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Abstract The fact that the strong side cannot enforce a win in KNNK makes many chess 

players (both humans and computers) prematurely regard KNNKB and KNNKN 

tobe trivially drawn too. This is not true, however, because there are severa! tricky 

mate themes in KNNKB and KNNKN which occur more frequently and require 

more complicated handling than common wisdom thinks. The text analyzes the 

mate themes and derives rules from them which allow for the static recognition 

of potential wins in KNNKB and KNNKN without further lookahead by search. 

Although endgame databases achieve the same goal, they are normally far less 

efficient at doing so because of their additional J/0 and memory requirements 

(even when compressed). 
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1. Introduction 

Usually, two bare Knights are not much of a force when it comes to mating 

in late endgames such as KNNK, KNNKB, and KNNKN. It is well-known that 

these endgames are generally drawn despite the substantial material advantage 

enjoyed by the strong side (Thompson, 1991; The Editors, 1992; Nalimov, 

Haworth, and Heinz, 2000, 2001). Human chess players and chess programs 

alike tend to incorporate rules of thumb classifying bare KNN constellations 

as most unlikely to win. Thus, common chess wisdom avoids KNN types of 

positions when being ahead in material and goes for them otherwise. A crude 

way to implement the heuristic is by scoring essentially ali KNNK, KNNKB, 

and KNNKN positions as draws. Like many others, an early version of our own 

chess program DARKTHOUGHT (Heinz, 1997, 2000) did exactly this back in 
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a b c d e f g h 

Figure 1. Black's l..Qal? loses to 

2. Qxal Bxal (seeFig. 3) -1.. Qbl! draws. 

abc de fgh 

Figure 3. White mates in 2 moves: 

1. Nd5! and 2. Nc7# or 2. Nb6#. 
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a b c d e f g h 

Figure 2. White's 1. Bxh4! wins as 

1.. Nxh4 is a forced mate (see Fig. 4). 

a b c d e f g h 

Figure 4. White mates in 3 moves: 

1. Nc3 {Nf4}, 2. Nd5, 3. Nc7# {Nb6#}. 

mid-1995. Then, at the end of some blitz test games, it encountered the two 

positions shown in Figures 1 and 2 where it happily went for the continuations 

leading to Figures 3 and 4 respectively, mistakenly scoring them both as draws. 

DARKTHOUGHT played without endgame databases and short on time, so it 

saw the loss only after having manoeuvered itself into it. 

Of course, the aforementioned scenario with the so-called "horizon effect" 

visible at low search depths is nothing unusual in computer chess. It was quite 

special, however, that the horizon effect occurred with full severity (score drop-
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ping from draw to being mated) in seemingly trivial circumstances (KNNKB 

and KNNKN). This strongly aroused my curiosity and sparked the work that 

eventually Ied to the development of interior-node recognizers (Heinz, 1998, 

2000), knowledgeable RAM-based endgame databases (Heinz, 1999a, 2000), 

and efficient endgame indexing (Heinz, 1999b, 2000; Nalimov et al., 2000, 

2001) plus their implementation in DARKTHOUGHT. Hence, those rather 

innocent-Iooking two positions from Figures 1 and 2 were in fact instrumental 

for much of my endgame-related research up to date. 

Solving the KNNKN "mate in 3" of Figure 4 requires a 5-ply search with 4 

quiet half-moves before the final checkmate: White's 1. Nc3 {Nf4} and 2. Nd5 

plus Black's respective answers. Consequently, standard quiescence searches 

following either checks and captures or captures only cannot spot the win unless 

supported by lucky hits in the transposition table. The same holds for normal full 

searches with remaining depths of::; 3 plies in case of capture~check quiescence 

and ::; 4 plies in case of capture-only quiescence. Therefore, the search alone 

most likely fails to resolve the mate in this simple position if it occurs far out 

near the lookahead boundary. According to Thompson (1991), The Editors 

(1992), and Nalimov et al. (2000, 2001) the endgames KNNKB and KNNKN 

feature even harder positions than the ones from Figures 3 and 4: the longest 

forced win for KNNKB is "ma te in 4" ( see Figure 5) and for KNNKN it is "ma te 

in 7" (see Figure 6). Because of the checks and single-reply moves involved 

here, normal full searches with extensions and quiescence searches with checks 

included might actually resolve these deeper mates more easily than my two 

example positions with their many quiet moves. 

a b c d e f g h 

Figure 5. White mates in 4 moves: 

1. Nb6+ Kb8 2. Nd7+ Ka8 3. Kc7 Bhl { or 

any other legal move by B} 4. Nb6#. 
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Figure 6. White mates in 7 moves: 

1. Na6+ Kb7 2. Nc5+ Kb8 3. Ne7 Ng3 

4. Nc6+ Ka8, 5. Kc7, 6. Nd7, 7. Nb6#. 
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An obvious solution to the problem is the usage of omniscient endgame 

databases that return the exact distance-to-win (mate or conversion to another 

won subgame) when queried. In practice, this does not really work out because 

endgame databases (even in compressed format) usually reside on secondary 

storage media due to their large sizes. Thus, their querying incurs consider­

able performance penalties and additional memory consumption for caching 

purposes. As a good compromise between accuracy and speed, most chess pro­

grams do not query any endgame databases in the quiescence search and very 

often stop doing so a few plies above the main lookahead boundary already. 

Please note, however, that in the particular case of KNNKB and KNNKN it is 

possible to·copy Nalimov's compressed tablebases (Nalimov et al., 2000, 2001) 

to a RAM disk requiring less than 1 MB of memory and access them from there. 

Performance-wise, the necessary IlO, index calculations, and data decompres­

sion stilllose against the static recognition rules suggested by nie later on in this 

text- but actually not by much. Yet, the special database setup does not allow 

for any generalization regarding other similar positions. In particular towards 

this end, I see excellent promise of the rule-based approach though. 

The remainder of this text is structured as follows. The next section discusses 

related work. Then, the subsequent sections focus on the various mate themes in 

KNNKB, KNNKN, and their subgames (namely KBKN, KNKN, and KNNK). 

These themes lead to the derivation of recognition rules and the final formulation 

of the full algorithm for the static recognition of potential wins in KNNKB and 

KNNKN. Last but not least, a wrap-up of the main findings and a look into the 

future conclude the work. 

2. Related Work 

There exists an ample body of related work covering endgame databases and 

infallible rule-based endgame play in chess. Both areas feature a long and rich 

history of interesting research. The introductory section above ~eady referred 

to some important contributions in the field of endgame databases, namely 

(Thompson, 1991; The Editors, 1992; Nalimov et al., 2000, 2001). An elabo­

rate discussion of endgame databases and their history was provided by Heinz 

(1999b, 2000). The introduction also mentioned the interior-node recogniz­

ers and knowledgeable endgame databases of DARKTHOUGHT (Heinz, 1998, 

1999a, 2000). Both are of special interest here because the static recognition 

rules for KNNKB and KNNKN are to augment that very recognizer framework. 

The rest of this section now focusses on infallible rule-based endgame play in 

chess. As early as 1890, Torres y Quevedo built a marvelous electro-mechanical 

machine which played and won many of the hardest KRK positions. Tan (1972) 

implemented the first program that achieved seemingly infallible play for the 

KPK endgame. Tan's excellent set of rules solved ali difficult KPK positions 
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known by then, including Averbakh's and Fine's famous examples. But be­

cause omniscient KPK endgame databases were not yet available in 1972, the 

hypothesized perfectness of the program remained unproven. However, Tan's 

program doubtlessly pioneered the usage of decision trees with multi-valued 

nodes and leaves representing specific pattern knowledge about the respective 

endgame domain. Decision trees became an integral part of nearly ali subse­

quent works which focussed on the explicit construction or automatic deduction 

of complete rule sets for infallible endgame play in chess. Later on, Bratko, 

Kopec, and Michie (1978), Bramer and Clarke (1979), and Bratko and Michie 

(1980) presented more refined representation schemes for pattern knowledge 

in chess endgames. Severa! good examples of these and other predominantly 

hand-crafted rule sets are listed below. 

• KBNK- van den Herik (1983); 

• KNNKP(h)- Herschberg, van den Herik, and Schoo (1989); 

• KNP(h)K- van den Herik (1980, 1982); 

• KPK- Tan (1972), Beai (1977), Beai and Clarke (1980), Bramer (1980a, 

1980b), Niblett (1982), Barth and Barth (1992); 

• KPKP (both P passed) - Bratko (1982), Barth (1995); 

• KRK-TorresyQuevedo [1890], Zuidema(1974), Bramer(1980a, 1982); 

• KRKN- Bratko and Niblett (1979), Kopec and Niblett (1980); 

• KQKP- Barth and Barth (1992); 

• KQKQ- Barth and Barth (1992), Weill (1994). 

The surprising complexity of rules and knowledge bases for "simple" prob­

lem domains (such as 3-piece endgame databases in chess) ignited the in te rest of 

researchers in learning such infallible rules automatically. Especially the KRK 

and KPK endgame databases became extremely popular for automatic learning 

experiments. Many works that try to automate the inductive acquisition of rules 

for infallible endgame play in chess also employ decision trees as their central 

resources for the representation of semantic knowledge. The following brief 

overview of publications about automatic learning of infallible endgame playin 

chess and the inductive acquisition of rule-based knowledge therefor is meant 

to serve as a mere introduction to the field. Any more comprehensive summary 

clearly lies beyond the scope of this text. 

• KBBKN (selected positions)- Muggleton (1988); 

• KBRK (extended chess version)- Coplan (1998); 
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• KNNKP(h)- van Tiggelen and van den Herik (1991), van Tiggelen 

(1991, 1998); 

• KPK- Michalski and Negri (1977), Negri (1977), Shapiro and Niblett 

(1982), Shapiro (1987), Coplan (1998); 

• KP(a7)KR- Shapiro and Michie (1986), Shapiro (1987), Muggleton 

(1990); 

• KRK- Bain (1994), Bain and Muggleton (1994), Bain and Srinivasan 

(1995); 

• KRKN- Quinlan (1979, 1983), Shapiro (1987), Verhoef and Wesselius 

(1987). 

3. Checkmates in KBKN and KNKN 

Although the subgames KBKN of KNNKB and KNKN of KNNKN are 

trivially drawn, they actually do feature a few checkmate positions. These are 

shown in Figure 7 where each quadrant of the board depicts its own mate theme 

tobe viewed independently of the others. Yet, normal non-mate positions in 

KNKB and KNKN do never forcibly lead to the side on move being mated (i.e., 

there are only direct "mates in 1" because the side on move can always evade 

any mating attempt). Still, the mate themes ofFigure 7 demand proper attention 

because they also apply to KNNKB and KNNKN where both the strong as well 

as the weak side might mate the opponent accordingly. The static recognition 

rules must take ali these possibilities into full account. 

8 

7 

6 

5 

4 

3 

2 

1 

a b c d e f g h a b c d e f g h 

Figure 7. Mate themes in KBKN and KNKN (comer traps, not enforceable). 
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4. Checkmates in KNNK 
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a b c d e f g h a b c d e f g h 

Figure 8. Mate themes in KNNK (comer traps, not enforceable). 

a b c d e f g h 
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Figure 9. Another mate theme in KNNK (edge trap, not enforceable). 

Despite the considerable material advantage of the strong side, the subgame 

KNNK of KNNKB and KNNKN is generally drawn too (Thompson, 1991; 

The Editors, 1992; Nalimov et al., 2000, 2001). Again, there are no enforce­

able checkmates in KNNK but the number and variety of mating themes and 

direct mates are much higher here than in the materially balanced subgames 

KBKN and KNKN. Figure 8 visualizes whole sets of mate themes in KNNK by 

showing severa! alternative locations of the strong King together with a fixed 
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piacement of the two Knights and the weak King in the same singie quadrant. 

The checkmate positions in each such set differ soieiy by the Iocation of the 

strong King. Like the mate themes of KBKN and KNKN, these KNNK check­

mates ali invoive trapping the weak King in a comer of the board. In addition 

to the comer traps, there is another special mate theme in KNNK that works by 

trapping the weak King on the edge of the board away from the comer. Figure 9 

depicts this additionai mate theme for one possibie Iocation of the weak King 

on the edge in the upper half ofthe board. The theme remains valid when shift­

ing it to the left or right within the bounds of the board, of course. Although 

not being activeiy enforceabie within KNNK, ali the mate themes of Figures 8 

and 9 exemplify potential wins by the strong si des in KNNKB and KNNKN. 

Therefore, the static recognition ruies must aiso cover them properly. 

5. Cbeckmates in KNNKB and KNNKN 

Those readers who are still not convinced that KNNKB and KNNKN po­

sitions deserve better than being scored as some kind of draw might finally 

reconsider after taking a Iook at the following numbers found in Nalimov's 

tabiebase summary fiies (Nalimov et al., 2000, 2001). Roughiy 10,000 posi­

tion tempiates in KNNKB and 40,000 position templates in ~KN are won 

for the KNN side. The vast majority of them are non-direct forced wins re­

quiring severa! moves to mate. Including symmetries, the real numbers of won 

positions for the KNN side amount to 4x - 8x as many: i.e., 40,000 to 80,000 

in KNNKB and 160,000 to 320,000 in KNNKN. 

Compared with the 300 to 600 forced wins ofKNNK (ali direct mates), there 

are orders of magnitude more forced wins in KNNKB and KNNKN where the 

weak side features a minor piece in addition to the King. Hence, the KNN side 

is actually better at enforcing checkmate if the opponent defends itseif with 

more material than just a lone King. As counter-intuitive as this might seem 

at first giance, it is quite well-known and not too hard to und~rstand because 

the additionai piece prevents stalemates and may even block an escape route 

of the weak King. 1 However, the added material also enables the weak side 

to mate the opponent in some non-enforceabie circumstances brought about by 

bad play of the strong side. Consequentiy, KNNKB and KNNKN contain some 

positions where the weak side wins and the KNN side is mated. 

5.1 Weak Side Wins 

The mate themes of ali subgames still apply in KNNKB and KNNKN as 

well, with the excess piece (a strong Knight) located anywhere eise on the 

1The famous forced wins in::; 7 moves with a single Knight against a Pawn in KNKP(a,h) exploit the very 

same strategy. 
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a b c d e f g h a b c d e f g h 

Figure 10. Additional roate themes for weak side in KNNK[B,N] (not enforceable). 

board in legal fashion. If the second Knight of the KNN side also resides 

directly beside the strong King trapped in a comer, the noteworthy additional 

mate themes shown in Figure 1 O arise. The static recognition rules must take 

ali such possibilities into fuli account. 

5.2 KNN Side Wins 

8 

7 

6 

5 

4 

3 

2 

1 

a b c d e f g h a b c d e f g h 

Figure 11. Mate themes without King support in KNNK[B,N] (not enforceable). 

As before, the mate themes of ali subgames apply in KNNKB and KNNKN 

too. On top of these, the KNN side may now mate the opponent even without 
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any support of its own King. Figure 11 presents the according NN-checkmates 

which are quite exceptional and not enforceable. Other additional mate themes 

ofKNNKB involvingthefull setof5 pieces on the boardare showninFigures 12 

and 13 (corner traps) and Figure 14 (edge traps). This overview of positions 

with the KNN side winning is by no means exhaustive. But due to space 

limitations, the remaining positions won by the strong side in KNNKB cannot 

be shown here. Unfortunately, the very same holds for ali additional KNNKN 

mate themes and positions won by the strong side there. Nevertheless, the static 

recognition rules must of course cover them ali in a suitable way too. 

a b c d e f g h 
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Figure 12. Additional mate themes for strong side in KNNKB (1). 
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Figure 13. Additional mate themes for strong side in KNNKB (Il). 
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Figure 14. Additional mate themes for strong side in KNNKB (III). 

6. Static Recognition Rules 

The preceding sections on checkmates in KNNKB and KNNKN plus ali 

their subgames (KBKN, KNKN, KNNK) argue that ali possible mate themesin 

these endgames involve trapping the enemy King in either the corner or on the 

edge of the board. The omniscient endgame databases confirm this notion but 

their exhaustive querying also reveals some forced wins for the KNN side in 

KNNKN where the weak: King resides on one of the "extended corner" squares 

of the board, namely b2, b7, g2, and g7. Figure 15 shows such a position 

which arises from the forced win in 7 moves of Figure 6 after 1. Na6+ Kb7. 

a b c d e f g h 
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Figure 15. White mates in 6 moves- see Figure 6 after l. Na6+ Kb7. 
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The ensuing motif how to enforce the final checkmate does not work against a 

defending Bishop. Hence, there are no forced wins with the weak King located 

on "extended corner" squares in KNNKB. 

Strong-Win Potential. The winning chances of the strong crucially hinge on 

its ability to keep the weak King trapped on the edge and, in case of 

KNNKN, the "extended corner squares ofthe board. Success in doing so 

is quite tedious to determine exactly because of possible checks, attacks 

on the strong Knights, and even pins by the weak Bishop in KNNKB. 

NN-Mate Rule. lf the weak King is located in a corner of the board with its 

Bishop or Knight directly beside it on an "extended corner" square and 

a strong Knight trapping it from the next square on the long diagonal, 

then the special mate themes of Figure 11loom. They do not require any 

direct support by the strong King. So, the position is a guaranteed win 

for the KNN side if the other strong Knight already gives a check or is on 

move and able to deliver a direct check (in KNNKN this holds even if the 

strong King is currently in check itselt). Otherwise, the position is drawn 

in KNNKB if the weak side is on move or the strong side is in check 

because then the weak Bishop can capture a Knight (see Figure 11). 

Weak-Draw Rule. If the weak King does not reside on the edge of the board 

and not on any "extended corner" square in case of KNNKN either, then 

the weak side at least draws. The same holds if the weak side is on move 

and the weak King can directly step off the edge and the "extended corner" 

in case of KNNKN. If the distance between the two Kings exceeds 4 steps 

measured in squares on the board, the position is drawn too as discovered 

by exhaustive analyses of the endgame databases KNNKB and KNNKN. 

Depending on the side-to-move and whether it is a KNNKB or KNNKN 

position, the distances between the two Kings triggering a draw are even 

smaller (see recognition algorithm below for more details). 

Weak-Win Rule. lf the strong King is located in a corner of the board with at 

least one of its Knights directly beside it on the edge of the board and the 

weak King covers the "extended corner" square next to the strong King, 

then the weak side might even win whereas the strong side at most draws. 

lf so and the strong side is on move but not checkmated, then the position 

is drawn. lf so and the weak side is on move but cannot directly check 

and mate the opponent, then the position is drawn as well. 
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7. Static Recognition Algorithm 

Constant and 1)rpe Declarations 

TYPE boardstate = ... ; 
TYPE score 

1* state of a given position on chess board *1 
1* range of valid scores *1 

TYPE side 
TYPE square 

= ENUM {black, white}; 
= ENUM {al, ... , hl, ... , a8, ... , h8}; 

{al, hl, a8, h8}; const SET OF square: corner 
const SET OF square: edge 
const SET OF square: xcorner 

{al, ... , hl, a2, h2, ... , a7, h7, a8, ... , h8}; 
{b2, g2, b7, g7}; 

KNNK[B,N] Recognition Function 

FUNC score knn_k_b_n_recog(const boardstate: pos; const side: strong, weak) { 

const square: strong_k = k_sqr(strong, pos); 
const SET OF square: strong_k_area = k_attck(strong_k); 
const SET OF square: strong_nn = n_sqrs(strong, pos); 
const SET OF square: weak_b_n = b_sqrs(weak, pos) + n_sqrs(weak, pos); 
const square: weak_k = k_sqr(weak, pos); 
const SET OF square: weak_k_area = k_attck(weak_k); 
const square: weak_minor = ANYELEM(weak_b_n); 

1***** WEAK-WIN PART *****1 

IF (strong_k IN corner) 1* strong K trapped by own Ns and weak K with *1 

{ 

} 

&& EMPTY(strong_k_area - strong_nn - weak_k_area) 1* no escape *1 

const SET OF square: b_mates = xcorner * strong_k_area; 1* target *1 
const SET OF square: n_mates = n_attck(strong_K); 1* squares for *1 

1* B, N to mate strong K *1 
IF (side_to_move(pos) == strong) 

&& ((is_knnkb(pos) && !EMPTY(weak_b_n * b_mates)) 
1 1 (is_knnkn(pos) && !EMPTY(weak_b_n * n_mates))) 

RETURN stm_mated_score(pos) 
ELSE IF ((side_to_move(pos) == weak) 1* weak side on move may mata *1 

&& EMPTY(n_attck(weak_k) * strong_nn) 1* if not in check *1 
&& ((is_knnkb(pos) && !EMPTY(b_attck(weak_minor, pos) * b_mates)) 

11 (is_knnkn(pos) && !EMPTY(n_attck(weak_minor) * n_mates)))) 
RETURN stm_mates_score(pos); 

ELSE 
RETURN draw_score(pos); 1* otherwise, position is drawn *1 

1***** WEAK-DRAW PART (I) *****1 
1* drawn if weak K not on edge *1 

IF !(weak_k IN edge) && !((weak_k IN xcorner) && is_knnkn(pos)) 1* and *1 
RETURN draw_score(pos); 1* not on "extended corner" in KNNKN *1 

1***** NN-MATE PART *****1 

IF (weak_k IN corner) 1* weak K in corner trapped by own B, N on *1 
&& !EMPTY(weak_k_area * xcorner * weak_b_n) 1* "extended corner" *1 
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} 

&& !EMPTY(strong_nn * {c3, f3, c6, f6} * k_attck(weak_minor)) 
{ /• and by strong N in diagonal opposition •1 

IF !EMPTY(strong_nn * n_attck(weak_k)) 1* weak K also in check by •1 
RETURN stm_mated_score(pos); 1• 2nd strong N ==> checkmate! •1 

IF is_knnkb(pos) && ((side_to_move(pos) == weak) 11 (strong_k IN 
(k_attck(weak_minor) * {el, f1, a3, h3, a6, h6, c8, f8}))) 

RETURN draw_score(pos); 1• drawn in KNNKB if weak side on move •1 
1* or strong side in check *1 

IF (side_to_move(pos) == strong) && !EMPTY(n_attck(weak_k) * n_attck( 
ANYELEM(strong_nn - {c3, f3, c6, f6} * k_attck(weak_minor)))) 

1* strong side on move and other strong N ready to deliver mate •/ 
RETURN (is_knnkb(pos) 11 !(strong_k IN n_attck(weak_minor))) 

? stm_mates_score(pos) : stm_mates_next_score(pos); 

RETURN rcg_fail_score(pos); 1* weak side on move in KNNKN ==> •1 
} /• may still draw (unwind the trap by removal of N) •/ 

1***** WEAK-DRAW PART (II) *****/ 
1• drawn if K distance > 4 steps *1 

IF sqr_dist(strong_k, weak_k) > 4 RETURN draw_score(pos); 

IF side_to_move(pos) == weak 
{ /* calculate escape squares of weak K •1 

} 

const SET OF square: esc_area = weak_k_area- weak_b_n - strong_k_area 
- n_attck(FIRSTELEM(strong_nn))- n_attck(LASTELEM(strong_nn)); 

IF !EMPTY(esc_area - edge - (is_knnkn(pos) ? xcorner)) 1* weak K •1 
RETURN draw_score(pos); 1* can escape from trap==> draw •/ 

1***** STRDNG-WIN PART *****1 

RETURN rcg_fail_score(pos); 1* handle tricky issues by further search *1 
1* and trigger an extension in this line •/ 

7.1 Algorithm Description 

Auxiliary Functions. The recognition algorithm relies on several auxiliary 

functions not specified in detail here. There are a number of routines to ac­

cess and query the current state of the chess board pas sed in the parameter 

pos of type boardstate: k_sqr returns the King location of the desired 

side; b_sqrs and n_sqrs return the locations of all Bishops and Knights 

respectively for the desired side; is..knnkn and is...knnkb identify the 

exact material balan ce; and s ide_to..move returns the si de on move in the 

given position. Another group of auxiliary functions handles the encod­

ing of recognizer failures, checkmates, draws, and mates in this or the next 

move after it into valid scores: rcg_faiLscore, stm..mated_score, 

draw_score, stm..mates_score, and stm..mates...next_score. The 

numerica! function sqr _dist returns the distance between two squares 

on the board as measured in single-square steps that a King needs in 
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moves on an empty board to travel from one to the other. Last but not 

least, the algorithm requires support for the calculation of sets of squares 

attacked by Bishops, Kings, and Knights located anywhere on the board. 

The functions b_attck, k_attck, and n_attck perform the according 

attack generations for B, K, and N respectively. The sliding coverage 

of Bishops along their diagonals specifically depends on the full board 

state, whereas Kings and Knights always attack the same sets of squares 

from a given location regardless of any other pieces. 

Constants and Types. The constant sets corner, edge, and xcorner cap­

ture the important corner, edge, and "extended corner" squares of the 

chess board. The enumeration type si de contains just two items: black 

and whi te. The enumeration type square covers all poard squares de­

noted by the 64 items ai, ... , h1, ... a8, ... , h8. The anonymous types 

boardstate and score represent the full states of chess positions and 

scoring values respectively. 

Pattern Recognition. The algorithm applies basic set operations on sets of 

squares to achieve location-indepedent pattern recognition. As an exam­

ple take the core NN-mate pattern of the weak King,in any corner, the 

weak Bishop or Knight directly beside it on the corresponding "extended 

corner" square, and one of the strong two Knights diagonally beside the 

weak minor piece as depicted in Figure 11. The membership test weak...k 

IN corner assures that the weak King resides in a corner. Then, the inter­

section weak...k_area * xcorner * weak_b_n gives the set of "extended 

corner" squares with a weak Bishop or Knight directly beside the weak 

King. If the set is not empty, it contains the square of the weak minor piece 

as a single element and the second pattern condition holds. Finally, inter­

secting k_attck(weak...minor) * { c3, f3, c6, f6} * strong_nn com­

putes the set of squares with strong Knights directly anq inwardly beside 

the weak minor. If this set is not empty, the full core pattern is identified 

independent of the specific corner square the weak King is located on. 

Weak-Win Part. The recognition starts with the exceptional wins by the weak 

side where the strong King is trapped in a corner by at least one of its 

Knights and the weak King. Depending on which side is on move and 

whether the weak minor piece can actually deliver a checkmate, the algo­

rithm retums mate or mated scores and a draw score otherwise. A clever 

trick used here to determine if a single square is attacked by any piece 

from a set of like pieces works as follows: caii the specific attack function 

of the given piece type with the very square in question as the location 

parameter, then intersect the resulting attack squares with the original set 

of like pieces -+ if and only if the intersection is not empty, the square 
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in question is under attack by some piece from the set of like ones. This 

scheme excels at check detection. The term EMPTY(n..a.ttck(weak...k) 

* strong...nn) , for instance, assures that the weak King is not in check 

by any of the strong Knights. 

Weak-Draw Part (1). This straightforward section detects draws by the rule 

that the weak King is not on the edge of the board and not on any "extended 

corner" squares in KNNKN either. 

NN-Mate Part. The paragraph on pattern recognition above already discussed 

the core NN-mate pattern and its recognition in detail. After establishing 

that the core NN-mate pattern applies, the algorithm tests for check­

mate by the second strong Knight attacking the weak King, for draws in 

KNNKB with the weak side on move or the strong side in check, and for 

forced mates by the strong side with the second strong Knight ready to 

deliver the final check. Otherwise, the weak side is on move in KNNKN 

and may stiH draw by removing the weak Knight from the "extended cor­

ner" square, thus unwinding the trap. The static recognizer intentionally 

fails at this point in order to resolve the resulting complications of checks 

and Knight forks by further search. 

Weak-Draw Part (II). First, the algorithm detects draws by the rule "Kings 

more than 4 steps apart". Then, the next draw detection deals with the 

case that the weak si de is on move and may directly step off the edge and 

the "extended corner" in case of KNNKN. The available escape squares 

of the weak King are those squares around it not blocked by the weak 

minor piece and not attacked by either the strong King or its Knights. If 

the set difference of these escape squares and the edge of the board (plus 

the "extended corner" squares in case of KNNKN) is not empty, then the 

weak King directly escapes from the trap and the positioh is drawn. 

Strong-Win Part. Whenever no obvious drawing rule for the weak side ap­

plies, the static recognizer fails. In case of KNNKN, the weak King stiH 

seems to be trapped on the edge of the board or the "extended corner" 

squares. Further search then resolves the tricky issues of possible checks, 

attacks on the strong Knights, and pins of the weak Bishop in KNNKB. 

In general, such explicitly intended failures of static recognizers should 

trigger search extensions in the current line. If so desired, more ambitious 

analyses of the piece constellation and attack relations on the board aim­

ing for an even better identification of real wins in KNNKB and KNNKN 

may easily be added in front of the fail-value return at the end. 
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7.2 Algorithmic Complexity 

The recognition algorithm heavily depends on sets of squares and basic op­

erations on them: set difference, element count, emptiness, intersection, mem­

bership, member selection, and union. Other important auxiliary functions are 

those for attack generation and access to the data structure holding the full state 

of the current board position. 

Sets of Squares. There are 64 squares on a chess board. Hence, the best way to 

handle sets of squares is by means of a standard bit-vector representation 

with exactly 64 bits (one for each square) where square i is in the set if 

and only if the i-th bit of the vector is 1. Thus, sets of squares nicely map 

to 64-bit unsigned integers which are natural data types of modern CPU s. 

In computer chess such 64-bit values are also known as "bitboards". 

Basic Set Operations. For sets represented as bit vectors, ali basic set op­

erations map to simple constant-time computations involving unsigned 

64-bit data: difference -+ bit-wise AND complement, element count-+ 

count bits (a.k.a. population count), emptiness-+ compare with O, inter­

section-+ bit-wise AND, membership-+ test bit, selection-+ find bit, and 

union -+ bit-wise OR. Most of these computations actually finish within 

a single clock cycle on modern CPUs. The 64-bit unsi'gned integer value 

O represents the empty set and comparisons for set equality are done by 

standard tests comparing 64-bit unsigned integer values. 

Attack Generation. The squares attacked by Kings and Knights depend on 

their specific locations only, regardless of the placement of any other 

pieces. Straightforward table lookups indexed by square numbers suf­

fice to perform the according attack calculations k_attck and n_attck. 

Bishops, on the other hand, are sliding pieces that depend on the full board 

constellation to determine the exact extent of their attack coverage. Even 

if implemented by looping over squares in the four diagonal directions, 

the respective attack calculations of b_attck are constant-time bound 

because their are at most 13 squares to traverse (7 on the middle diagonal 

of the board and another 6 on one next to the middle). Moreover, so­

called "rotated bitboards" (Hyatt, 1999; Heinz, 1997, 2000) enable the 

full Bishop attack calculations to be <;lone by a few table lookups. 

Remaining Auxiliary Functions. Except for attack generation, the auxiliary 

functions either encapsulate simple access protocols to the data structure 

carrying the current state of the chess board or they perform equally 

simple score value encodings. Ali these computations are constant-time 

bound and take only a few clock cycles to finish on modern CPUs. The 

same holds for sqr _dist, an auxiliary function not covered up to now: 

sqr_dist(x,y) = MAX( ABS(VAL(x)/8- VAL(y)/8), ABS(VAL(x)%8- VAL(y)%8) ). 



62 E.A. Heinz 

Ali in ali, the recognition algorithm contains only constant-time bound com­

putations and no loops. Hence, it is of constant time complexity in 0(1). As the 

average and longest execution paths through the algorithm are short and most 

of the calculations actually finish within a few clock cycles on modem CPUs, 

the whole algorithm also features good efficiency in practice where acceptably 

small constants cap its average and worst-case execution times. 

8. Conclusion and Future Work 

Hundreds of thousands of positions in KNNKB and KNNKN are won for 

the KNN side. Tricky mate themes occur more frequently and require more 

complicated handling in these two endgames than common wisdom makes 

people think. In fact, they are not trivial at ali! This pa per may very weH be the 

first ever to present a rule-based static recognition algorithm for any complete 

non-trivial5-piece endgame because the fine works by Herschberg etal. (1989), 

van Tiggelen and van den Herik (1991), and van Tiggelen (1991, 1998) consider 

only the subset KNNKP(h) of the fuH KNNKP endgame. 

AH mate themes and rules were developed a-priori by hand. Then, later on, 

their validity was checked against omniscient endgame databases a-posteriori. 

In particular, the "trapped King" feature seems very important and powerful 

for endgames in general and is probably good for static recognition in other 

endgames as well. Such trapping and the number of escape squares for each 

King could possibly be used as a crucial position feature and input parameter for 

machine-learning algorithms that try to extract useful knowledge from endgame 

databases automatically. The trap pattems look interesting for chess problem 

composers, too, who have certainly discovered them on their own already. 

In the future, 1 like to use the KNNKB and KNNKN recognition rules as a 

foundation to statically detect possible draws and "mates in X" in other positions 

not covered by endgame databases directly ( e.g., additional material might not 

save Black in Figure 3). Moreover, one can stiH extend the current algorithm 

to include better static mate detection and further knowledge about enforceable 

"mate in X" positions. It is also possible to down-scale and specifically adapt the 

algorithm for the subgames KBKN, KNKN, KNNK, and the endgame KBKB. 
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