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Abstract—A major drawback of mobile devices is limited
battery life. Apps that use graphics are especially energy greedy
and developers must invest significant effort to make such apps
energy efficient. We propose a novel static optimization technique
for eliminating drawing commands to produce energy-efficient
apps. The key insight we exploit is that the static analysis is able
to predict future behavior of the app, and we give three exemplars
that demonstrate the value of this approach. Firstly, loop invariant
texture analysis identifies repetitive texture transfers in the render
loop so that they can be moved out of the loop and performed
just once. Secondly, packing identifies images that are drawn
together and therefore can be combined into a larger image
to eliminate overhead associated with multiple smaller images.
Finally, identical frames detection uses a combination of static
and dynamic analysis to identify frames that are identical to
the previous frame and therefore do not have to be drawn.
We implemented the technique against LibGDX, an Android
game engine, and evaluated it using open source projects. Our
experiments indicate savings up to 44% of the total energy
consumption of the device.

I. INTRODUCTION

Mobile devices are ubiquitous: in 2014, over 85% of the

computers sold were either smartphones or tablets and that

number is expected to increase in the coming years [1]. As

the popularity of mobile devices grows, the complexity of their

apps grows as well. Moreover, as apps become more complex,

they require more computing power, which is especially prob-

lematic for mobile devices whose batteries are limited. Most

smartphones are equipped with battery-saving features, which

typically restrict either software, hardware or a combination

of both. Mainstream magazine articles written in 2015 provide

tips for improving smartphone battery performance [2], [3].

These tips are largely based on sacrificing non-essentials,

such as reducing the frequency of notifications and lowering

backlight brightness.

But what if the apps themselves are not energy efficient?

Users will avoid using the apps or replace them with more

energy-efficient alternatives. Thus there is a strong incentive to

develop energy-efficient apps. Yet, a recent study of over 100

programmers shows that programmers have limited knowledge

about energy efficiency [4] and how to avoid so called energy

bugs [5].

A number of papers have been published that aim to help

developers produce energy-efficient apps. Examples include

a framework for supporting energy-conscious programming

using controlled approximation [6] and so called loop perfora-

tion [7], a general technique to trade accuracy for performance

by transforming loops to execute a subset of their iterations.

Dynamic analysis tools such as Carat can gather smartphone

usage data from a community of users and provide analysis

and recommendations on energy consumption [8]. Another

strand is work that employs static analysis to check proper

API usage, which can save energy [9], [10], identify energy-

consuming locations in source code [11], [12], and change an

app’s color scheme to be more energy efficient [13].

However, none of the techniques mentioned above consider

graphics-intensive apps, which can arguably benefit the most

from energy optimization. A recent study shows that graphics-

related API usage accounts for nearly 40% of energy con-

sumption for 55 mobile apps from different domains [14]. For

graphics-intensive apps such as games this number is likely

to be much higher, as the apps spend most of the execution

time in the render loop, the loop that draws the graphics. Most

graphics-intensive apps rely on hardware acceleration, i.e., use

the Graphics Processing Unit (GPU) rather than the general-

purpose CPU to draw graphics faster. While hardware accel-

eration can boost performance, it can be used suboptimally,

leading to lost performance.

In this paper, we present and evaluate a method for op-

timizing energy efficiency of graphics-intensive apps, which

focuses on GPU operations. Rather than relying on runtime

analysis, which explores individual executions, we provide a

static analysis method that enables analyzing program code

based on future use of data (such as definition-use chains) and

can be largely automated. More specifically, we introduce a

suite of program analyses that help eliminate unnecessary GPU

usage. This can reduce energy consumption of a graphics-

intensive app considerably, not only by reducing the amount

of work done by the GPU, but also by reducing the amount

of data transfer to the GPU. To this end, we propose three

techniques to address the following energy bugs. Firstly, loop

invariant texture analysis statically identifies texture transfers

done repeatedly in the render loop, so that it can be done

outside of the render loop just once. Secondly, packing stati-

cally identifies groups of images that may be drawn together,

such that each group’s images can be “packed” into a larger

image that is transferred over to the GPU together, which saves

the overhead of transferring and preparing multiple smaller

images for draw. Images from different groups can never be

displayed together, so they should not be packed together.

Lastly, identical frame detection uses a combination of static

and dynamic analysis to efficiently identify frames that are

identical to previous frames and therefore do not have to be

drawn.



To summarize, the contributions of this paper are:

• A novel suite of program analyses to reduce energy

consumption for graphics-intensive apps.

• An implementation of the analyses using the Soot static

analysis framework [15] and an application to OpenGL

ES Android apps developed on top of the LibGDX game

engine.

• Experiments that show that our analysis noticeably re-

duces energy consumption without sacrificing perfor-

mance.

The techniques proposed in this paper use a combination of

intraprocedural and interprocedural analyses and require some

manual intervention. They are intended to provide feedback

to the programmer in order to obtain better (energy-wise)

performance. The methods are not limited to the LibGDX

game engine and are applicable more generally to visualization

software.

II. PRELIMINARIES

We assume familiarity with compiler optimization and static

analysis techniques, as described, for example, in [16]. A sur-

vey of the most relevant research papers in static analysis can

be found in [17].

A. Graphics API

OpenGL is a language-independent and platform-

independent API for rendering vector graphics, which

uses geometrical primitives such as points, lines and shapes

to represent images [18]. It is typically used for rendering

graphics using a GPU. OpenGL ES is the embedded systems

version of OpenGL. From an application developer’s point

of view, OpenGL can seem fairly low-level, so several

frameworks, such as game engines, have been developed on

top of OpenGL ES to facilitate its proper and optimal usage.

LibGDX is such a framework that provides a unified API that

works across both desktop and mobile platforms, including

Windows, Linux, Android, iOS and Javascript.

B. Graphics-intensive Apps

We motivate the problem using Freegemas [19], an open-

source LibGDX version of the popular game Bejewelled. The

player swaps adjacent jewels to form a horizontal or vertical

chain of three or more gems of the same color. Figure 1 gives

a simplified version of the game’s code. A LibGDX game can

consist of multiple Screens. Screen’s render() method

is called back by the library when the screen needs to be

displayed. For our purposes, the control-flow graph can simply

be thought of as the screen constructor being called once and

then the render method on the constructed screen being called

in an infinite loop (lines 23–29). Anytime the code constructs a

texture or texture region (texture region just refers to an area

within a texture), there is data transfer from CPU to GPU

and the GPU performs work, which takes time and consumes

energy.

1 class GameScreen extends Screen {

2 void render(float delta) {

3 TextureRegion background = new TextureRegion

4 (new Texture(Gdx.getFile("background.png")));

5 draw(background, 0, 0);

6

7 for(Cell cell: cells) {

8 if (state == InitialAnimation)

9 cell.updateY();

10 draw(cell.gem, cell.x, cell.y);

11 }

12

13 background.getTexture().dispose();

14 }

15 }

16

17 class Cell {

18 void updateY() {

19 y = y + 2;

20 }

21 }

22

23 class Game {

24 static void main(String args[]) {

25 Screen screen = getCurrentScreen();

26 while(true)

27 screen.render();

28 }

29 }

Fig. 1. Simplified Freegemas Code

C. Energy Bugs

The example has a number of energy bugs. For starters,

note that background is constructed in every iteration of the

render loop, i.e. every frame, and disposed (lines 3, 4, 5, 13),

when the construction can be done outside of the render loop

just once. The render loop can iterate up to 80 times per

second and, in each iteration, an image is constructed and

transferred from CPU to GPU, which not only increases energy

consumption but can also decrease frame rate if the image is

large. Unfortunately, LibGDX or any library/framework cannot

identify this bug since the bug requires knowledge about future

execution, which can only be obtained by statically analyzing

the application code.

Before a texture on the GPU can be drawn, the texture must

first be bound. Since binding is expensive, it is ideal to group

or pack many smaller textures into a larger texture, bind the

larger texture once, then draw regions of it multiple times.

LibGDX can pack textures, but the developers must specify

the textures to pack, which leaves room for inefficiency. For

example, the developer can pack two images that will never be

drawn together. In Figure 1, it is possible for the developer to

pack textures in GameScreen and menu screen (not shown)

together, even though they can never be displayed together

(since two screens cannot be displayed at the same time).

Only a static analysis can be used to determine which images

can never be drawn together, which requires knowledge about

future execution.

Consider a board game like the running example or any

game that spends a long time waiting for user input. In such

cases, the screen should not be redrawn if it does not change,

as doing so would waste energy. By default, LibGDX’s render-

ing thread calls the render() method continuously, meaning



the same screen can be redrawn up to 80 times per second.

A simple solution would be for the library to record drawing

commands issued in one execution (frame) of render(),

and compare the list to that in the next execution of the

method to see if they are identical, in which case no drawing

command would have to be sent to the GPU. Unfortunately,

this is expensive and can even reduce the frame rate. Also,

this naive approach does not take advantage of the fact that

the appropriate monitoring depends heavily on the application.

For instance, applications with continuous animations, such as

a moving background, do not benefit from monitoring at all.

Unfortunately, because a library is oblivious to the application

code, it cannot tailor monitoring to the application.

The code can be improved in several ways by using the

LibGDX API, but this must be done manually by the developer

and is therefore error prone and time consuming. The improve-

ment is also not something that can be made automatically by

any framework because it requires analysis of the application

code, which the framework does not have access to. The only

way these improvements can be automated is through static

analysis.

III. METHODOLOGY

Since a graphics-intensive app renders at a high frequency,

energy optimization must incur a small or no overhead at run-

time. Also, as mentioned previously, energy optimization often

requires knowledge about future execution. These reasons are

what make static analysis-based energy optimization highly

appropriate. We present a suite of static program analyses

that address the three types of energy bugs introduced in the

previous section:

1) Loop invariant texture analysis. Transferring data from

CPU to GPU consumes a considerable amount of energy.

Instead of monitoring, which has a runtime overhead

and cannot determine what textures will be displayed

in the next loop iteration, we present an analysis that

can identify loop invariant textures. This enables the

programmer to hoist them out of the loop.

2) Packing. We propose a method to identify which images

can/cannot be drawn together so that images are packed

into a larger one to reduce texture bindings.

3) Identical frames detection. It is possible to save on

drawing if the current frame is identical to the previous

one. The proposed method employs static analysis to

identify statements that are involved in an animation.

Once such statements are reached during execution,

monitoring can be stopped. In the best case, monitoring

can be eliminated completely.

We implemented our static analyses using Soot [15] static

analysis framework. Soot converts Android application binary

file into Jimple, a three-address intermediate representation

against which our static analyses are applied. Our static anal-

yses use a combination of interprocedural and intraprocedural

analyses, and specifically points-to analysis, for which we

use SPARK, which is interprocedural, context-insensitive, flow-

insensitive and path-insensitive. We configured Soot to use this

points-to analysis for construction of an interprocedural call

graph. The call graph does not include edges in Android and

LibGDX library code because it would be prohibitively large

(orders of magnitudes larger). Our static analyses rely on off-

the-shelf analyses provided in Soot, including intraprocedural

reaching definitions and reaching uses analyses.

Our static analyses are not fully automatic and instead aim

to provide feedback to the programmer to obtain a more energy

efficient app. This is justified as follows. Firstly, and most

importantly, two of our three static analyses can produce false

positives that must be manually eliminated by the user. Since

we are in the domain of performance optimization, we could

have made the analysis automatic by only reporting cases that

can for sure be optimized. But we felt that the benefit of

identifying potentially many more optimization opportunities

outweighed the downside of having to manually verify them.

False negatives are also possible with our static analyses,

meaning we can miss optimizations, which is not critical

(e.g. compared to missing security flaws). Despite allowing

false positives and negatives, our technique is useful for real

graphics-intensive apps. Secondly, at the time of writing, at

least for our subject LibGDX apps, Soot was not able to

produce working Android binary application file from Jimple

(even without changes to the Jimple code).

We believe that the automated assistance that our technique

provides is a considerable improvement over the state of the

art approach of manual inspection and purely dynamic instru-

mentation, and can be extended to include more sophisticated

analyses. We discuss each static analysis in turn.

IV. LOOP INVARIANT TEXTURE ANALYSIS

Hoisting, or loop invariant code motion, is a classic compiler

optimization that moves computations that are identical across

loop iterations outside of the loop so that they are performed

just once. The technique can be adapted to identify redundant

texture transfers. Unlike conventional hoisting, which attempts

to identify program computations that are loop invariant, our

technique targets large data transfers between CPU and GPU,

which is much more likely to result in noticeable energy

savings. Also, since data transfer to the GPU is a side effect,

existing loop invariant techniques, as they are, would not

identify the texture transfer as being loop invariant.

Our analysis takes a Screen’s render() method and

returns a set of loop invariant draws. The aim of the algorithm

is to identify texture construction calls that are only dependent

on data that are 1) written to outside the control-flow of the

render method or 2) written to in the control-flow of the render

method but the writes are all consumed by the end of the

method. This goal can be achieved to varying degrees of preci-

sion. The algorithm we present identifies texture construction

calls that are not transitively data dependent on application

class fields. Resulting textures cannot be persisted across calls

to render (loop iterations in our setting) since the dependent

values, which are locals, will expire when the method in which

the construction is done returns. We do not check control

dependencies of construction calls because we also want to



identify construction calls that happen conditionally. Texture

construction should rarely be done in the control-flow of

the render method (lazy construction being the exception).

While such construction calls will not be hoistable, they can

still be manually refactored to be done once. Therefore, our

analysis identifies potential loop-invariant texture construc-

tions but the user must manually hoist them.

Algorithm 1 gives the details of the static analysis. In each

method reachable (transitively called) from the render

method, statements with texture construction are checked for

loop invariance. A statement is not loop invariant if it is a call

to a method that is not trusted. A trusted method is a method

we have manually determined to not affect invariance (such

as a library function used for object construction and draw

calls).1 A field, such as a library static field, can be trusted

as well. Each variable reference in a statement is checked.

If the reference is a parameter reference or an untrusted

field reference, the statement is not invariant. Otherwise, if

the reference is not trusted, then its reaching definitions and

statements that use it (if it is a reference to the variable being

defined in the statement) are checked for invariance if they

have not been already.

Let us apply the algorithm against the running example.

As the variables involved in background construction are

locals that use locals and are only used by locals and

trusted methods (Texture constructor, TextureRegion

constructor, Gdx.getFile(), draw(), getTexture()

and dispose()), the texture construction is loop invariant.

Being a static analysis method, our algorithm can miss texture

constructions that are actually invariant, e.g., if background

were a field. To handle this case, the analysis of data and

control dependencies would have to be performed across meth-

ods, rather than just at the construction site’s method. Since

the aim is performance optimization, missed opportunities are

acceptable. Because our algorithm does not check for control

dependencies, it can yield false positives as well. However,

a drawing command can be performed repeatedly within a

conditional, and we believe that sacrificing precision is worth

the opportunity to catch these cases (although they have to be

checked by the user manually). In fact, even a simpler analysis

that checks that texture construction is not done in the control

flow of the render method would be useful.

V. PACKING

We present a static analysis method that identifies which

images may be drawn together and, consequently, which

images are never drawn together in an app. This information

can help the user in packing images into a larger image to

reduce texture binding. For each screen in the app, which

can be identified as classes that implement the Screen

1Note that, while using manual classification into trusted and untrusted
methods may seem like “cheating”, manual classification is necessary because
such methods can have side effects. For example, texture constructors transfer
an image from the CPU to GPU. It is because we know the semantics of
this side effect (i.e., transferring the image multiple times is semantically
equivalent to transferring it just once) from domain knowledge that we can
consider these statements to be loop invariant.

Algorithm 1: Loop Invariant Texture Analysis

1 global visited , invariants;

2 function findInvariants(renderMethod)
3 foreach m ∈ reachableMethods(renderMethod) do

4 foreach texture construction t ∈ statements(m)
do

5 if isInvariant(t) then

6 invariants ← invariants ∪ t;

7 function isInvariant(stmt)
8 visited ← visited ∪ stmt ;

9 if isUntrustedMethodCall(stmt) then

10 return false;

11 stmts← ∅
12 foreach v ∈ variableReferences(stmt) do

13 if isParamRef (v) or isUntrustedFieldRef (v)
then

14 return false;

15 else if not trusted(v) then

16 stmts ← stmts ∪ reachingDefs(v) ∪ uses(v);

17 foreach stmt ∈ stmts do

18 if stmt /∈ visited then

19 if not isInvariant(stmt) then

20 return false;

21 return true;

Algorithm 2: Packing Analysis

1 function findTextureFiles(screenClass)
2 textures ← ∅
3 foreach

m ∈ reachableMethods(constructor(screenClass))
do

4 foreach statements ∈ statements(m) do

5 foreach string constant c ∈ constants(s) do

6 if isTextureFileName(c) then

7 textures ← textures ∪ c;

8 return textures;

library interface, methods reachable from screen’s constructor

are collected. Then, in each reachable method, we look for

image file names. Image file names collected for a screen are

grouped. Since two screens can never be displayed together,

images from different screens should not be packed together.

Algorithm 2 gives the pseudo-code for this analysis.

Recall our example given in Figure 1. For this example, the

static analysis will place the background, gems, and the help

image into one group since they are used in GameScreen.

Suppose we have another screen, called MenuScreen. That



screen’s images will be placed into a separate group.

Note that our static analysis can be improved in a number

of ways. For example, since an image file may not be used for

texture construction (but this is unlikely), we can actually do

def-use analysis to only pick out those images used for texture

construction. Also, grouping can be done at a more fine-

grained level. Suppose that images are always drawn together –

they should always be grouped together. But since it is possible

for images to be drawn together most of the time, but not all

the time, it would be too restrictive to require a group to only

contain images always drawn together. Also, our technique

currently cannot check if an existing atlas (which is the result

of packing) has been packed in an optimal way – the static

analysis result must be used prior to packing. We leave these

improvements for future work.

VI. IDENTICAL FRAMES DETECTION

The basic idea behind identifying identical frames using

monitoring is to record screen commands (e.g., draw, clear

screen) occurring in the control-flow of the render method

and, if the list is identical to the previous list of commands,

then the current frame is considered identical to the previous

frame and therefore does not need to be drawn. We improve

on this basic idea through a static analysis that can reduce

monitoring by identifying statements that perform animation.

Once such a statement is encountered, monitoring can be

stopped for the current frame. In the best case, monitoring

can be eliminated completely.

Due to its simplicity, we do not give details of the monitor.

We assume that the screen’s state after a frame has been

drawn can be completely captured using a list of commands.

In addition, we record changes to any object, such as a texture,

that is part of a command that persists across frames and can

have its state changed across frames. Comparing frames can

also be done by comparing both commands and object state

(deep value comparison of objects). We assume that objects

that are arguments to screen commands do not have their state

changed across frames.

We call a statement that performs an animation an animation

statement. We manually studied code across apps that performs

animation and found that animations typically write to a

variable using the variable’s value from the previous frame.

For example, coordinates and stills of an animation will be

updated using their previous values. Based on this observation,

we identify an animation by a write to a field that gets its value

from the same field. We ignore locals since they cannot persist

across frames in our setting (since each frame corresponds to

a new render call).

Algorithm 3 gives the details of our static analysis. For

each method that is reachable from the render method, each

definition statement in the method is checked to determine

whether it is an animation statement. The definition statement

must write to a field. For each variable reference on the right-

hand side of the statement, we compute the definition-use

chains. Then for each field read in the chains, we check to

see if that field is the same as the field written. The algorithm

Algorithm 3: Identical Frame Detection

1 function isAnimationStmt(def )
2 if leftOp(def ) isnot FieldRef then

3 return false;

4 foreach v ∈ variableReferences(rightOp(def )) do

5 duChains ← defUseChains(v);
6 foreach r ∈ fieldReads(duChains) do

7 if field(r) = field(leftOp(def )) then

8 return true;

can be implemented to varying degrees of precision. Our

definition-use chains are intraprocedural, meaning the field

write and read must occur in the same method. Also, we do

not perform points-to analysis to see that the object of the field

written to is the same as the object of a reaching field read.

However, our implementation is able to handle cases where

the field is an array and writes are to elements within that

array (e.g., field[x] = field[x]+1).

For example, in Figure 1, cell.y is updated through a

method reachable from the render method (Figure 1, line 9).

Since the write to the field obtains its value from a read of the

field (y=y+2), the write is identified as an animation statement

(Figure 1, line 19).

Note that our analysis yields both false positives and

negatives. A field that keeps track of time or score can be

incremented but never displayed. This will be a false positive

for our analysis. To address this, interprocedural dataflow

analysis could be used, focused on only analyzing field writes

that flow into a draw statement. We leave this improvement for

future work. Our technique can yield false negatives also. For

example, field writes connected to reads across functions will

not be picked up but, from what we have seen, fields involved

in animations typically are updated in the same function.

Our technique can be further improved in several ways.

Firstly, the implementation could be extended to analyze

library code. Secondly, an animation statement dominated by

another can be eliminated. Animation statements can be moved

up to the earliest point in program execution, from which

we know the statements are guaranteed to be reached. Draw

commands dominated by animation statements do not have

to be instrumented. Thus, in the best case, the monitor can

be entirely eliminated statically. Our current implementation

just identifies the animation statements and, immediately be-

fore each animation statement, a call that stops recording is

inserted.

VII. EVALUATION

Our evaluation addresses the following research questions:

• Can the proposed static analyses detect energy bugs and

enable optimizations that would not be possible by the

LibGDX framework or any other runtime approach?

• What is the quantitative effect of these bugs on the energy

consumption of the device?



A. Implementation Details

We implemented our static analyses using Soot [15]. Our

analyses build on off-the-shelf analyses provided by Soot,

including intraprocedural reaching-definitions and reaching-

uses analyses. We used the SPARK points-to analysis, which is

context-insensitive, flow-insensitive and path-insensitive. Soot

uses the points-to analysis to construct an interprocedural call

graph. As mentioned before, the call graph does not include

edges in Android and LibGDX library code because it would

be prohibitively large. Unfortunately, without library code, an

app’s call-back methods are excluded from the call graph since

they are not called from anywhere. We manually identified

the call-back methods and created an artificial main method

that calls them, which is similar to the approach in [20].

Alternatively, an approach that automatically discovers call-

back methods could have been used [21].

The Android application binary file is converted into Jimple,

a three-address intermediate representation used by Soot,

against which analysis and transformation can be applied.

Jimple could be converted back to an Android application

binary file. Unfortunately, at the time of writing, at least for our

subject LibGDX apps, the binary files produced by Soot crash

(even without any transformation applied to the Jimple code).

We therefore had to apply the results of our static analyses

against the source code of the subjects manually. Also, due

to Soot’s problem with transforming Android bytecode, we

used AspectJ to implement the monitor needed for identical

frame detection. The aspect intercepts calls to LibGDX using

an around advice, which prevents the calls from being sent to

the GPU, records them, and only sends them to the GPU if the

list is different from the previous frame’s list of commands. We

went through each animation statement and manually inserted

a call to stop the monitor.

B. Subjects

We experimentally evaluated our techniques against three

open-source Android apps written against the LibGDX frame-

work by measuring the reduction of their power consumption,

but the methods are more generally applicable. As explained

earlier, Freegemas is a game where the player swaps jewels

to form rows or columns with the same type of jewel [19]. It

has 3328 lines of Java code. Wari is a board game where each

player has a set of seeds and takes turns moving seeds, with

the objective of capturing more seeds than the opponent [22].

It is a variation of the ancient game called Oware.2 It has 1183

lines of Java code. Zxzx is a space invader-like game, where

the player ship trades shots against a larger enemy ship [23].

It has 24687 lines of Java code. We chose these subjects

because they exhibit different degrees of graphics usage. As

a stationary board game, Wari uses few images and does not

use many animations. Also, there is likely to be a lot of idle

time between user inputs as it is a strategy game based on

counting. Although Freegemas is also a board game, the user

2Wari’s logic in determining the winner is buggy but this does not affect
our results as we were able to exercise the main game play.

is likely to swap gems faster than making a move in Wari, and

Freegemas involves more animations, such as those triggered

by swapping gems. Zxzx is the most graphics-intensive, with

background moving and bullets being fired constantly.

C. Experimental Setup

Our static analyses were run on an Intel Core i5-3320M

CPU at 2.60 GHz, with 8 GB RAM and 64-bit Windows 7.

The JVM on which the static analyses were run was given

2048 KB initial and maximum heap size. Each of the three

static analyses ran in under two minutes in all cases. The

subjects were executed on a Samsung Galaxy S5 SM-G900F

smartphone running Android 4.4.2. We used a Monsoon

Power Monitor [24] to measure energy consumption of the

smartphone using a USB connection between the smartphone

and the monitor.

The basic idea of the experiment is to run a subject (play

the game) for a period of time and measure the energy

consumption. Then we apply the transformation identified by

the static analysis to the game, run the game in an identical

way and measure the energy consumption. Each run lasted

25 seconds. The user input sequence, when present, was

replayed using a touch replay tool called FRep [25]. We found

that the readings can vary, e.g., depending on how active

the phone has been. To minimize variations, before each run,

the energy consumption of the smartphone in standby for 10

seconds was ensured to be between 135 and 150µAh (this was

achieved by leaving the device in standby at least for several

minutes before each run). Also, each run was executed several

times and each energy measurement we report is the average

over these executions. The smartphone’s wifi and wireless

connection and background processes were disabled. To ensure

that games could be replayed consistently, random number

generators were changed to have a constant seed. For Zxzx, we

also made the enemy spaceship stationary. Although we were

not able to completely remove randomness of bullets from

spaceships in Zxzx, this did not make a noticeable difference

in energy consumption over the multiple executions of each

run. Table I shows the results. We now discuss each section

of the table in turn.

D. Loop Invariant Texture Analysis

For each app, we consider three runs: a run of the app

(“Original”), a run of the app with a “small energy bug”

(“Worst”, as this is the worst case for our analysis) and a

run of the app with a “large energy bug” (“Best”). We were

not able to find apps with repeated texture constructions, so

we introduced them into the apps and checked if the LibGDX

framework could detect them. The framework was not able to

detect them. The “small bug” involves creating a Texture

object for a small image used in the game, which transfers

the texture from CPU to GPU, and deleting the texture after

drawing, in each iteration of the render loop. For Freegemas,

the small image is 2 KB large. For Wari, the small image is

271 bytes large. For Zxzx, the small image is 2 KB large. The

“large bug” does the same but for a large image, such as a



TABLE I
EXPERIMENTAL RESULTS

Loop Invariant Texture Analysis

Original Worst Best
Subject Energy (µAh) FPS Energy (µAh) FPS Energy (µAh) FPS

Freegemas 1656 60 1696 (2.4%) 60 1894 (14.0%) 14

Wari 1315 60 1482 (12.0%) 60 1899 (44.0%) 58

Zxzx 1407 60 1496 (6.3%) 53 1905 (35.0%) 45

Packing

Unpacked Packed Wastefully Packed
Subject Energy (µAh) FPS Energy (µAh) FPS Energy (µAh) FPS

Freegemas 1656 60 1395 (−15.7%) 60 1396 (−15.7%) 60

Wari 1295 60 1315 (1.5%) 60 1294 (0.1%) 60

Zxzx 1584 60 1376 (−13.1%) 60 1407 (−11.1%) 60

Identical Frame Detection – No Input

Original Runtime Only Static
Subject Energy (µAh) FPS Energy (µAh) FPS Energy (µAh) FPS

Freegemas 1656 60 1459 (−11.0%) 57 1740 (5.0%) 57

Wari 1315 60 1229 (−6.5%) 59 1204 (−8.4%) 59

Zxzx 1407 60 1810 (28.0%) 49 1568 (11.0%) 54

Identical Frame Detection – Input

Original Runtime Only Static
Subject Energy (µAh) FPS Energy (µAh) FPS Energy (µAh) FPS

Freegemas 1626 60 1571 (−3.4%) 54 1849 (13.7%) 58

Wari 1421 60 1419 (−0.1%) 59 1438 (1.2%) 59

Zxzx 1619 60 1620 (0.1%) 49 1548 (−4.3%) 54

background image, used in the game. For Freegemas, the large

image is 229 KB large. For Wari, the large image is 203 KB

large. For Zxzx, the large image is 141 KB large. Our static

analysis was able to identify the bugs. In each run, the subject’s

game screen is started and left on, without user input, for a

period of time (25 seconds as mentioned before). We do not

consider user input as repeated drawing and transfer to GPU of

the same image can occur regardless of user input. For each

run, the energy consumption of the smartphone is reported

in µAh (we also give the percentage increase compared to

“Original”). Finally, we report the number of Frames Per

Second (“FPS”), as this number is important for determining

whether animations are smooth.

The small energy bug does not affect Freegemas’ perfor-

mance, but it does affect Wari’s energy consumption and

Zxzx’s energy consumption as well as its FPS. The large

energy bug affects all apps considerably, making Freegemas

and Zxzx basically unusable due to their low frame rates. The

energy consumption of Wari increases by 44%. It could be

argued that the drop in FPS might lead the developer to an

energy bug without the help of static analysis. However, our

static analysis can find the bug more directly and without

executing the app. Moreover, not all energy bugs cause a

considerable drop in FPS. The drop in Wari’s FPS is likely

to go unnoticed because its animations are simple. This

demonstrates the usefulness of our static analysis.

E. Packing

For each app, we want to compare three versions: 1) one

where images are not packed (“Unpacked”), 2) one where

images are packed (“Packed”), and 3) one where images are

packed with images from another screen, which is wasteful

(“Wastefully Packed”). There is no user input as we want to

isolate the effect of packing on drawing. Without knowing

which images are displayed in a screen, the developer may

implement cases 1) or 3). Our analysis helps the developer

avoid these mistakes by identifying the images displayed

in the control-flow of the render method of each screen.

We took each app and created these three versions. For 3),

we introduced another screen whose images should not have

been packed with the game screen’s images. For Freegemas,

the game screen’s texture atlas is 85 KB large when packed

and 473 KB large when packed wastefully. For Wari, the game

screen’s texture atlas is 216 KB large when packed and 273 KB

large when packed wastefully. For Zxzx, the game screen’s

texture atlas is 148 KB large when packed and 473 KB large

when packed wastefully.

The results show that for Freegemas and Zxzx, packing,

wasteful or not, saves between 11–15% of energy consump-

tion. But there is no difference between packing and packing

wastefully. The reason for this seems to be that, while wasteful

packing transfers a larger texture to the GPU, the GPU has

enough memory to store the larger texture, meaning there is no

noticeable effect on energy consumption. However, wasteful

packing does take extra memory so it should still be avoided.

F. Identical Frames Detection

In Table I, we consider two scenarios for the detection of

identical frames, one with user input and one without. As user

input triggers the screen to change in all the apps considered,

in which case frames will no longer be identical, it is the

more difficult scenario. Unlike experiments for hoisting and

packing, we do not inject bugs, but rather try to reduce energy

consumption of an app as is.

Let us discuss the best-case scenario, no user input, first.

The reference point is in the column labeled “Original”.



In “Runtime Only”, a purely dynamic monitor reduces FPS for

all apps. This could be due to an inefficient implementation

of the monitoring, but even an optimal monitor will incur

overhead as every drawing command needs to be intercepted,

recorded and compared. Nevertheless, the monitor does reduce

energy consumption for Freegemas and Wari, as there are

many identical frames in these apps when there is no user

input. However, note that the monitor increases energy con-

sumption by 28% for Zxzx, a heavily animated game. Also,

the drop in FPS is far larger than that for the other apps.

The column labeled “Static” gives the results for incorporating

our static analysis. Oddly, energy consumption for Freegemas

actually increases by 5%. We analyzed Freegemas’ code and

it turns out that the time that is displayed is updated every

frame, rather than every second, which would be more optimal.

The update was identified as an animation statement by our

static analysis. The monitor only caused additional overhead,

which explains why the energy consumption increased. The

static analysis does not do much for Wari, but, for Zxzx, it

was able to identify the animation statement responsible for

the moving background in Zxzx, which was able to reduce its

energy overhead to 11% from 28% and improve FPS to 54

from 49.

Let us now discuss the more difficult scenario, with user

input. For Freegemas and Wari, the screen was touched every

few seconds, triggering an animation that lasted a couple of

seconds. For Zxzx, a finger was on the screen all the time and

moved constantly to dodge bullets from the enemy spaceship.

Any saving in energy consumption that we saw without user

input is reduced, as expected. Static analysis for Freegemas

causes higher energy consumption for the same reason as

for the “no input” case. For Zxzx, static analysis does not

reduce energy consumption as much because the baseline also

consumes more energy, but it still fares better than runtime

only. Also, the static analysis still improves the monitor’s FPS

considerably.

While our static analysis should ultimately be evaluated

based on its ability to reduce energy consumption, just as

important is its ability to correctly identify animations. We an-

alyzed each animation statement and determined whether it

was actually part of code that performs animation. For Freege-

mas, 13 of 17 (76.5%) animation statements were involved in

animation. The precision was 2 of 3 (66.6%) for Wari and

22 of 41 (53.6%) for Zxzx. The false positives were due to

updates to program data such as timers, scores and levels.

A more sophisticated analysis that tracks interprocedural data

flow into draw statements is needed to eliminate these false

positives. We unfortunately were not able to determine recall,

which would have required manually analyzing each app

exhaustively to find animation statements. But we do know

that there are false negatives. For example, Wari uses a third

party library for some animations, which our static analysis is

not able to identify.

G. Threats to Validity

The main threat is to external validity. We explicitly chose

apps with varying degrees of graphics usage and energy

bugs of varying degrees of impact to illustrate the range of

quantitative benefit our technique can bring. However, we

cannot generalize our results to all graphics-intensive apps,

frameworks, use cases and energy bugs, since our case studies

may not be representative. Our study has the usual internal

and construct threats to validity.

VIII. RELATED WORK

A. Energy-efficiency Frameworks

A number of programming guidelines and frameworks have

been proposed to achieve energy efficiency, including energy-

conscious programming using controlled approximation [6]

and program transformation of [26]. Accuracy can be traded

off for performance by transforming loops to execute a subset

of their iterations by means of a technique known as loop

perforation [7].

B. Energy Bugs

The term energy bugs for mobile devices was first intro-

duced in [5]. The paper presents a taxonomy of such bugs

based on mining online user forums and OS bug repositories.

Repeated transfer of images to GPU and displaying identical

frames can be considered a loop bug, which is part of their

taxonomy. They mention the possibility of using symbolic

execution to detect loop bugs, which is similar to using static

analysis, but they do not present any technique. In [27], a

technique is presented to predict workload-dependent loops

that impact UI responsiveness. Although this work also looks

at performance problems related to loops, the technique is

concerned with identifying loops whose performance varies

by input size, whereas we aim to remove redundancy within

the rendering loop, which lasts for the duration of the app.

The runtime testing technique TODDLER reports tests whose

loops perform computations that are similar across iterations,

which can be used to identify performance bugs [28].

Static analyses for quantitative properties of software are

rare. The most common static analyses of this kind consider

worst-case execution time of real-time software (e.g. [29],

[30], [31]), but quantitative properties of probabilistic soft-

ware have also been analysed [32]. Energy is typically not

considered at the code level, though there are frameworks that

support software product lines [33] and cardiac pacemaker

models [34]; with the exception of [34] none consider real

energy measurements. In [35], a static analysis is presented

for hoisting loop invariant data structures or objects, which

is technically similar to the loop invariant technique we pre-

sented. Our setting and aims are different, however. We target

graphics-intensive mobile apps with the goal of saving energy

consumption. To this end, we only look for method calls that

are known to be energy greedy, such as texture constructions,

rather than any loop-invariant data structures. Also, our tech-

nique targets method calls that would conventionally not be

considered loop invariant because they have side effects to



the GPU. Also, we present the packing and identical frame

detection optimizations.

C. Energy Estimation

Techniques exist for mapping energy consumption to pro-

gram entities, such as methods [36] and source code loca-

tions [11], and even runtime artifacts such as paths [37]. These

can be used to detect bugs where a code portion spends more

energy than other portions. Since the problems we tackle,

i.e., repeated image transfers, inefficiently packed images, and

identical frames, need not necessarily consume more energy

than other areas of the app, energy profiling does not seem to

be appropriate.

D. Runtime Analysis

There are works that rely on data obtained at runtime to

find energy bugs. We tackle problems that are best addressed

using knowledge about future execution, which only a static

analysis can provide. Regardless, we compare our work to

some dynamic analyses. TODDLER, mentioned above, is a

dynamic analysis technique. Carat gathers smartphone usage

data from a community of users and provides analysis and

recommendations on energy consumption [8]. Since it works

at the usage level, rather than code, it is not applicable to our

problem. In [38], tests are generated for finding energy bugs.

Using a known baseline energy consumption of the device in

idle state, failing tests can be identified. Anomaly detection

is used to detect energy hotspots. The technique, like other

testing techniques, needs to know what is correct. For our

problems, this would require knowing what the right amount

of energy consumption is for an app without repeated image

transfers, unoptimized packing, and identical frames, which

would be hard to obtain. GreenDroid uses dynamic taint

analysis to identify underusage of sensors [39], which is an

orthogonal problem to ours.

E. Static Analysis for Mobile Apps

A mobile app can acquire a wakelock to keep the phone

awake, but it should release it eventually, to prevent energy

waste. A static analysis based on reaching definitions can

identify cases where a wakelock is never released [9]. Our

paper tackles a different problem requiring a different solution.

PerfChecker provides static analyses to identify list views

that do not reuse recycled items and heavyweight calls in

main UI thread (which affects responsiveness) [10]. While

the idea of applying static analyses aimed at improving

graphics is similar to our technique, our technique targets

graphics-intensive apps (e.g. games as opposed to apps with

largely static screens) and therefore requires more specialized

techniques. Also, we quantitatively demonstrate the energy

consumption savings that our technique can provide, while

their work does not. Nyx uses static analysis to replace

the large, light-colored background areas of web applications

with dark colors to reduce the energy consumed by OLED

screens [13]. By contrast, our technique leaves screen output

unchanged.

F. Compiler Optimization

The presented suite of static analysis techniques can be

seen as a high-level version of classic compiler optimizations.

We developed a loop invariant analysis to identify repeated

texture constructions. Our analysis for packing relies largely

on control-flow reachability. Our identical frame detection

analysis is similar to induction variable analysis [40] in that

we are looking for statements of the form x=x+c. Unlike

induction variable analysis, which requires figuring out how

the variable is updated (be it for strength reduction or under-

standing data structure traversal), our analysis only cares that

the variable’s value will be different from the previous frame’s

value. Also, whereas compiler optimizations have traditionally

been used for optimizing speed of execution, our compiler-

like optimizations are for optimizing energy consumption of

graphics-intensive mobile apps.

IX. CONCLUSION

Graphics-intensive apps such as games rely on GPUs for

drawing, which can provide a huge performance benefit but

at the same time leaves a great deal of room for developer

mistakes. While a library or a framework can help prevent

mistakes, there are code issues that require knowledge of

future execution, which makes static analysis a necessity.

In this paper, we presented three such problems and the

corresponding static analyses that for the first time tackle

graphics-intensive apps: loop invariant texture analysis that

identifies repeated texture transfers, packing that identifies

images used in the control-flow of a screen, and identical frame

detection that identifies redundant frames that do not have to

be drawn.

We have designed these methods so that they provide

feedback to the programmer, identifying potentially energy-

wasteful operations. Our approach is novel in that it provides

static analyses that are tailored for energy optimization of

graphics-intensive apps. We implemented the analyses using

the Soot static analysis framework, targeting Android apps

written using the LibGDX game engine. Evaluation on three

open source projects using real energy measurements obtained

using a power monitor shows that our loop invariant texture

analysis can save up to 44% in energy consumption and

prevent a drop in frame rate, packing can save up to 15% in

energy consumption, and identical frame detection can save

up to 11% in energy consumption while surpassing a purely

runtime approach in display performance.

There are several directions for future work aimed at

improving precision of the static analysis. One possibility

is to increase the precision of the static analyses. Another

option is to increase automation, for example by employing

techniques based on [21], which automatically discovers call-

back methods. Finally, developing generic energy optimization

techniques for GPUs would be a worthwhile direction.
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A. Zeller, Eds. ACM, 2011, pp. 124–134. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025133

[8] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and S. Tarkoma,
“Carat: Collaborative energy diagnosis for mobile devices,” in Embedded

Networked Sensor Systems, ser. SenSys. ACM, 2013, pp. 10:1–10:14.
[Online]. Available: http://doi.acm.org/10.1145/2517351.2517354

[9] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is
keeping my phone awake? Characterizing and detecting no-sleep
energy bugs in smartphone apps,” in Mobile Systems, Applications, and

Services (MobiSys). ACM, 2012, pp. 267–280. [Online]. Available:
http://doi.acm.org/10.1145/2307636.2307661

[10] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting
performance bugs for smartphone applications,” in International

Conference on Software Engineering (ICSE). ACM, 2014, pp. 1013–
1024. [Online]. Available: http://doi.acm.org/10.1145/2568225.2568229

[11] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating
source line level energy information for Android applications,” in
International Symposium on Software Testing and Analysis (ISSTA),
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