 = a+ SIZE (A) + 1.

sort : (L(A,a) , 0) −→ (L(A, a) , 0)

ins : (A, L(A, a) , a0) −→ (L(A,a) , 0)

leq : (A⊗A, 0) −→ (B ⊗ (A⊗ A) , 0)

Example 3.

clone : (L(B, 2) , 0) −→ (L(B, 0)⊗ L(B, 0) , 0)

Example 4.

tos : (L(B ⊗ B, 0) , 3) −→ (L(B ⊗ B, 0) , 0)

sec : (L(B ⊗ B, 0) , 3) −→ �
L
�
B ⊗ B, 3

2

�
, 0
�

tpo :
�
L
�
B ⊗ B, 3

2

�
, 0
� −→ (L(B ⊗ B, 0) , 0)

The intuition behind the fractional annotations will be ex-
plained in Section 7.

5. TRANSLATION TO LFPL
In [8] we have introduced a linear functional language that
can be translated into C without dynamic memory alloca-
tion, i.e., without using the system calls malloc() and free().
This was achieved by introducing an abstract type �

standing for memory locations big enough to hold any struc-
ture node occurring in a particular program. Elements of
this abstract type may be passed around as data, in par-
ticular they can arise as input, output, and components of
structures. Constructors of recursive types take an extra
argument of type �, e.g., cons : (�, A,L(A)) → L(A). In the
translation to C the space pointed to by this extra argument
is used to store the newly create structure node. Conversely,
in a pattern match we gain access to an element of type �
when matching against a recursive constructor such as cons.

We will explain how LFlin
� can be used to infer LFPL-typings

for LFlin-programs.
Since LFPL handles resources as elements of type � we

restrict to integral annotations. For this purpose let LFN,lin
�

denote the fragment of LFlin
� where all annotations are re-

stricted to nonnegative integers.
Furthermore, we temporarily redefine SIZE (A) to be 1

for all types A. This corresponds to the assumption made
in LFPL that all structure nodes are stored in heap portions
of equal size.
Types in LFN,lin

� can then be translated to LFPL-types by
mapping each annotation n to an n-fold product of type
�, for instance, the type (A, L(A, 1) , 2) → (L(A, 1) , 0) is
mapped to (A, L(A⊗ �) ,�⊗ �) → (L(A⊗ �)).
The translation of terms follows the structure of a deriva-

tion in LFN,lin
� ; we omit the (essentially obvious) details.

This is useful since the resulting C-programs can be ex-
ecuted without overhead such as freelists, defragmentation,
or garbage collection which makes them suitable in resource-
restricted environments.

6. LF� AND SPACE-AWARE SEMANTICS
In this section we will prove a correspondence between full
LF� and the space-aware operational semantics from Sec-
tion 3.
We must formalize that a given stack and heap fit a certain

typing context:

σ � NULL:1 (Unit)

σ � c:B (Bool)

σ � v:A1 σ � w:A2

σ � (v, w):A1 ⊗A2
(Pair)

σ � v:A

σ � inl(v):A+B
(Inl)

σ � v:B

σ � inr(v):A+B
(Inr)

σ � NULL:L(A) (List-Nil)

σ \ � � σ(�):A⊗ L(A)

σ � �:L(A)
(List-Node)

∀xi ∈ dom(Γ). σ � S(xi):Γ(xi)

σ � S:Γ
(Context)

Furthermore we extend to LF�by

σ � S:A� ⇔ σ � S:|A�|
where A� is an LF� type and similarly for contexts.

Lemma 3. Let σ, τ be heaps. If σ � v:A and ∀� ∈
R(σ, v).σ(�) = τ (�) then τ � v:A

Proofs of this and all subsequent propositions are con-
tained in a technical report available on request and cur-
rently visible at our homepage.

191

Lemma 4. If Γ �Σ e:A and σ � S:Γ�FV(e) and S, σ �
e ❀bs v, σ′ then σ′ � v:A.

We define Υ : heap× Val × LF-type −→ Q+ by

Υ(σ, v, 1) = Υ(σ, c,B) = 0
Υ(σ, (v1, v2), A⊗B) = Υ(σ, v1, A) + Υ(σ, v2, B)
Υ(σ, inl(v), (A,k) + (B, l)) = k +Υ(σ, v,A)
Υ(σ, inr(v), (A,k) + (B, l)) = l +Υ(σ, v,B)
Υ(σ,NULL, L(A, k)) = 0
Υ(σ, �, L(A, k)) = k +Υ(σ, σ(�),A⊗ L(A, k))

and furthermore Υ(σ, S,Γ) :=
P

x∈domΓ Υ
�
σ, S(x),Γ(x)

�
.

The amount of additional heap space needed to evaluate
a function f : (A1, . . . , Ap, k) → (B, k′) depends on the
size of the input to f. If σ � S:{x1:A1, . . . , xp:Ap}, the
amount of additional heap space required to compute f is
k +Υ(σ, S, {x1:A1, . . . , xk:Ak}).
In particular, if f : (L(B, a) , b) → (L(B, c) , d) then evalu-

ating f(w) takes at most a|w| + b extra space to evaluate,
where |w| is the length of w. If we evaluate f(w) given a
freelist of size a|w| + b + k (where k ≥ 0) then after the
evaluation the freelist will have size at least c|f(w)|+ d+ k.

Lemma 5. If σ�R(σ, v) = σ′�R(σ, v) then Υ(σ, v,A) =
Υ(σ′, v, A).

Lemma 6. For all σ, S,A1, A2, it holds that Υ(σ, v,A1 ⊕
A2) = Υ(σ, v,A1)+Υ(σ, v,A2) provided that Υ(σ, v, A1⊕A2)
is defined.

Theorem 1. Let P be a valid LF� program with signa-
ture Σ. For all LF� terms e such that Γ, n �Σ e:A,n′ and
whenever S, σ � e ❀bs v, σ′ and σ � S : (Γ�FV(e)) then for
all q ∈ Q+ and for all m ∈ N such that m ≥ n+Υ(σ, S,Γ)+q
there exists m′ ∈ N satisfying m′ ≥ n′ +Υ(σ′, v, A)+ q such
that m,S, σ � e ❀bs

� v, σ′,m′.

Corollary 1. If P is a valid LF� program containing a
function symbol

f :
�
L(B, n1) , . . . , L(B, nk) ,m

� −→ �
L
�
B, n′� ,m′�

then the function call f(l1, . . . , lk) evaluates properly to a list

l′, provided that there are at least m+
Pk

i=1 ni|li| free mem-
ory cells available, where |li| denotes the number of nodes of
list li. After the evaluation there are at least m′ + n′|l′| free
cells available.

7. INFERENCE OF ANNOTATIONS
Recall that a linear program (LP) is a pair (V,C) where V
is a set of variables and C is a set of inequalities of the form
a1x1 + . . . anxn ≤ b where the xi are variables from V and
the ai and b are rational numbers.
In addition, one may specify an objective function which

is a term of the form c1x1 + · · · + cnxn where the xi are
from V and the ci are rational numbers. In this case, one
defines an optimal solution to be a solution that minimizes
the value of the objective function.
Our aim in this section is the following. Given an LF

program P we want to discover whether there exists an LF�
program P ′ such that |P ′| = P . To this end, we notice
that the structure of any LF�-derivation is determined by
its underlying LF-derivation.

This means that if we are given an LF-derivation of some
program P all that needs to be done in order to obtain a
corresponding LF�-derivation is to find the numerical val-
ues arising in type annotations in such a way that all the
numerical side conditions are satisfied.
To discover these annotations, we assign to a given LF-

program P (assumed to be equipped with a typing deriva-
tion) an LP L(P) with the property that solutions to L(P)
are in 1-1 correspondence with LF� programs P ′ such that
|P ′| = P . The LP L(P) is the pair (V,C) where V con-
tains one specific variable for every occurrence of a numeri-
cal value in a possible LF�typing derivation.
The set C collects all the inequalities arising as side condi-

tions in such a derivation. This includes in particular equal-
ity constraints that are implicit in that types are sometimes
required to be equal, e.g. in rule LF�:Var. Note that an
equality constraint may be encoded as a pair of inequality
constraints. Furthermore we add the constraints that all
occurring variables are nonnegative, as all LF�-type anno-
tations are nonnegative.
As an illustrative example, we consider a program P that

contains a single function symbol rev aux : (L(A) , L(A)) →
L(A) with the defining expression as given in Example 1.
We have the LF typing derivation shown in Figure 1.
In order to form L(P) we consider an “indeterminate”

LF�-derivation as in Figure 2. It is clear that any LF�-
derivation matching the LF-derivation of P arises as an in-
stantiation of the derivation in Figure 2 satisfying the con-
straints given in Figure 3. Of course, we can readily elimi-
nate all simple equality constraints given in Figure 3 leaving

c = n2 − SIZE (A)− 1− b1 n3 ≥ c

n2 ≥ SIZE (A) + 1 + b2 + n3 n3 − c+ d ≥ d

c ≥ d

plus the nonnegativity constraints. Since we are only inter-
ested in the values of variables occurring within first-order
types, we eliminate n2, n3 here in this example for a better
understanding of the set of solutions and obtain:

c ≥ d ≥ 0 b1 ≥ b2 = b3 ≥ 0

An optimal solution with respect to the sum of all variables
is then given by c = d = b1 = b2 = b3 = 0. Hence the
typing rev aux : (L(A, 0) , L(A, 0) , 0) → (L(A, 0) , 0) can be
derived in LF�, which signifies that rev aux can be evaluated
without any extra heap space.
These equations may also be regarded as the “most gen-

eral LF�-type” of rev aux, e.g. by b1 ≥ b2 = b3 we eas-
ily see that rev aux may also operate on lists containing
an arbitrary amount of extra heap space, hence rev aux :
(L(A, 7) , L(A, 7) , 0) → (L(A, 7) , 0) could be derived if nec-
essary by using rev aux in a more complicated program con-
text.
The program from Example 4 portrays the usefulness of

rational solutions. For the sake of simplicity we unify some
variables which are obviously equated. We therefore assume
the following enriched indeterminate signature:

tos : (L(B ⊗ B, l1) , x1) → (L(B ⊗ B, l3) , x3)

sec : (L(B ⊗ B, l1) , x1) → (L(B ⊗ B, l2) , x2)

tpo : (L(B ⊗ B, l2) , x2) → (L(B ⊗ B, l3) , x3)

192

LF:Var
y:L(A) � y : L(A)

LF:Cons
y:L(A) , h:A � cons(h, y) : L(A)

Σ(rev aux) = (L(A) , L(A)) → L(A)
LF:Fun

t:L(A) , r:L(A) � rev aux(t, r) : L(A)
LF:Let

y:L(A) , h:A, t:L(A) � let r=cons(h, y) in rev aux(t, r) : L(A)
LF:List-Elim

x:L(A) , y:L(A) � match x with | nil ⇒ y | cons(h, t) ⇒ let r=cons(h, y) in rev aux(t, r) : L(A)

Figure 1: Derivation of P in LF

LF�:Var
y:L(A, a1) , n1 �

y : L(A, a2) ,m1

LF�:Cons
y:L(A, a3) , h:A,n2 �

cons(h, y) : L(A, a4) ,m2

LF�:Fun
t:L(A, a5) , r:L(A,a6) , n3 �
rev aux(t, r) : L(A, a7) ,m3

LF�:Let
y:L(A, a8) , h:A, t:L(A, a9) , n4 �

let r=cons(h, y) in rev aux(t, r) : L(A, a10) , m4
LF�:List-Elim

x:L(A, a11) , y:L(A, a12) , n5 �
match x with | nil ⇒ y | cons(h, t) ⇒ let r=cons(h, y) in rev aux(t, r) : L(A, a13) ,m5

where rev aux : (L(A, b1) , L(A, b2) , c) → (L(A, b3) , d). As an indeterminated LF�-type, A may contain further parameters.

Figure 2: Indeterminate derivation of P in LF�.

a1 = a2, n1 ≥ m1 LF�:Var
a3 = a4, n2 ≥ SIZE (A) + 1 + a3 +m2 LF�:Cons
a5 = b1, a6 = b2, a7 = b3, n3 ≥ c, n3 − c+ d ≥ m3 LF�:Fun
a8 = a3, a9 = a5, a4 = a6, a10 = a7,
n4 = n2,m2 = n3,m3 = m4 LF�:Let
a12 = a1, a12 = a8, a11 = a9, a13 = a2, a13 = a10,
n5 = n1,m5 = m1, n5 = n4 − SIZE (A)− 1− a11,m5 = m4 LF�:List-Elim
c = n5, d = m5, b1 = a11, b2 = a12, b3 = a13 Valid program
a1, . . . , a13, b1, . . . , b3, c, d, n1, . . . , n5,m1, . . .m5 ≥ 0 Nonnegativity

There may be further trivial constraints arising from the indeterminates in A.

Figure 3: Constraints of LF�-derivation in Figure 2

After simplification and elimination of all variables not
occurring within the signature we are left with the following
inequalities:

x1 ≥ x2

x1 ≥ −(3 + l1) + (3 + l2) + x2

x1 ≥ −2(3 + l1) + 2(3 + l2) + x2

x1 ≥ −3(3 + l1) + 2(3 + l2) + x1 − x2 + x2

x2 ≥ x3

x2 ≥ −(3 + l2) + (3 + l3) + x3

x2 ≥ −2(3 + l2) + 3(3 + l3) + x2 − x3 + x3

plus nonnegativity constraints. A sensible solution to these
inequalities is

tos : (L(B ⊗ B, 0) , 3) → (L(B ⊗ B, 0) , 0)

sec : (L(B ⊗ B, 0) , 3) → (L
�
B ⊗ B, 3

2

�
, 0)

tpo : (L
�
B ⊗ B, 3

2

�
, 0) → (L(B ⊗ B, 0) , 0)

Suppose we want to apply tos to the list l stored at � in the
heap σ having length |l| = n. This list occupies 3n heap cells
(3 cells per node: a pair of booleans and one pointer, also
see rule ❀�:Cons). According to the type of tos, 0n + 3
extra heap cells are required for evaluation (the additionally
reserved heap space for l, which is Υ(σ, �, L(B ⊗ B, 0)) = 0

plus 3 explicitly reserved cells). This amounts to 3n+3 heap
cells in total.
Now we first apply sec to l and call the resulting heap

σ′ Since sec destroys every third element of the list,
|sec(l)| = �

2
3
n
�
. Calculating the memory resources again,

now according to the result type of sec yields: 3(
�

2
3
n
�
) +

Υ(σ′, �, L
�
B ⊗ B, 2

3

�
) = 3(

�
2
3
n
�
) + 3

2

�
2
3
n
� ≤ 3n + 3. The

memory cells freed by deleting list nodes of the input list
allow an increase of additionally reserved heap space for the
output list: Each deleted node frees three cells; as there are
at least 2 remaining nodes per deleted node, the additional
reserved heap space per node is 3

2
.

The inequality shows a possible memory leak of at most
three cells in the case that l has length divisible by three.
This is due to the fact that sec needs 3 additional cells to
ensure the type L

�
B ⊗ B, 3

2

�
in the case that l has length

n = 3i+2 for some i ∈ N. If the length is divisible by three,
these extra resources are not needed, thus wasted.
We notice that the toplevel function tos also exhibits a

“resource leak” since the three additional units required to
call never show up in the result regardless of the length of
the input. We remark that “deforestation”, i.e., elimination
of the intermediate result of the call to sec could overcome
this. Whether this is an instance of a general pattern we
cannot say at this point.
While it should be clear that fractional annotations de-

193

scribe the correct asymptotic behaviour one may wonder
whether there might be problems with concrete inputs since,
for example, allocating 3

2
cells is not possible.

Consider a list l of length two, thus occupying 6 cells in
view of SIZE (B ⊗ B ⊗ L(·)) = 3. Applying sec to l returns
an identical version of l and because of the annotation 3

2

signals the availability of 3 = 2 · 3
2
cells thus returning the

three extra cells requested by sec in this case.
But now suppose that we match against this list; the rule

LF�:List-Elim then indicates the availability of 3
2
+ 3 cells

in the cons-branch. Of these, we can only use 4 immediately
for storing operations on the heap. However, if we match
again against the remaining part we gain access to the entire
9 = 6 + 3 cells. Recall that SIZE (A) ∈ N.

8. INFERENCE FOR LFN,lin
�

In this section we consider the problem of inferring deriva-
tions in the fragment LFN,lin

� from Section 5 which removes
the sharing rule and restricts resource annotations to natu-
ral numbers. Clearly, such derivations for a given program
P are in 1-1 correspondence to integral solutions of L(P).
As is well-known finding integral solutions of arbitrary

LPs, let alone optimal ones, is an NP-hard problem.
However, we show that in a certain simplified subcase we

can efficiently find integral solutions to L(P) that are opti-
mal with respect to any objective function c whose coeffi-
cients are all nonnegative. As we want to minimize resource
consumption, this is a sensible assumption on the objective
function in the simplified subcase. Moreover, we show that
in the general case finding integral solutions is again feasible
whereas finding optimal solutions is NP-hard.

8.1 Inferring toplevel annotations
Suppose that we are only interested in solutions where all
variables that occur within zero-order (sub-)types are zero
as well as the variables occurring to the right hand side of
first-order types.
In particular, we are looking at signatures of the form

(A1, . . . , A�, n) → (B, 0) where the Ai and B are LF�-types
with all annotations equal to zero.
Inspection of the typing rules then shows that after simpli-

fication of equality constraints the remaining system consists
entirely of constraints of the form

x0 ≥ a1x1 + a2x2 + · · ·+ a�x� + b

where the xi are not necessarily distinct variables, the ai are
nonnegative integer coefficients, and b is an arbitrary inte-
ger constant. The only typing rules which might produce
inequalities not of this form are LF�:Fun, LF�:Sum-Elim,
LF�:List-Elim, but we know that here the problematic neg-
ative variables (i.e. those occurring positively on the right
hand side of the ≥ or negatively on the left hand side) are
all zero by the assumption made in the simplified case. We
call such a constraint almost positive.

Theorem 2. Let ({x1, . . . , xd}, C) be an LP where C
consists entirely of almost positive constraints. Let
c1, . . . , cd ∈ N. The optimal integral solution of this LP
with respect to the objective function c1x1 + . . . cdxd can be
found in polynomial time.

To prove this one shows that the optimal rational solution
is necessarily integral.

For an example we consider the LP arising from Exam-
ple 2. In the enriched signature there are only three variables
remaining in the simplified case:

sort : (L(A, 0) , xs) → (L(A, 0) , 0)

ins : (A, L(A, 0) , xi) → (L(A, 0) , 0)

leq : (A⊗ A,xl) → (B ⊗ (A⊗ A) , 0)

We do not give a concrete implementation of leq here and
just assume that a call to leq does not require any resources.
Therefore we immediately set xl := 0 throughout this exam-
ple. The actual value of SIZE (A) is unimportant.
Now we derive the LP as usual, inserting 0 whenever a new

numerical value is needed within an LF� zero-order type or
in the right-hand side of a first-order type.
After simplifying we are left with four almost positive con-

straints:

xi ≥ SIZE (A) + 1 xs ≥ 0

xi ≥ 2xi − (SIZE (A) + 1) xi ≥ 0

hence xs = 0 and xi = SIZE (A) + 1 would be the optimal
solution for any objective function c1xs + c2xi with c1, c2 ≥
0.
Many more programs fall under the simplified subcase.

This includes the quicksort example in Section 9 and all the
LFPL-examples contained in [8].
We remark that setting the annotations contained in types

and in result positions to fixed values other than zero also
leads to almost positive LPs.

8.2 Efficient solutions for the general case
Let us call an LP almost conical if all inequalities are of one
of the following two forms:

a1x1 + · · ·+ a�x� ≤ 0 x ≥ b

where ai ∈ Z and b ∈ N.
In this case, the set of rational solutions is closed under

multiplication with scalars λ ≥ 1. Therefore, we can obtain
an integer solution from a rational solution by multiplying
with the least common denominator.
We now show that for any LFlin-program P the LP L(P)

can be transformed into an almost conical one by performing
a substitution of variables. Solving the resulting system and
substituting back then yields a solution of L(P).
We observe that the only places where constants different

from zero are introduced into constraints is via SIZE (·) in
the rules LF�:Cons, LF�:List-Elim.
The nonzero constants of the form SIZE (A) always occur

together with the variable measuring the resource content of
the corresponding list type. Hence, grouping these constants
together with their associated variables by a substitution can
be shown to yield an almost conical system.

Theorem 3. Let P be a valid LFlin-program then there
exists an almost conical ILP (V,C) and a nonnegative in-
teger vector c such that the solution set of L(P) is equal to
{x− c | x solves C}.
We remark that this result does not hold in the presence of
rules LF�:Share and LF�:List-Elim’.

194

Corollary 2. There exists a polynomial time algorithm
that given a valid LFlin-program P determines a solution of
L(P) if one exists and reports failure otherwise.

Reconsidering Example 4 with this method yields:

tos : (L(B ⊗ B, 3) , 6) → (L(B ⊗ B, 3) , 0)

sec : (L(B ⊗ B, 3) , 6) → (L(B ⊗ B, 6) , 0)

tpo : (L(B ⊗ B, 6) , 0) → (L(B ⊗ B, 3) , 0)

We note that this integral solution requires additional re-
sources three times the length of the input list, which are
finally left over after computation, whereas the fractional
solution shows that these are unnecessary as can also be
seen by merging the definitions of tpo and sec into specific
optimized linear functional code for tos.
Although there are other integral solutions for this ex-

ample, the presented solution is (under certain aspects) the
best integral solution. However we cannot guarantee this.
While finding a solution to an almost conical LP is feasible,
finding an optimal solution is not:

Theorem 4. For every instance Φ of 3SAT with m vari-
ables we can find an almost conical LP and an objective
function so that a solution of objective value ≤ n exists iff
Φ is satisfiable.

Moreover, it was shown in [11] that such ILPs may indeed
arise from inference problems. Hence we have:

Corollary 3. Let P be a valid LF program. Finding an
optimal solution of I(P) with respect to a given, arbitrary
objective function is an NP-hard task.

9. EXAMPLES
In this section we collect several illustrative examples.

Example 5. We demonstrate that the Quicksort algo-
rithm falls within the simplified subcase presented in Sec-
tion 8.1:

qsort : (L(A, 0) , 0) −→ L(A, 0)

split by : (A, L(A, 0) , 0) −→ L(A, 0) ⊗ L(A, 0)

infix ≤ : (A⊗A, 0) → (B, 0)

qsort(l) = match l with
| nil ⇒ nil
| cons(h, t) ⇒
match split by(h, t) with u⊗ l ⇒
qsort(u)++ cons(h, nil)++ qsort(l)

split by(p, l) = match l with
| nil ⇒ nil ⊗ nil
| cons(h, t) ⇒
match split by(p, t) with u⊗ l ⇒
if h ≤ p then cons(h, u)⊗ l

else u⊗ cons(h, l)

Please note that the standard functional implementation of
quicksort, using a filtering function twice with mutually ex-
clusive filter conditions instead of split by, has no valid
LF�-derivation. Calling the filter twice requires the dupli-
cation of the input list, while the type information is not

enough to deduce that the filter cuts down each copy so that
the sum of the lengths of each list is equal to the original
list.
The sharing of heap-allocated data structures may sim-

ulate a duplication in some situations, but this of course
restricts the use to read-only access (except for the last ac-
cess) in order to prevent malignant sharing.

The following two examples show a sensible use of sharing
and hence rely on rule LF�:Share; their evaluation exhibits
no malignant sharing on all possible inputs so that Theo-
rem 1 applies.

Example 6. For calculating the length of a list it is con-
venient to assume a type representing a finite part of the
natural numbers and the presence of the usual arithmetic
functions, e.g. N := B⊗32.

length : (L(A, 0) , 0) → (N, 0)

length(l) = match′ l with
| nil ⇒ 0
| cons(h, t) ⇒ 1 + length(t)

Example 7. While the length of a list could still be com-
puted in LFlin

� without destroying the list (length might im-
mediately rebuild the input list and return it together with
the value for the length) at the cost of inconvenient pro-
gramming, the following example exhibits proper sharing of
heap-allocated data structures.
This example uses a type T(A) of binary trees whose

internal nodes are labelled with A; leaves are unlabelled
and represented by NULL. Its annotated version is T(A,k).
We have Υ(σ,NULL,T(A,k)) = 0 and Υ(σ, �,T(A, k)) =
k +Υ(σ, σ(�),A⊗ T(A,k) ⊗ T(A, k)). Thus, the amount of
resource associated with such a tree is k times the number
of its internal nodes.

pathlist : (T(A, 1) , 2) → (L(L(A, 0) , 0) , 0)

pathacc : (T(A, 1) , L(A, 0) , 2) → (L(L(A, 0) , 0) , 0)

infix++ : (L(C, a) , L(C, a) , 0) → (L(C, a) , 0)

As we referred to ++ a few times, we present here a generic
version. For this example it suffices to set C = L(A, 0) and
a := 0.

pathlist(t) = pathacc(t,nil)

pathacc(t, c) = match t with
| leaf ⇒ cons(c, nil)
| node(a, l, r) ⇒ let x=cons(a, c) in

pathacc
�
l, x

�
++ pathacc

�
r, x

�

++(l, r) = match l with
| nil ⇒ r

| cons(h, t) ⇒ cons(h, t++ r)

The function pathlist turns a tree into a list of lists of
booleans which contains the path from each leaf to the root.
The nodes of the sublists (one for each leaf) are aliased
among each other, thereby mimic the exact structure of the
former tree within the heap, saving an exponential amount
of space.

195

10. RELATED WORK
Approaches based on abstract interpretation and symbolic
evaluation [7, 13, 4, 20, 5, 6] go in the direction of the naive
approach mentioned in the Introduction. The structure of
the inferred resource bound matches the structure of the
program. Where the program contains a while loop or a re-
cursion the bounding function will do so as well. This is not
meant to diminish the value of those works: To begin the
abstract interpretation removes useless computation so that
computing the bound υ will in general be easier than run-
ning f itself. This can greatly simplify profiling and testing.
Furthermore, in many cases the recurrences reminiscent of
iteration constructs in the original code can be solved using
various methods from computer algebra.
What distinguishes our approach from these is that the

resulting linear bounds once established are trivial to evalu-
ate for concrete input lengths, that they are independently
verifiable and that the algorithm for their intention is prov-
ably successful and efficient in a well-delineated subset of
programs which comprises most textbook examples of func-
tional programming such as reversal, quicksort, insertion
sort, heap sort, Huffman codes, tree traversal, etc. Indeed,
Unnikrishnan et al. [20] report performance problems with
medium-sized inputs and recommend to fit an algebraic ex-
pression into a value table obtained from small inputs. This
is acceptable for profiling purposes but certainly not for re-
source certification.
In other works like [3] the user must provide a conjectured

resource bound. The formalism can be used to validate
it but even for the validation user interaction is required.
Moreover, this work only accounts for execution time not
heap space.
Another piece of well-known related work are Hughes and

Pareto’s sized types [10]. This system allows one to certify
upper bounds on the number of constructor symbols in in-
ductive data types. For example List k A is the type of Lists
of type A of length at most k, and accordingly “append” has
the type List k1 A → List (k2 +1) A → List (k1 + k2) A. A
comparison to the type of the append function ++ from Ex-
ample 7 reveals the different use of the annotations: While
the annotation of sized lists yields upper bounds on the
length, our annotation is a multiplicative constant which
does not restrict the length of lists of this type. The ap-
proaches are thus quite different technically.
Nevertheless, sized types can also be used to infer space

bounds. The transition from size to space is made via region-
based memory management [19] which however, imposes un-
natural restrictions due to the fact that a given data struc-
ture, e.g. a list, must reside entirely in one region. This
prevents the analysis of computations in which lifetimes of
data structures overlap, e.g. in the insertion sort algorithm
according to §5.7 of [10]. The authors speculate on a possi-
ble solution based on region resetting and liveness inference,
but this is not worked out in [10] nor in the later [16]. We
emphasize that proper dynamic memory allocation is not
modelled in [10]. This is acceptable in view of the intended
application of sized types to embedded programming, but
not—in our opinion—in a general functional programming
context.
Another possible advantage of inferring space bounds di-

rectly, as we do, could lie in improved efficiency: Merely
checking sized type requires Presburger Arithmetic (com-
plete for doubly exponential time) compared to the poly-

nomial time LP that we use. In this regard it would of
course be interesting to know the exact complexity of sized
type checking; more mundanely, whether the full strength
of Presburger Arithmetic is really needed for this problem.
The feasibility of inference as opposed to checking is left
unanswered in [16, 10].
Unlike [10] and [5] we do not analyse stack size in this

paper. We think that the linear bounds on stack size are
often not adequate since typical algorithms can either be
optimised using tail recursion to use constant stack or use a
stack of logarithmic size, e.g. divide-and-conquer methods.
Furthermore, our system naturally encompasses trees,

lists of trees, etc., whereas sized types seem to work pri-
marily for linear data structures. While trees appear in the
formal presentation in [16] none of the examples uses them;
not even the type of the constructor for trees appears ex-
plicitly.
On the other hand, [16] contains a detailed and interesting

account of infinite lists (streams). An exploration of streams
in our framework must be left to further research.

11. CONCLUSIONS
We have presented an efficient and automatic analysis of
heap usage of first-order functional programs. While we
find that our analysis is surprisingly versatile and accurate
there are a number of ways in which it can be improved.
Our analysis sometimes gives too modest assumptions

about the memory available after execution of a function.
A typical example is flatten : L(L(A)) → L(A) assumed to
be the natural implementation of flattening on lists of lists.
Calling flatten(w) returns |w| heap space. However, our
system assigns for example the type L(L(A, 0) , 0) → L(A, 0)
hence not notifying the net resource-gain.
To fix this particular case it is tempting to introduce some

kind of dependent typing allowing one to refer to the size or
length of the input in the cost term of the result position.
However, developing such a system whilst maintaining guar-
antees on efficient solvability is a delicate matter and must
be left for future research.
As it stands, the system is sometimes insufficiently poly-

morphic. Namely, it can happen that two usages of an
already defined function require two different annotations.
Even if both these annotations are compatible with the defi-
nition of f only one of them can actually be assigned in LF�.
Consider, for instance, the identity function f : L(B) →
L(B) defined by f(x) = x. In LF� we must assign a partic-
ular type, say L(B, 5) , 3 → L(B, 5) , 3. In this case, we are
not able to apply f to an argument of type L(B, 0).
To address this problem within the framework of the given

system we can split a program into blocks of mutually de-
pendent functions and perform the analysis separately for
each of the blocks of definition. When using a function f

outside its block of definition we can consider the entire LP
of function f’s definition rather than a particular solution.
This approach can be seen as a definitional extension if we
consider each occurrence of f outside its defining block as
the usage of an identical copy of f.
If we also want to enable polymorphic recursion, i.e., a

different instantiation of constraint variables in every recur-
sive call, we must replace LF� with a constrained type sys-
tem whose judgments are of the form C,Γ, n � e:A,n where
Γ, A,m, n may contain variables and C is a set of linear in-
equalities constraining these. The details are left for future

196

work, but appear to be within the reach of the methods
developed here.
A similar issue arises with higher-order functions. Simple

use of higher-order functions merely as a means for modular-
ization such as in combinators like map, filter, etc. can be
accommodated by introducing several definitions, one for
each usage, possibly hidden under some appropriate syn-
tactic sugar. Formally, this kind of usage of higher-order
functions is the one supported by the C language: the only
expressions of function types are variables and constants.
If we aim for more general function expressions like

partially-applied functions and lambda expressions as in
functional programming languages the problem of heap
space inference becomes much more complicated as we need
to monitor the size of closures which are much more depen-
dent on dynamic aspects. This is discussed in some detail
in [9]. We do not see at this point how our work could be
extended to cover general higher-order functions, not even
linear ones. One referee suggested to investigate Reynolds’
idea of defunctionalisation [17] which eliminates closures in
favour of sum types. Again, we leave this to future work.

12. REFERENCES

[1] Mobile resource guarantees. EU Project No.
IST-2001-33149, see
http://www.dcs.ed.ac.uk/home/mrg/.

[2] David Aspinall and Martin Hofmann. Another Type
System for In-Place Update. In D. Le Metayer, editor,
Programming Languages and Systems (Proc.
ESOP’02), volume Springer LNCS 2305, 2002.

[3] K. Crary and S. Weirich. Resource bound
certification. In Proc. 27th Symp. Principles of Prog.
Lang. (POPL), pages 184–198. ACM, 2000.

[4] P. Flajolet, B. Salvy, and P. Zimmermann.
Lambda-Upsilon-Omega: An assistant algorithms
analyzer. In T. Mora, editor, Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes,
volume 357 of Lecture Notes in Computer Science,
pages 201–212, 1989. Proceedings AAECC’6, Rome,
July 1988.

[5] Gustavo Gómez and Yanhong A. Liu. Automatic
accurate cost-bound analysis for high-level languages.
In Frank Mueller and Azer Bestavros, editors,
Languages, Compilers, and Tools for Embedded
Systems, ACM SIGPLAN Workshop LCTES’98,
Montreal, Canada. Springer, 1998. LNCS 1474.

[6] Gustavo Gómez and Yanhong A. Liu. Automatic
time-bound analysis for a higher-order language. In
Proceedings of the 2002 ACM SIGPLAN workshop on
Partial evaluation and semantics-based program
manipulation, pages 75–86. ACM Press, 2002.

[7] Bernd Grobauer. Topics in Semantics-based Program

Manipulation. PhD thesis, BRICS Aarhus, 2001.

[8] Martin Hofmann. A type system for bounded space
and functional in-place update. Nordic Journal of
Computing, 7(4):258–289, 2000. An extended abstract
has appeared in Programming Languages and Systems,
G. Smolka, ed., Springer LNCS, 2000.

[9] Martin Hofmann. The strength of non size-increasing
computation. 2002. Proc. ACM Symp. on Principles of
Programming Languages (POPL), Portland, Oregon.

[10] J. Hughes and L. Pareto. Recursion and dynamic data
structures in bounded space: towards embedded ML
programming. In Proc. International Conference on
Functional Programming (ACM). Paris, September
’99., pages 70–81, 1999.

[11] Steffen Jost. Static prediction of dynamic space usage
of linear functional programs, 2002. Diploma thesis at
Darmstadt University of Technology, Department of
Mathematics. Available at www.tcs.informatik.
uni-muenchen.de/~jost/da_sj_28-02-2002.ps.

[12] Naoki Kobayashi. Quasi-linear types. In Proceedings
ACM Principles of Programming Languages, pages
29–42, 1999.

[13] H.-W. Loidl. Granularity in Large-Scale Parallel
Functional Programming. PhD thesis, Department of
Computing Science, University of Glasgow, 1998.

[14] George Necula. Proof-carrying code. In Proc. 24th
Symp. Principles of Prog. Lang. (POPL). ACM, 1997.

[15] Martin Odersky. Observers for linear types. In
B. Krieg-Brückner, editor, ESOP ’92: 4th European
Symposium on Programming, Rennes, France,
Proceedings, pages 390–407. Springer-Verlag, February
1992. Lecture Notes in Computer Science 582.

[16] Lars Pareto. Types for crash prevention. PhD thesis,
Chalmers University, Göteborg, Sweden, 2000.

[17] John C. Reynolds. Definitional interpreters for
higher-order programming languages. In Proceedings
of the 25th ACM National Conference, pages 717–740,
1972.

[18] Natarajan Shankar. Efficiently executing PVS.
Technical report, Computer Science Laboratory, SRI
International, 1999.

[19] M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation,
132(2):109–176, 1997.

[20] Leena Unnikrishnan, Scott D. Stoller, and Yanhong A.
Liu. Automatic accurate live memory analysis for
garbage-collected languages. In Proceedings of The
Workshop on Languages, Compilers, and Tools for
Embedded Systems (LCTES 2001), June 22-23, 2001
/ The Workshop on Optimization of Middleware and
Distributed Systems (OM 2001), June 18, 2001,
Snowbird, Utah, USA.

197

