
STATIC RECOGNITION OF POTENTIAL WINS IN

KNNKB AND KNNKN

E.A. Heinz*
International University (IU), School of IT, Kasernenstr. 12, D-76648 Bruchsal, Germany

ernsLa_heinz@web.de; http://www.i-u.de/schools/heinz/

Abstract The fact that the strong side cannot enforce a win in KNNK makes many chess

players (both humans and computers) prematurely regard KNNKB and KNNKN

tobe trivially drawn too. This is not true, however, because there are severa! tricky

mate themes in KNNKB and KNNKN which occur more frequently and require

more complicated handling than common wisdom thinks. The text analyzes the

mate themes and derives rules from them which allow for the static recognition

of potential wins in KNNKB and KNNKN without further lookahead by search.

Although endgame databases achieve the same goal, they are normally far less

efficient at doing so because of their additional J/0 and memory requirements

(even when compressed).

Keywords: computer chess, endgame play, KNNKB, KNNKN, static recognition

1. Introduction

Usually, two bare Knights are not much of a force when it comes to mating

in late endgames such as KNNK, KNNKB, and KNNKN. It is well-known that

these endgames are generally drawn despite the substantial material advantage

enjoyed by the strong side (Thompson, 1991; The Editors, 1992; Nalimov,

Haworth, and Heinz, 2000, 2001). Human chess players and chess programs

alike tend to incorporate rules of thumb classifying bare KNN constellations

as most unlikely to win. Thus, common chess wisdom avoids KNN types of

positions when being ahead in material and goes for them otherwise. A crude

way to implement the heuristic is by scoring essentially ali KNNK, KNNKB,

and KNNKN positions as draws. Like many others, an early version of our own

chess program DARKTHOUGHT (Heinz, 1997, 2000) did exactly this back in

*This work originally started back in the mid-1990s while the author stil! was a Ph.D. candidate at the

School of Computer Science, University of Karlsruhe, Germany, and then continued throughout his stay as

a postdoctoral fellow at the M.I.T. Laboratory for Computer Science, USA, from 1999 to 2001.

H. J. Van Den Herik et al. (eds.), Advances in Computer Games

© IFIP International Federation for Information Processing 2004

46

a b c d e f g h

Figure 1. Black's l..Qal? loses to

2. Qxal Bxal (seeFig. 3) -1.. Qbl! draws.

abc de fgh

Figure 3. White mates in 2 moves:

1. Nd5! and 2. Nc7# or 2. Nb6#.

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

E.A. Heinz

a b c d e f g h

Figure 2. White's 1. Bxh4! wins as

1.. Nxh4 is a forced mate (see Fig. 4).

a b c d e f g h

Figure 4. White mates in 3 moves:

1. Nc3 {Nf4}, 2. Nd5, 3. Nc7# {Nb6#}.

mid-1995. Then, at the end of some blitz test games, it encountered the two

positions shown in Figures 1 and 2 where it happily went for the continuations

leading to Figures 3 and 4 respectively, mistakenly scoring them both as draws.

DARKTHOUGHT played without endgame databases and short on time, so it

saw the loss only after having manoeuvered itself into it.

Of course, the aforementioned scenario with the so-called "horizon effect"

visible at low search depths is nothing unusual in computer chess. It was quite

special, however, that the horizon effect occurred with full severity (score drop-

Static Recognition of Potential Wins in KNNKB and KNNKN 47

ping from draw to being mated) in seemingly trivial circumstances (KNNKB

and KNNKN). This strongly aroused my curiosity and sparked the work that

eventually Ied to the development of interior-node recognizers (Heinz, 1998,

2000), knowledgeable RAM-based endgame databases (Heinz, 1999a, 2000),

and efficient endgame indexing (Heinz, 1999b, 2000; Nalimov et al., 2000,

2001) plus their implementation in DARKTHOUGHT. Hence, those rather

innocent-Iooking two positions from Figures 1 and 2 were in fact instrumental

for much of my endgame-related research up to date.

Solving the KNNKN "mate in 3" of Figure 4 requires a 5-ply search with 4

quiet half-moves before the final checkmate: White's 1. Nc3 {Nf4} and 2. Nd5

plus Black's respective answers. Consequently, standard quiescence searches

following either checks and captures or captures only cannot spot the win unless

supported by lucky hits in the transposition table. The same holds for normal full

searches with remaining depths of::; 3 plies in case of capture~check quiescence

and ::; 4 plies in case of capture-only quiescence. Therefore, the search alone

most likely fails to resolve the mate in this simple position if it occurs far out

near the lookahead boundary. According to Thompson (1991), The Editors

(1992), and Nalimov et al. (2000, 2001) the endgames KNNKB and KNNKN

feature even harder positions than the ones from Figures 3 and 4: the longest

forced win for KNNKB is "ma te in 4" (see Figure 5) and for KNNKN it is "ma te

in 7" (see Figure 6). Because of the checks and single-reply moves involved

here, normal full searches with extensions and quiescence searches with checks

included might actually resolve these deeper mates more easily than my two

example positions with their many quiet moves.

a b c d e f g h

Figure 5. White mates in 4 moves:

1. Nb6+ Kb8 2. Nd7+ Ka8 3. Kc7 Bhl { or

any other legal move by B} 4. Nb6#.

8

7

6

5

4

3

2

a b c d e f g h

Figure 6. White mates in 7 moves:

1. Na6+ Kb7 2. Nc5+ Kb8 3. Ne7 Ng3

4. Nc6+ Ka8, 5. Kc7, 6. Nd7, 7. Nb6#.

48 E.A. Heinz

An obvious solution to the problem is the usage of omniscient endgame

databases that return the exact distance-to-win (mate or conversion to another

won subgame) when queried. In practice, this does not really work out because

endgame databases (even in compressed format) usually reside on secondary

storage media due to their large sizes. Thus, their querying incurs consider­

able performance penalties and additional memory consumption for caching

purposes. As a good compromise between accuracy and speed, most chess pro­

grams do not query any endgame databases in the quiescence search and very

often stop doing so a few plies above the main lookahead boundary already.

Please note, however, that in the particular case of KNNKB and KNNKN it is

possible to·copy Nalimov's compressed tablebases (Nalimov et al., 2000, 2001)

to a RAM disk requiring less than 1 MB of memory and access them from there.

Performance-wise, the necessary IlO, index calculations, and data decompres­

sion stilllose against the static recognition rules suggested by nie later on in this

text- but actually not by much. Yet, the special database setup does not allow

for any generalization regarding other similar positions. In particular towards

this end, I see excellent promise of the rule-based approach though.

The remainder of this text is structured as follows. The next section discusses

related work. Then, the subsequent sections focus on the various mate themes in

KNNKB, KNNKN, and their subgames (namely KBKN, KNKN, and KNNK).

These themes lead to the derivation of recognition rules and the final formulation

of the full algorithm for the static recognition of potential wins in KNNKB and

KNNKN. Last but not least, a wrap-up of the main findings and a look into the

future conclude the work.

2. Related Work

There exists an ample body of related work covering endgame databases and

infallible rule-based endgame play in chess. Both areas feature a long and rich

history of interesting research. The introductory section above ~eady referred

to some important contributions in the field of endgame databases, namely

(Thompson, 1991; The Editors, 1992; Nalimov et al., 2000, 2001). An elabo­

rate discussion of endgame databases and their history was provided by Heinz

(1999b, 2000). The introduction also mentioned the interior-node recogniz­

ers and knowledgeable endgame databases of DARKTHOUGHT (Heinz, 1998,

1999a, 2000). Both are of special interest here because the static recognition

rules for KNNKB and KNNKN are to augment that very recognizer framework.

The rest of this section now focusses on infallible rule-based endgame play in

chess. As early as 1890, Torres y Quevedo built a marvelous electro-mechanical

machine which played and won many of the hardest KRK positions. Tan (1972)

implemented the first program that achieved seemingly infallible play for the

KPK endgame. Tan's excellent set of rules solved ali difficult KPK positions

Static Recognition of Potential Wins in KNNKB and KNNKN 49

known by then, including Averbakh's and Fine's famous examples. But be­

cause omniscient KPK endgame databases were not yet available in 1972, the

hypothesized perfectness of the program remained unproven. However, Tan's

program doubtlessly pioneered the usage of decision trees with multi-valued

nodes and leaves representing specific pattern knowledge about the respective

endgame domain. Decision trees became an integral part of nearly ali subse­

quent works which focussed on the explicit construction or automatic deduction

of complete rule sets for infallible endgame play in chess. Later on, Bratko,

Kopec, and Michie (1978), Bramer and Clarke (1979), and Bratko and Michie

(1980) presented more refined representation schemes for pattern knowledge

in chess endgames. Severa! good examples of these and other predominantly

hand-crafted rule sets are listed below.

• KBNK- van den Herik (1983);

• KNNKP(h)- Herschberg, van den Herik, and Schoo (1989);

• KNP(h)K- van den Herik (1980, 1982);

• KPK- Tan (1972), Beai (1977), Beai and Clarke (1980), Bramer (1980a,

1980b), Niblett (1982), Barth and Barth (1992);

• KPKP (both P passed) - Bratko (1982), Barth (1995);

• KRK-TorresyQuevedo [1890], Zuidema(1974), Bramer(1980a, 1982);

• KRKN- Bratko and Niblett (1979), Kopec and Niblett (1980);

• KQKP- Barth and Barth (1992);

• KQKQ- Barth and Barth (1992), Weill (1994).

The surprising complexity of rules and knowledge bases for "simple" prob­

lem domains (such as 3-piece endgame databases in chess) ignited the in te rest of

researchers in learning such infallible rules automatically. Especially the KRK

and KPK endgame databases became extremely popular for automatic learning

experiments. Many works that try to automate the inductive acquisition of rules

for infallible endgame play in chess also employ decision trees as their central

resources for the representation of semantic knowledge. The following brief

overview of publications about automatic learning of infallible endgame playin

chess and the inductive acquisition of rule-based knowledge therefor is meant

to serve as a mere introduction to the field. Any more comprehensive summary

clearly lies beyond the scope of this text.

• KBBKN (selected positions)- Muggleton (1988);

• KBRK (extended chess version)- Coplan (1998);

50 E.A. Heinz

• KNNKP(h)- van Tiggelen and van den Herik (1991), van Tiggelen

(1991, 1998);

• KPK- Michalski and Negri (1977), Negri (1977), Shapiro and Niblett

(1982), Shapiro (1987), Coplan (1998);

• KP(a7)KR- Shapiro and Michie (1986), Shapiro (1987), Muggleton

(1990);

• KRK- Bain (1994), Bain and Muggleton (1994), Bain and Srinivasan

(1995);

• KRKN- Quinlan (1979, 1983), Shapiro (1987), Verhoef and Wesselius

(1987).

3. Checkmates in KBKN and KNKN

Although the subgames KBKN of KNNKB and KNKN of KNNKN are

trivially drawn, they actually do feature a few checkmate positions. These are

shown in Figure 7 where each quadrant of the board depicts its own mate theme

tobe viewed independently of the others. Yet, normal non-mate positions in

KNKB and KNKN do never forcibly lead to the side on move being mated (i.e.,

there are only direct "mates in 1" because the side on move can always evade

any mating attempt). Still, the mate themes ofFigure 7 demand proper attention

because they also apply to KNNKB and KNNKN where both the strong as well

as the weak side might mate the opponent accordingly. The static recognition

rules must take ali these possibilities into full account.

8

7

6

5

4

3

2

1

a b c d e f g h a b c d e f g h

Figure 7. Mate themes in KBKN and KNKN (comer traps, not enforceable).

Static Recognition of Potential Wins in KNNKB and KNNKN

4. Checkmates in KNNK

8

7

6

5

4

3

2

1

51

a b c d e f g h a b c d e f g h

Figure 8. Mate themes in KNNK (comer traps, not enforceable).

a b c d e f g h

8

7

6

5

4

3

2

1

Figure 9. Another mate theme in KNNK (edge trap, not enforceable).

Despite the considerable material advantage of the strong side, the subgame

KNNK of KNNKB and KNNKN is generally drawn too (Thompson, 1991;

The Editors, 1992; Nalimov et al., 2000, 2001). Again, there are no enforce­

able checkmates in KNNK but the number and variety of mating themes and

direct mates are much higher here than in the materially balanced subgames

KBKN and KNKN. Figure 8 visualizes whole sets of mate themes in KNNK by

showing severa! alternative locations of the strong King together with a fixed

52 E.A. Heinz

piacement of the two Knights and the weak King in the same singie quadrant.

The checkmate positions in each such set differ soieiy by the Iocation of the

strong King. Like the mate themes of KBKN and KNKN, these KNNK check­

mates ali invoive trapping the weak King in a comer of the board. In addition

to the comer traps, there is another special mate theme in KNNK that works by

trapping the weak King on the edge of the board away from the comer. Figure 9

depicts this additionai mate theme for one possibie Iocation of the weak King

on the edge in the upper half ofthe board. The theme remains valid when shift­

ing it to the left or right within the bounds of the board, of course. Although

not being activeiy enforceabie within KNNK, ali the mate themes of Figures 8

and 9 exemplify potential wins by the strong si des in KNNKB and KNNKN.

Therefore, the static recognition ruies must aiso cover them properly.

5. Cbeckmates in KNNKB and KNNKN

Those readers who are still not convinced that KNNKB and KNNKN po­

sitions deserve better than being scored as some kind of draw might finally

reconsider after taking a Iook at the following numbers found in Nalimov's

tabiebase summary fiies (Nalimov et al., 2000, 2001). Roughiy 10,000 posi­

tion tempiates in KNNKB and 40,000 position templates in ~KN are won

for the KNN side. The vast majority of them are non-direct forced wins re­

quiring severa! moves to mate. Including symmetries, the real numbers of won

positions for the KNN side amount to 4x - 8x as many: i.e., 40,000 to 80,000

in KNNKB and 160,000 to 320,000 in KNNKN.

Compared with the 300 to 600 forced wins ofKNNK (ali direct mates), there

are orders of magnitude more forced wins in KNNKB and KNNKN where the

weak side features a minor piece in addition to the King. Hence, the KNN side

is actually better at enforcing checkmate if the opponent defends itseif with

more material than just a lone King. As counter-intuitive as this might seem

at first giance, it is quite well-known and not too hard to und~rstand because

the additionai piece prevents stalemates and may even block an escape route

of the weak King. 1 However, the added material also enables the weak side

to mate the opponent in some non-enforceabie circumstances brought about by

bad play of the strong side. Consequentiy, KNNKB and KNNKN contain some

positions where the weak side wins and the KNN side is mated.

5.1 Weak Side Wins

The mate themes of ali subgames still apply in KNNKB and KNNKN as

well, with the excess piece (a strong Knight) located anywhere eise on the

1The famous forced wins in::; 7 moves with a single Knight against a Pawn in KNKP(a,h) exploit the very

same strategy.

Static Recognition of Potential Wins in KNNKB and KNNKN

8

7

6

5

4

3

2

1

53

a b c d e f g h a b c d e f g h

Figure 10. Additional roate themes for weak side in KNNK[B,N] (not enforceable).

board in legal fashion. If the second Knight of the KNN side also resides

directly beside the strong King trapped in a comer, the noteworthy additional

mate themes shown in Figure 1 O arise. The static recognition rules must take

ali such possibilities into fuli account.

5.2 KNN Side Wins

8

7

6

5

4

3

2

1

a b c d e f g h a b c d e f g h

Figure 11. Mate themes without King support in KNNK[B,N] (not enforceable).

As before, the mate themes of ali subgames apply in KNNKB and KNNKN

too. On top of these, the KNN side may now mate the opponent even without

54 E.A. Heinz

any support of its own King. Figure 11 presents the according NN-checkmates

which are quite exceptional and not enforceable. Other additional mate themes

ofKNNKB involvingthefull setof5 pieces on the boardare showninFigures 12

and 13 (corner traps) and Figure 14 (edge traps). This overview of positions

with the KNN side winning is by no means exhaustive. But due to space

limitations, the remaining positions won by the strong side in KNNKB cannot

be shown here. Unfortunately, the very same holds for ali additional KNNKN

mate themes and positions won by the strong side there. Nevertheless, the static

recognition rules must of course cover them ali in a suitable way too.

a b c d e f g h

8

7

6

5

4

3

2

a b c d e f g h

Figure 12. Additional mate themes for strong side in KNNKB (1).

a b c de fg h

8

7

6

5

4

3

2

1

Figure 13. Additional mate themes for strong side in KNNKB (Il).

Static Recognition of Potential Wins in KNNKB and KNNKN

8

7

6

5

4

3

2

1

55

a b c d e f g h a b c d e f g h

Figure 14. Additional mate themes for strong side in KNNKB (III).

6. Static Recognition Rules

The preceding sections on checkmates in KNNKB and KNNKN plus ali

their subgames (KBKN, KNKN, KNNK) argue that ali possible mate themesin

these endgames involve trapping the enemy King in either the corner or on the

edge of the board. The omniscient endgame databases confirm this notion but

their exhaustive querying also reveals some forced wins for the KNN side in

KNNKN where the weak: King resides on one of the "extended corner" squares

of the board, namely b2, b7, g2, and g7. Figure 15 shows such a position

which arises from the forced win in 7 moves of Figure 6 after 1. Na6+ Kb7.

a b c d e f g h

8

7

6

5

4

3

2

1

Figure 15. White mates in 6 moves- see Figure 6 after l. Na6+ Kb7.

56 E.A. Heinz

The ensuing motif how to enforce the final checkmate does not work against a

defending Bishop. Hence, there are no forced wins with the weak King located

on "extended corner" squares in KNNKB.

Strong-Win Potential. The winning chances of the strong crucially hinge on

its ability to keep the weak King trapped on the edge and, in case of

KNNKN, the "extended corner squares ofthe board. Success in doing so

is quite tedious to determine exactly because of possible checks, attacks

on the strong Knights, and even pins by the weak Bishop in KNNKB.

NN-Mate Rule. lf the weak King is located in a corner of the board with its

Bishop or Knight directly beside it on an "extended corner" square and

a strong Knight trapping it from the next square on the long diagonal,

then the special mate themes of Figure 11loom. They do not require any

direct support by the strong King. So, the position is a guaranteed win

for the KNN side if the other strong Knight already gives a check or is on

move and able to deliver a direct check (in KNNKN this holds even if the

strong King is currently in check itselt). Otherwise, the position is drawn

in KNNKB if the weak side is on move or the strong side is in check

because then the weak Bishop can capture a Knight (see Figure 11).

Weak-Draw Rule. If the weak King does not reside on the edge of the board

and not on any "extended corner" square in case of KNNKN either, then

the weak side at least draws. The same holds if the weak side is on move

and the weak King can directly step off the edge and the "extended corner"

in case of KNNKN. If the distance between the two Kings exceeds 4 steps

measured in squares on the board, the position is drawn too as discovered

by exhaustive analyses of the endgame databases KNNKB and KNNKN.

Depending on the side-to-move and whether it is a KNNKB or KNNKN

position, the distances between the two Kings triggering a draw are even

smaller (see recognition algorithm below for more details).

Weak-Win Rule. lf the strong King is located in a corner of the board with at

least one of its Knights directly beside it on the edge of the board and the

weak King covers the "extended corner" square next to the strong King,

then the weak side might even win whereas the strong side at most draws.

lf so and the strong side is on move but not checkmated, then the position

is drawn. lf so and the weak side is on move but cannot directly check

and mate the opponent, then the position is drawn as well.

Static Recognition of Potential Wins in KNNKB and KNNKN 57

7. Static Recognition Algorithm

Constant and 1)rpe Declarations

TYPE boardstate = ... ;
TYPE score

1* state of a given position on chess board *1
1* range of valid scores *1

TYPE side
TYPE square

= ENUM {black, white};
= ENUM {al, ... , hl, ... , a8, ... , h8};

{al, hl, a8, h8}; const SET OF square: corner
const SET OF square: edge
const SET OF square: xcorner

{al, ... , hl, a2, h2, ... , a7, h7, a8, ... , h8};
{b2, g2, b7, g7};

KNNK[B,N] Recognition Function

FUNC score knn_k_b_n_recog(const boardstate: pos; const side: strong, weak) {

const square: strong_k = k_sqr(strong, pos);
const SET OF square: strong_k_area = k_attck(strong_k);
const SET OF square: strong_nn = n_sqrs(strong, pos);
const SET OF square: weak_b_n = b_sqrs(weak, pos) + n_sqrs(weak, pos);
const square: weak_k = k_sqr(weak, pos);
const SET OF square: weak_k_area = k_attck(weak_k);
const square: weak_minor = ANYELEM(weak_b_n);

1***** WEAK-WIN PART *****1

IF (strong_k IN corner) 1* strong K trapped by own Ns and weak K with *1

{

}

&& EMPTY(strong_k_area - strong_nn - weak_k_area) 1* no escape *1

const SET OF square: b_mates = xcorner * strong_k_area; 1* target *1
const SET OF square: n_mates = n_attck(strong_K); 1* squares for *1

1* B, N to mate strong K *1
IF (side_to_move(pos) == strong)

&& ((is_knnkb(pos) && !EMPTY(weak_b_n * b_mates))
1 1 (is_knnkn(pos) && !EMPTY(weak_b_n * n_mates)))

RETURN stm_mated_score(pos)
ELSE IF ((side_to_move(pos) == weak) 1* weak side on move may mata *1

&& EMPTY(n_attck(weak_k) * strong_nn) 1* if not in check *1
&& ((is_knnkb(pos) && !EMPTY(b_attck(weak_minor, pos) * b_mates))

11 (is_knnkn(pos) && !EMPTY(n_attck(weak_minor) * n_mates))))
RETURN stm_mates_score(pos);

ELSE
RETURN draw_score(pos); 1* otherwise, position is drawn *1

1***** WEAK-DRAW PART (I) *****1
1* drawn if weak K not on edge *1

IF !(weak_k IN edge) && !((weak_k IN xcorner) && is_knnkn(pos)) 1* and *1
RETURN draw_score(pos); 1* not on "extended corner" in KNNKN *1

1***** NN-MATE PART *****1

IF (weak_k IN corner) 1* weak K in corner trapped by own B, N on *1
&& !EMPTY(weak_k_area * xcorner * weak_b_n) 1* "extended corner" *1

58 E.A. Heinz

}

&& !EMPTY(strong_nn * {c3, f3, c6, f6} * k_attck(weak_minor))
{ /• and by strong N in diagonal opposition •1

IF !EMPTY(strong_nn * n_attck(weak_k)) 1* weak K also in check by •1
RETURN stm_mated_score(pos); 1• 2nd strong N ==> checkmate! •1

IF is_knnkb(pos) && ((side_to_move(pos) == weak) 11 (strong_k IN
(k_attck(weak_minor) * {el, f1, a3, h3, a6, h6, c8, f8})))

RETURN draw_score(pos); 1• drawn in KNNKB if weak side on move •1
1* or strong side in check *1

IF (side_to_move(pos) == strong) && !EMPTY(n_attck(weak_k) * n_attck(
ANYELEM(strong_nn - {c3, f3, c6, f6} * k_attck(weak_minor))))

1* strong side on move and other strong N ready to deliver mate •/
RETURN (is_knnkb(pos) 11 !(strong_k IN n_attck(weak_minor)))

? stm_mates_score(pos) : stm_mates_next_score(pos);

RETURN rcg_fail_score(pos); 1* weak side on move in KNNKN ==> •1
} /• may still draw (unwind the trap by removal of N) •/

1***** WEAK-DRAW PART (II) *****/
1• drawn if K distance > 4 steps *1

IF sqr_dist(strong_k, weak_k) > 4 RETURN draw_score(pos);

IF side_to_move(pos) == weak
{ /* calculate escape squares of weak K •1

}

const SET OF square: esc_area = weak_k_area- weak_b_n - strong_k_area
- n_attck(FIRSTELEM(strong_nn))- n_attck(LASTELEM(strong_nn));

IF !EMPTY(esc_area - edge - (is_knnkn(pos) ? xcorner)) 1* weak K •1
RETURN draw_score(pos); 1* can escape from trap==> draw •/

1***** STRDNG-WIN PART *****1

RETURN rcg_fail_score(pos); 1* handle tricky issues by further search *1
1* and trigger an extension in this line •/

7.1 Algorithm Description

Auxiliary Functions. The recognition algorithm relies on several auxiliary

functions not specified in detail here. There are a number of routines to ac­

cess and query the current state of the chess board pas sed in the parameter

pos of type boardstate: k_sqr returns the King location of the desired

side; b_sqrs and n_sqrs return the locations of all Bishops and Knights

respectively for the desired side; is..knnkn and is...knnkb identify the

exact material balan ce; and s ide_to..move returns the si de on move in the

given position. Another group of auxiliary functions handles the encod­

ing of recognizer failures, checkmates, draws, and mates in this or the next

move after it into valid scores: rcg_faiLscore, stm..mated_score,

draw_score, stm..mates_score, and stm..mates...next_score. The

numerica! function sqr _dist returns the distance between two squares

on the board as measured in single-square steps that a King needs in

Static Recognition of Potential Wins in KNNKB and KNNKN 59

moves on an empty board to travel from one to the other. Last but not

least, the algorithm requires support for the calculation of sets of squares

attacked by Bishops, Kings, and Knights located anywhere on the board.

The functions b_attck, k_attck, and n_attck perform the according

attack generations for B, K, and N respectively. The sliding coverage

of Bishops along their diagonals specifically depends on the full board

state, whereas Kings and Knights always attack the same sets of squares

from a given location regardless of any other pieces.

Constants and Types. The constant sets corner, edge, and xcorner cap­

ture the important corner, edge, and "extended corner" squares of the

chess board. The enumeration type si de contains just two items: black

and whi te. The enumeration type square covers all poard squares de­

noted by the 64 items ai, ... , h1, ... a8, ... , h8. The anonymous types

boardstate and score represent the full states of chess positions and

scoring values respectively.

Pattern Recognition. The algorithm applies basic set operations on sets of

squares to achieve location-indepedent pattern recognition. As an exam­

ple take the core NN-mate pattern of the weak King,in any corner, the

weak Bishop or Knight directly beside it on the corresponding "extended

corner" square, and one of the strong two Knights diagonally beside the

weak minor piece as depicted in Figure 11. The membership test weak...k

IN corner assures that the weak King resides in a corner. Then, the inter­

section weak...k_area * xcorner * weak_b_n gives the set of "extended

corner" squares with a weak Bishop or Knight directly beside the weak

King. If the set is not empty, it contains the square of the weak minor piece

as a single element and the second pattern condition holds. Finally, inter­

secting k_attck(weak...minor) * { c3, f3, c6, f6} * strong_nn com­

putes the set of squares with strong Knights directly anq inwardly beside

the weak minor. If this set is not empty, the full core pattern is identified

independent of the specific corner square the weak King is located on.

Weak-Win Part. The recognition starts with the exceptional wins by the weak

side where the strong King is trapped in a corner by at least one of its

Knights and the weak King. Depending on which side is on move and

whether the weak minor piece can actually deliver a checkmate, the algo­

rithm retums mate or mated scores and a draw score otherwise. A clever

trick used here to determine if a single square is attacked by any piece

from a set of like pieces works as follows: caii the specific attack function

of the given piece type with the very square in question as the location

parameter, then intersect the resulting attack squares with the original set

of like pieces -+ if and only if the intersection is not empty, the square

60 E.A. Heinz

in question is under attack by some piece from the set of like ones. This

scheme excels at check detection. The term EMPTY(n..a.ttck(weak...k)

* strong...nn) , for instance, assures that the weak King is not in check

by any of the strong Knights.

Weak-Draw Part (1). This straightforward section detects draws by the rule

that the weak King is not on the edge of the board and not on any "extended

corner" squares in KNNKN either.

NN-Mate Part. The paragraph on pattern recognition above already discussed

the core NN-mate pattern and its recognition in detail. After establishing

that the core NN-mate pattern applies, the algorithm tests for check­

mate by the second strong Knight attacking the weak King, for draws in

KNNKB with the weak side on move or the strong side in check, and for

forced mates by the strong side with the second strong Knight ready to

deliver the final check. Otherwise, the weak side is on move in KNNKN

and may stiH draw by removing the weak Knight from the "extended cor­

ner" square, thus unwinding the trap. The static recognizer intentionally

fails at this point in order to resolve the resulting complications of checks

and Knight forks by further search.

Weak-Draw Part (II). First, the algorithm detects draws by the rule "Kings

more than 4 steps apart". Then, the next draw detection deals with the

case that the weak si de is on move and may directly step off the edge and

the "extended corner" in case of KNNKN. The available escape squares

of the weak King are those squares around it not blocked by the weak

minor piece and not attacked by either the strong King or its Knights. If

the set difference of these escape squares and the edge of the board (plus

the "extended corner" squares in case of KNNKN) is not empty, then the

weak King directly escapes from the trap and the positioh is drawn.

Strong-Win Part. Whenever no obvious drawing rule for the weak side ap­

plies, the static recognizer fails. In case of KNNKN, the weak King stiH

seems to be trapped on the edge of the board or the "extended corner"

squares. Further search then resolves the tricky issues of possible checks,

attacks on the strong Knights, and pins of the weak Bishop in KNNKB.

In general, such explicitly intended failures of static recognizers should

trigger search extensions in the current line. If so desired, more ambitious

analyses of the piece constellation and attack relations on the board aim­

ing for an even better identification of real wins in KNNKB and KNNKN

may easily be added in front of the fail-value return at the end.

Static Recognition of Potential Wins in KNNKB and KNNKN 61

7.2 Algorithmic Complexity

The recognition algorithm heavily depends on sets of squares and basic op­

erations on them: set difference, element count, emptiness, intersection, mem­

bership, member selection, and union. Other important auxiliary functions are

those for attack generation and access to the data structure holding the full state

of the current board position.

Sets of Squares. There are 64 squares on a chess board. Hence, the best way to

handle sets of squares is by means of a standard bit-vector representation

with exactly 64 bits (one for each square) where square i is in the set if

and only if the i-th bit of the vector is 1. Thus, sets of squares nicely map

to 64-bit unsigned integers which are natural data types of modern CPU s.

In computer chess such 64-bit values are also known as "bitboards".

Basic Set Operations. For sets represented as bit vectors, ali basic set op­

erations map to simple constant-time computations involving unsigned

64-bit data: difference -+ bit-wise AND complement, element count-+

count bits (a.k.a. population count), emptiness-+ compare with O, inter­

section-+ bit-wise AND, membership-+ test bit, selection-+ find bit, and

union -+ bit-wise OR. Most of these computations actually finish within

a single clock cycle on modern CPUs. The 64-bit unsi'gned integer value

O represents the empty set and comparisons for set equality are done by

standard tests comparing 64-bit unsigned integer values.

Attack Generation. The squares attacked by Kings and Knights depend on

their specific locations only, regardless of the placement of any other

pieces. Straightforward table lookups indexed by square numbers suf­

fice to perform the according attack calculations k_attck and n_attck.

Bishops, on the other hand, are sliding pieces that depend on the full board

constellation to determine the exact extent of their attack coverage. Even

if implemented by looping over squares in the four diagonal directions,

the respective attack calculations of b_attck are constant-time bound

because their are at most 13 squares to traverse (7 on the middle diagonal

of the board and another 6 on one next to the middle). Moreover, so­

called "rotated bitboards" (Hyatt, 1999; Heinz, 1997, 2000) enable the

full Bishop attack calculations to be <;lone by a few table lookups.

Remaining Auxiliary Functions. Except for attack generation, the auxiliary

functions either encapsulate simple access protocols to the data structure

carrying the current state of the chess board or they perform equally

simple score value encodings. Ali these computations are constant-time

bound and take only a few clock cycles to finish on modern CPUs. The

same holds for sqr _dist, an auxiliary function not covered up to now:

sqr_dist(x,y) = MAX(ABS(VAL(x)/8- VAL(y)/8), ABS(VAL(x)%8- VAL(y)%8)).

62 E.A. Heinz

Ali in ali, the recognition algorithm contains only constant-time bound com­

putations and no loops. Hence, it is of constant time complexity in 0(1). As the

average and longest execution paths through the algorithm are short and most

of the calculations actually finish within a few clock cycles on modem CPUs,

the whole algorithm also features good efficiency in practice where acceptably

small constants cap its average and worst-case execution times.

8. Conclusion and Future Work

Hundreds of thousands of positions in KNNKB and KNNKN are won for

the KNN side. Tricky mate themes occur more frequently and require more

complicated handling in these two endgames than common wisdom makes

people think. In fact, they are not trivial at ali! This pa per may very weH be the

first ever to present a rule-based static recognition algorithm for any complete

non-trivial5-piece endgame because the fine works by Herschberg etal. (1989),

van Tiggelen and van den Herik (1991), and van Tiggelen (1991, 1998) consider

only the subset KNNKP(h) of the fuH KNNKP endgame.

AH mate themes and rules were developed a-priori by hand. Then, later on,

their validity was checked against omniscient endgame databases a-posteriori.

In particular, the "trapped King" feature seems very important and powerful

for endgames in general and is probably good for static recognition in other

endgames as well. Such trapping and the number of escape squares for each

King could possibly be used as a crucial position feature and input parameter for

machine-learning algorithms that try to extract useful knowledge from endgame

databases automatically. The trap pattems look interesting for chess problem

composers, too, who have certainly discovered them on their own already.

In the future, 1 like to use the KNNKB and KNNKN recognition rules as a

foundation to statically detect possible draws and "mates in X" in other positions

not covered by endgame databases directly (e.g., additional material might not

save Black in Figure 3). Moreover, one can stiH extend the current algorithm

to include better static mate detection and further knowledge about enforceable

"mate in X" positions. It is also possible to down-scale and specifically adapt the

algorithm for the subgames KBKN, KNKN, KNNK, and the endgame KBKB.

References

Bain, M. and Srinivasan, A. (1995). Inductive Logic Programming with Large-Scale Unstructured

Data. Machine Intelligence 14, K. Furukawa, D. Michie, and S. Muggleton (eds.), pp. 233-

267, Oxford University Press.
Bain, M. (1994). Learning Logica/ Exceptions in Chess. Ph.D. Thesis, University of Strathclyde

[printed as Thesis 7866, Dept. of Statistics and Modelling Science, University of Strathclyde].
Bain, M. and Muggleton, S. (1994). Learning Optimal Chess Strategies. Machine Intelligence 13,

K. Furukawa, D. Michie, and S. Muggleton (eds.), pp. 291-309, Oxford University Press.
Barth, W. (1995). Combining Knowledge and Search to Yield Infallible Endgarne Programs.

ICCA Journal, Vol. 18, No. 3, pp. 149-159.

Static Recognition of Potential Wins in KNNKB and KNNKN 63

Barth, W. andBarth, S. (1992). ValidatingaRangeofEndgamePrograms./CCAJournal, Voi. 15,

No. 3, pp. 132-139.
Beai, D.F. and Clarke, M.R.B. (1980). The Construction of Economica! and Correct Algorithms

for King and Pawn against King. Advances in Computer Chess 2, M.R.B. Clarke (ed.), pp. 1-

30, Edinburgh University Press.

Beai, D.F. (1977). Discriminating Wins from Draws in King+ Pawn versus King Chess Endgames.

Unpublished Report, Queen Mary College.

Bramer, M.A. (1982). Refinement of Correct Strategies for the Endgame in Chess. SIGART

Newsletter, Voi. 80, pp. 155-163 [reprinted in Computer Game-Playing: Theory and Practice,

M.A. Bramer (ed.), pp. 106-124, 1983, Ellis Horwood].

Bramer, M.A. (1980a). Correct and Optimal Strategies in Game-Playing Programs. Computer

Journal, Voi. 24, No. 4, pp. 347-352.

Bramer, M.A. (1980b). An Optimal A1gorithm for King and Pawn against King using Pattern

Knowledge. Advances in Computer Chess 2, M.R.B. Clarke (ed.), pp. 82-91, Edinburgh

University Press.

Bramer, M.A. and Clarke, M.R.B. (1979). A Model for the Representation ofPattern-Knowledge

for the Endgame in Chess. Intl. Journal ofMan-Machine Studies, Voi. 11, No. 5, pp. 635-649.
Bratko, 1. (1982). Knowledge-Based Problem Solving in AL3. Machine Intelligence /0, J.E.

Hayes, D. Michie, and Y.-H. Pao (eds.), pp. 73-100, Ellis Horwood.

Bratko, 1. and Michie, D. (1980). A Representation for Pattern Knowledge in Chess Endgames.

Advances in Computer Chess 2, M.R.B. Clarke (ed.), pp. 31-56, Edinburgh University Press.

Bratko, 1. and Niblett, T. (1979). Conjectures and Refutations in a Framework for Chess Endgame

Knowledge. Expert Systems in the Micro-Electronic Age, D. Michie (ed.), pp. 83-102, Edin­

burgh University Press.

Bratko, 1., Kopec, D., and Michie, D. (1978). Pattern-Based Representation of Chess End-Game

Knowledge. Computer Journal, Voi. 21, No. 2, pp. 149-153.

Coplan, K.P. (1998). Synthesis of Chess and Chess-like Endgames by Recursive Optimization.

ICCA Journal, Voi. 21, No. 3, pp. 169-182.

Heinz, E.A. (2000). Scalable Search in Computer Chess. Vieweg.

Heinz, E.A. (1999a). Knowledgeable Encoding and Querying of Endgame Databases. ICCA

Journal, Voi. 22, No. 2, pp. 81-97.

Heinz, E.A. (1999b). Endgame Databases and Efficient Index Schemes for Chess. ICCA Journal,

Voi. 22, No. 1, pp. 22-32.

Heinz, E.A. (1998). Efficient Interior-N ode Recognition. ICCA Journal, Voi. 21, N o. 3, pp. 156-

167.

Heinz, E.A. (1997). How DARKTHOUGHT Plays Chess. /CCA Journal, Voi. 20, No. 3, pp.

166-176.

Herik, H.J., van den (1983). Representation of Experts' Knowledge in a Subdomain of Chess

lntelligence. 8th International Joint Conference on Artificial Intelligence, Proceedings Voi. 1,

A. Bundy (ed.), pp. 252-255, Kaufmann.

Herik, H.J., van den (1982). Strategy in Chess Endgames. SIGART Newsletter, Voi. 80, pp. 145-

154 [reprinted in Computer Game-Playing: Theory and Practice, M.A. Bramer (ed.), pp. 87-

105, 1983, Ellis Horwood].

Herik, H.J., van den (1980). Goal-Directed Search in Chess Endgames. Delft Progress Report,

Voi. 5, No. 4, pp. 253-279, Delft University of Technology [reprinted in Computer Chess

Compendium, D.N.L. Levy (ed.), pp. 316-329, Springer, 1989].

Herschberg, 1. S., van den Herik, H. J., and Schoo, P. N. A. (1989). Verifying and Codifying

Strategies in the KNNKP(h) Endgame. ICCA Journal, Voi. 12, No. 3, pp. 144-154 [reprinted

in Computers, Chess, and Cognition, T.A. Marsland and J. Schaeffer (eds.), pp. 183-196,

Springer, 1990].

64 E.A. Heinz

Hyatt, R.M. (1999). Rotated Bitmaps, a New 1\vist onan Oldldea. ICCA Journal, Voi. 22, No. 4,

pp. 213-222.

Kopec, D. and Niblett, T.B. (1980). How Hard is the Play ofthe King-Rook-King-Knight Ending?

Advances in Computer Chess 2, M.R.B. Clarke (ed.), pp. 57-81, Edinburgh University Press.

Michalski, R. S. and Negri, P. (1977). An Experiment on Inductive Learning in Chess End Games.

Machine Intelligence 8, E.W. Elcock and D. Michie (eds.), pp. 175-192, Ellis Horwood.

Muggleton, S. H. (1990). Inductive Acquisition of Expert Knowledge. Turing Institute Press.

Muggleton, S. (1988). Inductive Acquisition of Chess Strategies. Machine Intelligence 11, J.E.

Hayes, D. Michie, and J. Richards (eds.), pp. 375-389, Oxford University Press.

N alimov, E. V., Haworth, G.McC., and Heinz, E.A. (2001). Space-Efficient Indexing of Endgame

Tables for Chess. Advances in Computer Games 9, H.J. van den Herik and B. Monien (eds.),

pp. 93-113, Institute for Knowledge and Agent Technology, University of Maastricht.

Nalimov, E.V., Haworth, G.McC., and Heinz, E.A. (2000). Space-Efficient lndexing of Chess

Endgame Tab1es. ICGA Journal, Voi. 23, No. 3, pp. 148-162.

Negri, P. (1977). Inductive Learning in a Hierarchical Model for Representing Knowledge in

Chess End Games. Machine Intelligence 8, E.W. Elcock and D. Michie (eds.), pp. 193-204,

Ellis Horwood.

Niblett, T.B. (1982). A Provably Correct Advice Strategy for the End-Game of King and Pawn

versus King. Machine Intelligence 10, J.E. Hayes, D. Michie, and Y.-H. Pao (eds.), pp. 101-

120, Ellis Horwood.

Quin1an, J.R. (1983). Learning Efficient Classification Procedures and Their Application to

Chess End Games. Machine Learning: An Artificial1ntelligence Approach, R.S. Michalski,

J.G. Carbonnell, and T.M. Mitchell (eds.), pp. 463-482, Tioga [reprinted by Springer, 1983].

Quinlan, J.R. (1979). Discovering Rules by Induction from Large Collecti9ns ofExamples. Ex­

pert Systems in the Micro-Electronic Age, D. Michie (ed.), pp. 168-201, Edinburgh University

Press.

Shapiro, A.D. (1987). Structured Induction in Expert Systems. Turing Institute Press.

Shapiro, A.D. and Michie, D. (1986). A Self-Commenting Facility for Inductively Synthesized

Endgame Expertise. Advances in Computer Chess 4, D.F. Beal (ed.), pp. 147-165, Pergamon.

Shapiro, A.D. and Niblett, T.B. (1982). Automatic Induction of Classification Rules for a Chess

Endgame. Advances in Computer Chess 3, M.R.B. Clarke (ed.), pp. 73-92, Pergamon.

Tan, S.T. (1972). Representation of Knowledge for Very Simple Endings in Chess. Memorandum

MIP-R-98, Schoo1 of Artificial Intelligence, University of Edinburgh.

TheEditors. (1992). Thompson: AllaboutFiveMen.ICCAJournal, Voi. 15,No. 3,pp. 140-143.

Thompson, K. (1991). Chess Endgames Volume 1.1CCA Journal, Voi. 14, No. 1, p. 22.

Tiggelen, A., van (1998). Heuristic Search Methods in Parameter Space. Engineering Bureau

van Tigge1en.

Tiggelen, A., van (1991). Neural Networks as a Guide to Optimization. ICCA Journal, Voi. 14,

No. 3, pp. 115-118.

Tigge1en, A., van and van den Herik, H.J. (1991). ALEXS: An Optirnization Approach for the

Endgame KNNKP(h). Advances in Computer Chess 6, D.F. Beal (ed.), pp. 161-177, Ellis

Horwood.

Verhoef, T.F. and Wesselius, J.H. (1987). Two-Ply KRKN: Safely Overtaking Quinlan. ICCA

Journal, Voi. 10, No. 4, pp. 181-190.

Weill, J.-C. (1994). How Hard is the Correct Coding of an Easy Endgame? Advances in Computer

Chess 7, H.J. van den Herik, I.S. Herschberg, and J.W.H.M. Uiterwijk (eds.), pp. 163-175,

University of Limburg.

Zuidema, C. (1974). Chess: How to Program the Exceptions? Technical Report IW21/74, De­

partment of Informatics, Mathematical Center Amsterdam.

