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STATIC RESOURCE MODELS FOR CODE-SIZE EFFICIENT EMBEDDED
PROCESSORS1

Abstract: Due to an increasing need for flexibility, embedded systems embody more and more programmable
processors as their core components. Because of silicon area and power considerations, the corresponding instruc-
tion sets are often highly encoded to minimize code size for given performance requirements. This has hampered
the development of robust optimizing compilers because the resulting irregular instruction set architectures are far
from convenient compiler targets. Among others, they introduce an interdependence between the tasks of instruc-
tion selection and scheduling. This so-called phase coupling is so strong that, in practice, instruction selection
rather than scheduling is responsible for the quality of the schedule, which tends to disappoint. This lack of effi-
cient compilation tools has also severely hampered the design space exploration of code-size efficient instruction
sets, and correspondingly, their tuning to the application domain. In this paper, we present an approach that re-
duces the need for explicit instruction selection by transferring constraints implied by the instruction set to static
resource constraints. All resulting schedules are then guaranteed to correspond to a valid implementation with
given instructions. We also demonstrate the suitability of this model to enable instruction set design (-space ex-
ploration) with a simple, well-understood and proven method long used in High-Level Synthesis (HLS) of ASICs.
Experimental results show the efficacy of our approach.
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Chapter 1

Introduction

Many embedded processors embody programmable processors as their core components. The machine code run-
ning on the embedded processors must meet tight timing constraints because of the real-time requirements. Often
the program memories reside on chip to obtain small memory latency and low power dissipation. However, the
cost of on-chip memories makes it necessary to severely restrict code size. This can be accomplished by exploit-
ing characteristics of the application (domain), allowed by application domain specific instruction set processors
(ASIPs) and digital signal processors (DSPs). These processors are frequently chosen as the core processors of
systems on a chip due to their ability to balance flexibility and cost. There are roughly three ways to tune an ASIP
core to an application, that can be used in combination:

� By synthesizing a communication (busses) and storage (registers) infrastructure just sufficient for the appli-
cation.

� By hardware acceleration [27]; functional units are added to the data path that perform relatively coarse
grain functions characteristic of the application, such as a butterfly unit in an FFT processor.

� By minimizing the width of the instructions required to control a given data path [33]. One way to achieve
this is to encode frequently occurring (sequences of) operations with short instruction words. Another
possibility is to limit the number of instructions by restricting certain combinations of operations that the
data path can execute in parallel.

Hardware acceleration potentially offers the largest benefits on all accounts, especially for applications that
contain much regularity. It is also the most complex method for the designer because it requires changes in the
communication and storage hardware and the design of the dedicated functional units. The mentioned ways to
tune the ASIP core all have the same severe drawback: They add the necessity to ‘recognize’ in the application,
instructions supported in the instruction set. Often this task of recognition (code selection) is performed by the
programmer himself, either by writing assembly or with the use of APIs in the source code to call the dedicated
instructions or hardware. Both require a lot of source code rewriting and low-level programming, and both are
detrimental for the maintainability and portability of the code. Alternatively, the compiler contains a code selection
phase that recognizes valid instructions in a Data Flow Graph (

�����
), often using pattern matching and graph cov-

ering techniques [15], [16]. Unfortunately the results of applying these techniques have been quite disappointing.
They are for a large part responsible for the considerable overhead in both schedule length and code size (reported
in the order of 800% [24]) of compiler generated code compared to manually written assembly for ASIPs.

The task of code selection, i.e., to cover the
�����

with processor instructions that implement the individual
operations in the

�����
, is depicted in Figure 1.1. The main issue introduced by an irregular instruction set is the

issue of phase coupling: On the one hand, if instruction selection is performed prior to scheduling, the optimal
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instruction set IS: [ld], [add], [mul], [shl]
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Figure 1.1. Instruction selection prior to scheduling may yield inferior results

schedule can easily be eliminated as a result of the choices made during instruction selection. On the other hand,
if scheduling is performed first, the available instructions may not be able to implement the schedule. Traditional
methods which perform these tasks in different phases might yield inferior schedules. This point is illustrated in
Figure 1.1. The

�����
on the left hand side has been covered with machine instructions which are listed below the

�����
. The associated optimal schedule (6 clock cycles) for this selection of instructions is given in the right hand

side of Figure 1.1. The imposed instruction selection is rather unfortunate, however, because Figure 1.2 depicts a
valid schedule requiring only 5 clock cycles.
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Figure 1.2. With a static resource model optimal results can be obtained

A way out of this status quo is offered by the Static Resource Model ( ����� ) approach [34]. The ����� approach
targets the instruction sets that are minimized by restricting certain combinations of operations that the data path
can execute in parallel. Instruction sets in this class, which contains e.g. the so-called issue slot machines, can
be modeled in terms of virtual resources, easily interpreted by classic resource constrained schedulers such as the
popular list-scheduling algorithm. This is illustrated in Figure 1.2 for the example in Figure 1.1. The instructions
in the instruction set ��� have been augmented by the use of the virtual resources �
	��������	�� , ������	������	�� and
������	��� �!��� , which are abbreviated as "$# , #&% and %�' . We have one instance available of each virtual resource.
Each operation uses all the virtual resources that it is contained in, e.g., operation ����	 uses virtual resources (*)
and ),+ simultaneously. In this way, the (*) resource for example models the instruction set constraints that
the 	�� and ����	 operations may not occur simultaneously. For this so-called static resource model, a list scheduler
generates the schedule on the right hand side of Figure 1.2. The reader can verify that the operations at each clock
cycle can be implemented with instructions from the original instruction set ��� . The resulting schedule has length
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5, whereas the schedule in Figure 1.1 has length 6. This example demonstrates that better schedules can be obtained
using a static resource model instead of covering the DFG with valid instructions. This alternative machine model
with virtual resources therefore allows efficient resource constrained compilation with well understood and widely
available compilation tools, rather than the poorly performing compilers based on instruction selection.

The ����� approach also enables instruction set design (-space exploration) with an equally well-understood
and proven method long used in High-Level Synthesis (HLS) of ASICs [13]. This method, illustrated in Figure
1.3, analyzes the time critical loops for bottlenecks in the availability of processor resources required to obtain
the target schedule throughput. These bottlenecks can be identified by scheduling the loop and examining the
load diagrams of the functional resources. The load on critical resources is then relieved by allocating additional
resources. The potential use of this method for instruction set design is based on the observation that both real
functional resources and virtual resources can be allocated when considering the ����� of an instruction set. The
addition of virtual resources results in an extension of the instruction set. We presume therefore that the �����
view on an instruction set allows instruction set design in terms of allocating resources just sufficient to efficiently
execute the critical loops.

default
processor
architecture

Yperformance
analysis feasible?

resources
additional
allocating bottleneck

identification

stop

N

Figure 1.3. Design flow of ASICs

The resulting instruction set can be implemented as an ASIC or an ASIP. ASIPs can be reprogrammed after
fabrication. In order to tune the instruction set of a fabricated ASIP to an application, the instruction decoder
should be reconfigurable to a certain degree. Note that the real (non-virtual) resources are considered fixed in this
case.

This paper is organized as follows. Chapter 2 presents related work on instruction set selection and resource
conflict modeling of issue slot tables. Chapter 3 details the problem statement and our approach. Chapter 4 ad-
dresses the construction of an ����� for an instruction set by using the convex hull approach from the computational
geometry field. In Chapter 5, we present the exploitation of instruction set design by evaluating the performance
of the application through the ��� � approach. In Chapter 6, experimental results are given for benchmarks as well
as real applications. Conclusions and future work are discussed in Chapter 7 and 8.
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Chapter 2

Related work

The phase of code selection has received a lot of attention in the software compiler community. Traditional
compilers use the template pattern base to represent the target processor, which essentially enumerates the different
partial instructions available in the instruction set. Each partial instruction is represented as a pattern, expressed by
means of the intermediate representation of an algorithm. It has been shown that code selection is an NP-complete
problem for intermediate representations that take the form of a directed acyclic graph [4]. However, optimal
vertical code can be generated in polynomial time when the following conditions are satisfied:

1. the intermediate representation of the algorithm is an expression tree;

2. the template pattern base is restricted to contain only tree patterns, i.e., it can be represented as a regular
tree grammar;

3. the processor has a homogeneous register structure.

Several code-selector generators are based on a stepwise partitioning of the code selection problem using dy-
namic programming. It is assumed that conditions 1) and 2) of the above mentioned canonical problem are satis-
fied. In [3] tree pattern matching is done in a bottom-up traversal of the subject tree. For each node, the method
computes the minimal cost to cover the subtrees rooted at that node. During the top-down traversal of the subject
tree, the tree cover is finally found, by determining the minimal cost at the tree’s root node. Dynamic program-
ming is also extended to target heterogeneous register structures, such as Twig [4], Beg [9] and Iburg [12]. Several
compilers for embedded processors have adopted dynamic programming for the code selection phase [5, 15, 17].
Such methods often split the

�����
into expression trees at the edges representing values being used multiple times

and perform tree-covering on each tree separately. Although optimal vertical code can be generated, it cannot
guarantee an optimal schedule in the end. In addition, operations have to be inserted among different trees and
this will increase the code size. An improved method based on simulated annealing has been described in [19].
Mutation scheduling [22] is another approach considering phase coupling, where algebraic transformations are
exploited in order to explore alternative instruction set mappings. A constraint logic programming technique for
DSPs with irregular architectures has been presented in [6]. In that approach, all binding decisions are delayed
until they are really required, which yields a maximum degree of freedom in code generation. However, this is at
the expense of high compilation time.

Another approach for code selection is based on constructing graphs which include complete information of
the architecture. In

� ���
��� [31], for example, the target processor is described in the nML language [11] and is
translated into an Instruction-Set-Graph ( ��� � ), which models connectivity, encoding restrictions and structural
hazards. Code selection covers the control-data flow graph with partial instructions (bundles) by searching valid
paths in the ��� � . All the mentioned methods add a complex step to the compiler chain and eliminate potentially
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interesting solutions from the schedule and register binding search spaces. In [14, 32], code generation tasks
are performed by imposing constraints and the complete solution space is explored while considering all these
constraints. However, this approach can only deal with small applications and a restricted set of architectures.

A completely different approach to tackle the code generation problem is to exploit the instruction set constraints
statically. Eisenbeis [8] starts from the placement conflicts by using reservation tables for ��� ��� architectures such
as the Trimedia processor. Timmer et al. [29] discusses the modeling of instruction set constraints together with
resource constraints for instruction scheduling, but the assumption that all the instruction set constraints can be
transferred to resource constraints targets mostly instruction sets with a structure associated with so called issue-
slot machines. The virtue of orthogonal instruction sets, like ��� ��� instruction sets [26], is that they allow to a
large extent the modeling of the instruction set constraints by means of a model as presented in [8], [29], or a static
resource model as proposed in this paper. These models offer the scheduler more opportunity to satisfy the timing
and resource constraints than with the use of an explicit instruction selection step. The scheduler rather than the
instruction selector is considered the designated place for handling these constraints.

The focus of this paper is on translating the instruction set constraints of highly encoded instruction sets to a
static resource model, allowing the use of code size efficient processors in combination with efficient compilation
tools based on constraint analysis. Our approach is not restricted to issue slot tables with fixed bit-width for each
issue slot; thus it can deal with more flexible encodings than the earlier approaches. In addition, the procedure of
constructing a static resource model also provides useful information for instruction set design.

5



Chapter 3

Problem statement and approach

3.1 Definitions

A
� ��� algorithm can be expressed as a data flow graph, which describes the primitive operations performed in an

algorithm and the dependencies between those operations.

Definition 1. A data flow graph (DFG) is a tuple ��� ���� , where � is the set of vertices (operations) and�
	����� is the set of precedence edges.

In a processor architecture, a functional resource can be used in different ways. E.g., a functional resource
' "�� can execute an operation add or a subtract, etc. For reasons of complexity, we do not wish to enumerate all
possible uses of a functional resource in an instruction set. Therefore, we consider the collection of these uses of a
functional resource and associate with it an operation type. E.g., on the functional resource ' "�� , operations add
and subtract can be executed, which are associated with the operation type � 	 � . We denote the set of operation
types with � . An instruction is now defined as a combination of operation types that can be executed in a single
clock cycle.

An operation type can appear multiple times in an instruction (multiple � 	 � s can be present in the data path).
For an operation type ��� in an instruction � , we denote this number by ��������� . If for two instructions ��� and ��� ,����������� is always at most equal to � �!������� for each operation type ��� , we say that instruction ��� is contained in
instruction � � . In this paper, we consider instruction sets ��� where for each instruction all contained instructions
are also in ��� . We call these instruction sets prefix closed.

The code generation problem is to find a schedule of a
�����

, i.e., to determine a start time �"�$#�� for each
operation #&%'� , that satisfies precedence constraints and architectural constraints. These architectural constraints
can be modeled either as an instruction set or by introducing functional resources and associating a certain resource
usage with each operation. The corresponding resource constraints are static in the sense that they only provide a
fixed upper limit and any usage within the limit is valid. We say that such a problem has a static resource model.

Definition 2. A Static Resource Model (SRM) is a model generating static resource constraints that defines three
aspects:(

a set of resources ) ,(
a mapping that associates each operation type with the resources in ) that it needs, and(
the number of instances available of each resource *+%-, , denoted by # . .

Our approach is motivated by the observation that both resource constraints and instruction set constraints can
be expressed by inequalities. For example, if an architecture contains two ' "/� s and each ' "�� can be used as an
adder or a subtractor, then the resource constraints can be expressed by the following inequality: 01� ' "/���3254 ,
which is equivalent to 06��7/�98:06� +;�12<4 , where 01��7�� and 01� +;� denote the number of add and subtract
operations allowed to execute in parallel. Any schedule satisfying at any time the above inequality indicates a
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valid resource usage. Similarly, if an instruction set contains instructions � � �!���� � ��� , � � �!���������� and � �
������������ , the
operation type usage can also be expressed as an inequality: 06��� � �"� 8 01� �
����� 2�4 , assuming any subinstruction
is also a valid instruction.

instruction set
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[add, mul, shift, shift]

Figure 3.1. Instructions expressed as points in the operation type space

In general, operation types are associated with axes in a multi-dimensional numerical space �
	 , where � is
the dimension corresponding to the number of operation types, and instructions can be geometrically represented
as points in this operation type space. An example is depicted in Figure 3.1. This figure gives an instruction
set using three operation types. Only the “maximum” instructions are listed; instructions that are fully contained
in other instructions are not explicitly represented. We will do so throughout the paper. Since the instruction
set uses three operation types, the operation type space is 3-dimensional. As mentioned, all valid instructions
correspond to points in this space. Instruction � ���� � �!���� � �������	������������� , for example, is drawn as point ���
with coordinates ��� ��� �!��� , ���!� ����	�� and ��� � ����������� . For clarity, only a subset of all the instructions is shown in this
figure. Because we assume prefix closedness of instruction sets, the instruction set corresponds to a well-defined,
closed subspace of the operation type space. It is our aim to capture this subspace spanned by the instructions via
inequalities. Inequality 06� ����	�� 8 06� ��������� ��2�� , for example, is one of the inequalities needed to capture this
subspace. Inequalities can subsequently be translated to virtual resources. In general, deriving the inequalities and
the resulting virtual resources for an instruction set can be perceived as a convex hull problem [2] [25]. Here we
give some preliminaries of the convex hull problem.

Definition 3. Given a set of points ��� ��� � ���� ! ! ! ��#"!� , $ is called an affine combination of � if $ can be
expressed as a linear combination of � :

$%� "& ' ( �*)
' � ' �,+ � "& ' ( �-)

' ��. (3.1)

A convex combination of � is an affine combination such that each )
'

is non-negative. A proper convex
combination is one where each )

'
is positive.

Definition 4. A subset + of a � -dimensional space � 	 is called a convex set if and only if every convex
combination of points in + is also in + . The convex hull of a set � , denoted as conv(X), is the set of all convex
combinations of � ; it is the smallest convex set containing � .

Consider again Figure 3.1. The set of points bounded by the planes ����	/�10 , � � �2�10 , ���������3�10 and the
other planes depicted, is the convex hull of the original instruction set ��� . As the above example already suggests,
a convex set can be described by means of its boundary. In general, such a boundary consists of a set of halfspaces.
A halfspace is the set of all points below or above some plane. A halfspace can be seen as a constraint on the
elements of the set being described and it is defined via an inequality. Consider the example of Figure 3.1 again.

7



The halfspace containing all points below the plane through points ��� , ��� , �*.!0 and � .�. corresponds to inequality01� ����	 � 8 06� ����������� 2 � . Given a set of halfspaces � with intersection + , halfspace � %�� is non-redundant
if and only if there is some point contained in the intersection of all the halfspaces in ����� but not contained in
+ . The notion of non-redundancy is useful in determining the minimal set of inequalities describing convex set + .
The halfspace representation of the convex hull of some set � is denoted by � � �-� .

It is also possible to describe a convex hull via its extreme points. The convex hull in Figure 3.1, for example,
can be described via the set � �#0 � � 0��0��0�� , �*. � � 4 �0��0�� ,  ! ! , � .�. � � . �. �4 ��� . Given a convex set + , a point
in + is an extreme point if and only if it is not a p . ��� � . convex combination of any two points in + . The notation	 � � � denotes the vertex description of the convex hull of some set � , consisting the set of extreme points.

There are two closely related computational problems concerning the two descriptions of the convex hull of a
set � :

� The vertex enumeration problem is to compute
	 � �-� from �-� � � .

� The convex hull problem is to compute � � �-� from
	 � �-� .

It is known that both problems are polynomially solvable [2]. In code generation for ASIPs and DSPs, deriving
virtual resources from a given instruction set can be perceived as a variation of the convex hull problem, since the
instructions form the vertex description and the virtual resources form the non-redundant halfspace description. On
the other hand, in the instruction set design space exploration, one can optimize the instruction set by modifying
the ��� � to meet the real-time constraints, and subsequently calculating the corresponding instructions. This can
be perceived as a variant of the vertex enumeration problem.

3.2 Problem statement

In this section, we generalize the problem of constructing the ����� for a given instruction set and present the
convex hull approach for this problem. In addition, we present an approach for the instruction set design (-space
exploration) by tuning the corresponding ����� s.

Problem 1. The general problem can be defined as mapping a given instruction set to an ����� such that
any schedule for a

�����
satisfying the resource constraints posed by the ��� � corresponds to a valid instruction

selection. We say that the instruction set has an ��� � .

We propose a solution strategy based on expressing the instruction set constraints as inequalities, like 01��� �!���!801� �
����� 2 4 in the example in Chapter 3.1. We start from an initial instruction set ��� . It is followed by a step
called operation-type statistics, which calculates the number of times operation types as well as their combinations
appear in an instruction set. In this way we enumerate all the potential extreme points of the instruction set in the
operation type space. We then search for an ����� by computing the convex hull. With the resulting inequalities,
we can obtain a new instruction set 
 ��� by enumerating all the instructions allowed under those inequalities. The
equivalence of the instruction set constraints and the ����� is verified by comparing the new instruction set 
 ��� to
the initial instruction set ��� . The ����� itself is derived directly from the inequalities, but is only accurate if the
aforementioned test turns out positive. The procedure is illustrated in Figure 3.2. In case the ��� � is not accurate,
it can be profitable to adapt the instruction set that it fits the ��� � , because then all the advantages of the ��� �
approach can be exploited.

Since the ��� � approach can be applied easily to evaluate the performance of an application, especially a
loop kernel, it is natural to consider this approach for adapting the designed instruction set to the performance
requirements of an application. We generalize the following instruction set design (-space exploration) problem.

Problem 2. Given a set of time critical loop kernels (belonging to a single application) with the corresponding
throughput constraints and a target instruction width for the ASIP, design an instruction set and the corresponding
����� such that the throughput constraints can be satisfied.

8
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Figure 3.2. Overview of the SRM approach

In Figure 1.3, a practical and commonly used design flow is depicted for allocating functional resources in the
context of High-Level Synthesis (HLS). Noticing the similarity between the functional resources and the virtual
resources, we propose to apply this flow for allocating virtual resources in the context of designing an instruction
set.

N
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stopprocessor
architecture
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default IS & performance &
wordlength
analysis
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Figure 3.3. Overview of the instruction set design flow

In this optimization flow, depicted in Figure 3.3, we start with a default instruction set and processor architec-
ture. Subsequently, the performance of the critical loops is analyzed, as explained in more detail in Chapter 5. If
the performance is insufficient, we look for the responsible (virtual) resources in a step called bottleneck identi-
fication. The ��� � is subsequently modified by allocating additional instances of the virtual resources whenever
necessary. The essential difference to the HLS flow in Figure 1.3 is that we also consider the instruction width as
a criterion in the design process to evaluate the modifications made for the ����� model.
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Chapter 4

Construction of an SRM

In this chapter, we present in more detail the method for verifying whether an instruction set has an equivalent
����� outlined in the previous chapter. If it has, the method also gives this ��� � .

4.1 Using inequalities for the construction of an SRM

In [34], we presented an approach for deriving an ��� � for a given instruction set by making use of inequalities.
The basic idea is to generalize the maximum usage of operation types in an instruction set by representing it as a
set of inequalities, and then transforming these inequalities into an ����� . The desired set of inequalities is derived
from the operation-type statistics. An example of these statistics is depicted in the table of Figure 4.1 (b) for the
instruction set ��% � given in Figure 4.1 (a). In the table, rows correspond to the individual instructions listed in
Figure 4.1 (a), and columns correspond to (combinations of) operation types. The numbers in the table indicate
how many times an operation type (combination) is present in an instruction. For example, the operation type
add, occurs twice in instruction (1), and the operation types shift and mul together occur three times in instruction
(3). By looking at the largest frequency within each column, the inequalities in Figure 4.1 (c) are derived. Each
inequality corresponds to one column. In general, for each combination of operation types + � � ��� � ! ! ! �������� ,
we have one inequality:

01����� ��� 8�������8601������� � 2 ���	�
����� � &
��� ��
���� ����������� (4.1)

where 01�����
'
� is the number of times an operation type appears in an instruction.

The instruction set constraints have now been replaced by a set of inequalities. This set often contains re-
dundancy; in the example of Figure 4.1 (c), inequality (5) can be removed because it is implied by inequality
(7). Removing inequalities is advantageous because the complexity of the derived ����� is determined by the
number of inequalities. In [34], we provided several rules to remove the redundancy. From the remaining in-
equalities the ��� � is derived, shown in Figure 4.1 (d). For example, inequality (6) is translated to the virtual
resource ������	������������� , which is abbreviated as ),+ , with three instances available. For reasons of convenience,
we represent a virtual resource by combining the first letters of all those operation types which compose it. An
operation type “uses” all the resources from the ��� � that it is contained in, e.g., � � � uses 7 , 7 ) and 7 ) +
at the same time. Note that virtual resource 7 corresponds to the real functional resource implementing the � �!�
operation, while virtual resources 7 ) and 7 ) + have functionalities similar to functional resources but are not
real functional resources, explaining the term.

A weakness of this method is that it does not always give an ��� � , even if an instruction set has one. Further-
more, a resulting ��� � often has redundancies, as the above example illustrates. These redundancies are difficult
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(d) static resource model

add
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add mul
shift

shift

add -> A, AM, AMS

add
shift
mul

#AM = 3, #MS = 3, #AMS = 4

#A = 2, #M = 2, #S = 2,

shift -> S, MS, AMS

mul -> M, AM, MS, AMS

4

2

2

3

3

3

4

2

3

3

2

3

2

1

2

1

2

2

2

1

1

1

0

(1)

(2)

(3)

(4)

2

1

4

4

4

(1) N(add) <= 2

(2) N(mul) <= 2

(3) N(shift) <= 2

(5) N(add)+N(shift) <= 4

(6) N(mul) + N(shift) <= 3

(4) N(add) + N(mul) <= 3

(7) N(add) + N(mul) + N(shift) <= 4

(1) [add, add, mul, shift]

(2) [add, add, shift, shift]

(3) [add, mul, mul, shift]

(4) [add, mul, shift, shift]

(c) inequalities

(b) operation-type statistics(a) instruction set IS1

Figure 4.1. Example of an instruction set with an SRM

to remove. The method is also not well suited for handling complex encodings. Figure 4.2 shows an example
where methods from literature [8] and the one above fail to express instruction set restrictions in an ����� -like
manner. The difficulty is introduced by the wordlength constraints on instructions. There are three adders and two
multipliers in the data path. Each � �!� is encoded with 8 bits and each ����	 with 10 bits. The total wordlength
for an instruction is limited to 24 bits, thus all the possible combinations of operation types are: � � � ���� �!���� � ��� ,� ����	��� � ��� , � ����	������	 � . The method above will produce the inequalities in Figure 4.2 (b). It contains one re-
dundant inequality: inequality (1). Furthermore inequality (3) allows the combinations of operations such as� � � �������	������	 � and � � �!���� � �������	 � , which are in fact not valid because of the instruction encoding constraints.
In contrast, the method explained below generates the inequalities for the instruction set in Figure 4.2 (c), which
correctly models the instruction encoding limitation. Using this new inequality the instruction set is verified to
have an ����� .

* 10 bits+ 8 bits

(3) N(add) + N(mul) <= 3

[add, add, add]

[mul, mul]

[mul, add]

(2) N(mul) <= 2

(1) N(add) <= 3

(3) 2 N(add) + 3 N(mul) <= 6

(2) N(mul) <= 2

(1) N(add) <= 3

(b) the incorrect inequalities (c) the correct inequalities(a) an instruction set

Figure 4.2. Example of wordlength constraints

In the next section, we provide a general approach for the construction of ��� � s that improves the method of
[34]. It solves all the mentioned problems and it gives a valid ����� for the instruction set in Figure 4.2 (a).

4.2 A general approach for deriving inequalities

In order to find a method that produces a valid ��� � for a broader class of instruction sets, we observe the
following restriction in the approach of Chapter 4.1: The inequalities do not have weights on the left hand side
for each operation type. Assume ��+ � in Figure 4.3 (a) is the full instruction set of a certain ��� ��� architecture,
while � + � in Figure 4.3 (b) is the similar but smaller instruction set. The method above will generate the same
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����� for the two instruction sets. However, by adding inequality (6’) to the set of inequalities in Figure 4.3 (d),
we solve the problem posed in the previous section: Instruction set ��% � now has a valid ����� , different from the
����� corresponding to ��% � .

If the operation types are associated with the axes in a multi-dimensional numerical space and the instructions
are represented as points in this operation type space geometrically, then the inequalities derived for the instruction
set can be perceived as boundaries enclosing those points and the problem is transformed into a convex hull
problem.

The instruction sets ��% � and ��% � and their convex hulls are illustrated in Figure 4.3 (a) and (b). In Figure 4.3 (c),
we obtain the same set of inequalities as in Figure 4.1, which in Figure 4.3 (e) leads to the same ��� � as in Figure
4.1. Notice that the algorithms used in computational geometry tools, e.g. the cdd [7] package, already omit the
redundant inequality (5) in Figure 4.1 (c). Because the last instruction in ��%3� is not valid for ��% � , points �*.!0 and�*.�. are not present in Figure 4.3 (b), and the convex hull and the set of inequalities in Figure 4.3 (d) are slightly
different from ��% � . Notice that inequality (6’), 06� ����	�� 8 4�01� ����������� 2�� , is generated with the weight on the left
hand side automatically. Because of this weight, inequality (3) becomes redundant, which means virtual resource
+ is not required any more. Also notice that for the same reason, the ��������� operation uses virtual resource ) +
twice as is reflected in the ��� � of Figure 4.3 (f).

#A = 2, #M = 2, #S = 2
#AM = 3, #MS = 3

shift -> S, MS, AMS

add -> A, AM, AMS
mul -> M, AM, MS, AMS

add

mul

shift

(2,0,0)

(2,1,0)

(0,2,0)

#AMS = 4

(1,2,0)

(f) SRM for IS2

p2

p3

p1

(0,2,1)

(2,1,1)

(1,2,1)

(2,0,2)

p5 p6

p7

p8

p4

p10
p11
(1,1,2)

N(mul) + N(shift) <= 3

N(add) + N(mul) + N(shift) <= 4

add

mul

shift

(2,0,0)

(2,1,0)

(0,2,0) (1,2,0)

p2

p3

p1

(0,2,1)

(2,1,1)

(1,2,1)

(2,0,2)

p5 p6

p7

p8p9

p4

N(mul) + 2N(shift) <= 4
N(add) + N(mul) + N(shift) <= 4

mul -> M, AM, MS, AMS

#AMS = 4

#A = 2, #M = 2
#AM = 3, #MS = 4

add -> A, AM, AMS

shift -> MS, MS, AMS

(0,0,2)

(7) N(add) + N(mul) + N(shift) <= 4
(6) N(mul) + N(shift) <= 3

(4) N(add) + N(mul) <= 3
(3) N(shift) <= 2
(2) N(mul) <= 2
(1) N(add) <= 2

(7) N(add) + N(mul) + N(shift) <= 4

(4) N(add) + N(mul) <= 3

(2) N(mul) <= 2
(1) N(add) <= 2

(6’) N(mul) + 2 N(shift) <= 4

(0,0,2)

(0,1,2) (0,0,0) (0,0,0)

p9

p0 p0

[add, add, mul, shift]
[add, add, shift, shift]
[add, mul, mul, shift]
[add, mul, shift, shift]

[add, add, mul, shift]
[add, add, shift, shift]
[add, mul, mul, shift]

(a) instruction set IS1 (b) instruction set IS2

(c) inequalities for IS1 (d) inequalities for IS2

(e) SRM for IS1

Figure 4.3. Examples of SRMs calculated from convex hulls

The general problem of constructing the ����� for an instruction set ��� can be formalized as follows: given a set
of points (instructions) in the � -dimensional operation type space, determine the convex hull ��������� ��� � expressed
as a set of + linear inequalities.
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� � + #���� +;� � � �� � 7 ���2 ��� (4.2)

where � � � � �
, 7 % � ��� 	 and �3% � � .

It remains to determine how to precisely compute (4.2) for a given ��� . The basic idea is to use a standard
convex hull algorithm applied to the extreme points in the ��� . Because we assume prefix closedness of instruction
sets, any subinstruction is also a valid instruction. Although a subinstruction is not explicitly listed in the given
example instruction sets, it is quite possible to be an extreme point of a convex hull. For example, the four
largest instructions in ��% � can be drawn as points ��� , ��� , ��� and � .�. in Figure 4.3 (a). These four points are not
sufficient to build ��������� ��%���� . Point �*. , for example, represents a subinstruction � � �!���� � ��� , which is obviously an
extreme point for this convex hull. In order to construct the complete convex hull, we have to find all the extreme
points in the space, which is as complex as the convex hull problem itself. We can simply enumerate all the
subinstructions in the instruction set, but this is very inefficient in time. Assuming that the largest instruction can
execute � operation types in parallel maximally, and there are 	 largest instructions in total, then this enumeration
complexity is 
 ��	&4�/� in the worst case. Obviously, a lot of these points are redundant when constructing the
convex hull in the sense that they are not extreme points. If they are all contained in the input to the convex hull
algorithm, it will increase the runtime of the algorithm although it is polynomial. Unfortunately, removing them
is also costly.

As we can see in one example, extreme point �*. with coordinates � 4 �0��0�� is the projection of point ��� with
coordinates � 4 �0��4 � on the plane ��������� � 0 . Any point between them has no contribution to the convex hull,
thus it is redundant. From this intuition we can simplify the enumeration of subinstructions by calculating only
the points projected on the planes with dimensions �

( . , � ( 4 ,  ! ! , 1 obtained by assuming 1, 2,  ! ! , � ( .
coordinates to be zero respectively. The complexity of this projection in the worst case is 
 ��	�4 � � , where � is the
number of operation types appearing maximally in one instruction.

The complexity of enumerating only the projected points is usually less than the complexity of complete enu-
meration of the valid subinstructions (points in the convex hull), because in practice the number of operation types
appearing in one instruction is often less than the cardinality � of the largest instruction, especially for instruc-
tions with large parallelism. In addition, this number can be minimized by grouping operation types with similar
usages, which will further reduce the runtime for the construction of the convex hull.

4.3 Deriving resources

So far, we have explained by means of examples how instruction set constraints can be captured in an ����� based
on an approach computing the convex hull of the instruction set. In this section, we give a theorem formulating
a necessary and sufficient condition for verifying whether an instruction set has an ����� , thus solving problem 1
as defined in Chapter 3.2. The argument showing that the condition is sufficient includes a transformation from
the inequalities describing the convex hull of the instruction set to an ����� . The basic idea of the theorem is that
the convex hull of an instruction set defines a new instruction set consisting of all the integer points in the convex
hull. If this new instruction set is equal to the original instruction set, then the convex hull provides the basis for
an ����� of the original instruction set because it captures precisely all the instruction set constraints. If the new
instruction set contains integer points that are not valid instructions in the original set, then the convex hull does
not provide an appropriate ����� because the constraints are not sufficiently tight.

Theorem. Let ��� be an instruction set. If 
 ��� is the set of all the integer points contained in � ��� � � ��� � , then ���
has an ����� if and only if 
���� equals ��� .

We prove the sufficiency of the condition in this theorem by giving the following ��� � . Recall Definition 2
introducing the notion of an ����� and equation (4.2) that describes the convex hull of an instruction set in terms
of inequalities. We need to define three aspects:
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(
the set of virtual resources ) of the ��� � contains all the sets of operation types corresponding to an
inequality in the convex hull description of (4.2);(
each operation type needs � instances of all the virtual resources that it is contained in, where � is the
weight of the operation type in the inequality in (4.2) corresponding to the virtual resource;(
the number of instances of a resource equals the bound in the corresponding inequality in (4.2).

To clarify this construction, consider the example instruction set ��% � of Figure 4.3 (b). Figure 4.3 (d) gives the
inequalities describing the convex hull of ��% � . The convex hull consists of five inequalities, which means that the
derived ����� has five virtual resources. Inequality (4), for example, corresponds to virtual resource �
� �!�������	�� ,
as before abbreviated ' # . Inequalities (1), (2), (6

�
) and (7) correspond to virtual resources ' , # , #&% and ' # % ,

respectively. The number of instances of resource ' # is determined by the right hand side of inequality (4),
being 3. The other four resources have 2, 2, 4 and 4 instances, respectively. Finally, operation type ��� � uses one
' # resource, because 1 is the weight of ��� � in inequality (4); it further uses one # resource, one #&% resource
and one ' #&% resource. Operation type �	�	� uses one 7 , one ' # and one ' # % resource; 
��� ��� uses two #&%
resources and one ' #&% resource. Figure 4.3 (f) summarizes the ����� .

It still needs to be shown that the condition in the theorem that 
���� equals ��� is sufficient to guarantee that
the ����� defined above is an appropriate representation of the instruction set constraints of ��� . The construction
of the ����� guarantees that a schedule of all the operations in a

�����
constrained by the ��� � satisfies all the

inequalities describing the convex hull of ��� . Recall that 
 ��� contains exactly all the integer points satisfying these
inequalities. Thus, if 
 ��� equals ��� , the inequalities only allow valid instructions which means that any schedule
constrained via the above ��� � satisfies all instruction set constraints. Thus, ��� has an ��� � , namely the one
provided above.

As an example consider again instruction set ��% � of Figure 4.3 (b). The inequalities in Figure 4.3 (d) precisely
capture all these instructions, i.e., they do not allow any integer solutions that are not instructions in ��% � . Thus,
we conclude that ��% � has an ��� � . Figure 4.3 (f) provides an ����� , which is constructed as explained above.

The necessity of the condition that 
���� equals ��� in the above theorem immediately follows from the following
fact: The convex hull of a set of points is the smallest convex set containing all these points (Definition 4). In
other words, 
���� is the smallest set of integer points containing all the instructions in ��� that can be described
by inequalities of the form given in (4.2). Thus, if 
���� contains a point that is not an element of ��� , then it is
impossible to describe ��� via such inequalities. Since there is a one-to-one correspondence between inequalities
and ��� � s, ��� cannot have an ��� � .

To illustrate that there are instruction sets without an ��� � , consider the example in Figure 4.4. Figure
4.4 gives an instruction set, the inequalities describing its convex hull, and the ����� that can be derived from
these inequalities following the above construction. The inequalities allow instructions � � � ���� �!���� � ����
������������ ,� � � ���� �!���� �!�� � ����� , � � � ����
������
���� � ����� , � � � ���� �!����
���� � ����� , � � �!�� � ���$ � ��� � plus all their subinstructions.
Thus, unfortunately, the inequalities allow instruction � � � ���� �!����
���� � ����� that is not part of the initial instruction
set; it is depicted as point p9 in Figure 4.4 (a). As a result of the above theorem, we may conclude that the initial
instruction set has no ��� � . Point p9 is part of the plane through points p2, p6, p7 and p8. Thus, it is straightfor-
ward to verify that we cannot tighten the corresponding constraint expressed by inequality (4) in such a way that it
excludes point p9 but none of the other points that do correspond to valid instructions. Although this is a negative
result, it provides us useful information for instruction set design. If we could extend the initial instruction set with
instruction � � � ���� �!����
���� � ����� , the resulting instruction set is guaranteed to have an ��� � , which implies all the
advantages discussed in this paper.

Note that for certain important classes of instruction sets, it is always possible to derive an ����� using our
method. One such class is the class of ��� ��� instruction sets, which serve as the interface for ��� ��� architectures
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(3,0,0)

(0,2,0)

(0,2,1) (1,2,1)

!!"
"

(1,0,2)

(c) static resource model

(3,0,1)

(2,1,1) p1

p2
p3

p6
p7

p8

(0,0,2)
p5

p4

p9

cmp

add

sub

(2) N(sub) <= 2

(1) N(add) <= 3

(3) N(sub) + 2N(cmp) <= 4

(4) N(add) + N(sub) + 2N(cmp) <= 5

#A = 3   #S = 2

#SC = 4   #ASC = 5

add -> A, ASC

sub -> S, SC, ASC

cmp -> SC, SC, ASC, ASC

[add, add, add, sub, sub]

[add, add, add, cmp]

[add, sub, sub, cmp]

[add, cmp, cmp]

(a) instruction set

(b) inequalities

Figure 4.4. Verifying an instruction set having no SRM

that are used quite often in media processing. Our method is a generalization of the methods presented in [8], [29],
and [34].
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Chapter 5

Design of the instruction set architecture from
an SRM

Now that we have explained the ����� model, we are going to use that model to do instruction set design.
Usually the instruction set design process is performed independently from the compiler. Thus it could happen

that although a good processor architecture is generated, it cannot produce the desired performance for applications
even if a lot of effort is put on generating an efficient compiler. It is a challenge to design an instruction set for an
ASIP that can be encoded using a restricted number of instruction bits, while still offering a sufficient degree of
parallelism for critical functions in the target application.

5.1 Performance and bottleneck analysis

Similar to the high-level synthesis approach, performance analysis can be done either fast or accurate. An accurate
analysis is obtained by actually scheduling the critical loops and examining the load diagrams. These load dia-
grams enable the designer to identify critical resources. Alternatively, the performance on the critical loops can be
estimated in a fast way by considering a well-known lower bound based on available (virtual) processor resources,
which is explained next.

When applying software pipelining techniques to loop kernels, the initiation interval (II) is an important crite-
rion for measuring the performance. An ��� is the period between the start times of the execution of two successive
loop-body iterations. The minimum initiation interval (MII) is the lower bound of the ��� . The � ��� can be deter-
mined either by a critical resource that is fully utilized or a critical chain of dependencies running through the loop
iterations. One lower bound, the resource constrained MII (ResMII), is derived by calculating, in total, the usage
requirements for each resource imposed by one iteration of the loop.

Suppose a loop containing 14 � � � operations is mapped on a data path containing three adders and each adder
takes one clock cycle to execute. Then we need at least

� ������ � � clock cycles to execute the loop iteratively. By
doing this calculation for every available resource, we obtain the lower bound ���	��� ��� on the initiation interval
��� of a pipelined schedule of the loop. The general experience is that this bound is very tight. The lower bound
indicates the critical functional resource in the data path. This lower bound estimate can therefore be used for
bottleneck identification.

In case of instruction set constraints and the corresponding ����� , virtual resources should be taken into account
for the performance estimation. The �
�	��� ��� is no longer simply totaling of resource usages for each resource
because some operations are mapped into more than one instance of virtual resources. Thus the ���	��� ��� has to
be updated with respect to the multiple usage of the virtual resources [35]. Suppose a virtual resource ) with �
number of instances available, and ) is used by a set of operation types + � � ���

'
�� � . ������ �+ � . Also assuming

that the number of operations mapped to operation type ���
'

is + ' , then �
�	��� ��� is updated as:
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�
�	��� ��� � � � �� ��� �
� �
' ( � �

' + '� � (5.1)

where ) is the set of virtual resources and �
'

is the � -th element in vector 7 in equation (4.2).
For example, for the instruction set in Figure 4.3 (b), inequality (6’) in Figure 4.3 (d) indicates that the ���������

operation uses two instances of the resource ) + , of which four are available. For a
�����

in Figure 5.1 (a), the
number of operations using each operation type � �!� , ����	 and ��������� can be expressed as +�� 	�	 � 4 , + ���	� � � ,+�
� ' ��� � � respectively. Assume functional resources � �!� � . , ����	 ��� ��	 � ��. and ��������� ��. are available, each with
two instances. Thus the estimated lower bound for the initiation interval with respect to the functional resources
in the data path is 3, shown in Figure 5.1 (b). While the

�����
in Figure 5.1 (a) is executed by instruction set ��� � ,

the corresponding virtual resources in Figure 4.3 (d) modify the estimation as depicted in Figure 5.1 (c), which is
one clock cycle longer than the original estimation based on teh functional resources. This lower bound is very
tight; we can apply the loop folding technique directly by first mapping the operations to the virtual resources, as
depicted in Figure 4.3 (f). Figure 5.2 shows the optimal scheduling result and the virtual resource usages in the
loop kernel.

nnadd
nadd muln muln n

shift nadd muln n
shift

n
shiftmulnnadd

nadd muln n
shift

mul

(a) A data flow graph

+ s * s

+ *

s *

* s *

*

= 2 = 6 = 4

MII = max (
#A , #M , #S

)

MII = max ( 
, ,

+ +2

, ,

+ +

#AMS#MS#AM#M#A
)

= max (2/2, 6/2, (2 + 6) / 3, (6 + 2 * 4 ) / 4, (2 + 6 + 4 ) / 4 )

= 4

= max (2 / 2, 6 / 2, 4 / 2)

= 3

(b) ResMII estimated with functional resources

(c) ResMII estimated with virtual resources

Figure 5.1. DFG and the MII estimation

Like in the bottleneck analysis of high-level synthesis of ASICs in Figure 1.3, the bottleneck of performance
now can be identified from the updated lower bound estimation and can be relieved by allocating additional (vir-
tual) resources. In addition to the allocation of additional resources, in our instruction set design flow we also have
the possibility to decrease the resource usage of a critical resource in order to relieve the bottleneck. Therefore it
is more convenient to consider the inequalities, because they describe both the resource availability and, for each
operation type, the usage of that resource. The way that we relieve the bottleneck is explained in the following
section.

5.2 Modification of the SRM

We consider two possibilities to modify the ����� [35].

� Increase the number of instances (the right hand side of the inequality) of virtual resource ),+ . This might
result in an increase of the instruction width.

� Decrease the largest usage (the ��������� operation) of the resource ) + . We consider the largest usage because
it has the most impact on the lower bound.
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Figure 5.2. Scheduling result with loop folding and the virtual resource usage in the kernel

Table 5.1. Modification of the SRM

inequality

#A = 3, #M = 2, #AM = 6SRM

mapping

MII

IS

initial design

= 7

24 bitswordlength

2 N(add) + 3 N(mul) <= 6

add -> A | AM | AM

mul -> M | AM | AM | AM

modifying right side

2 N(add) + 3 N(mul) <= 7

26 bits

#A = 3, #M = 2, #AM = 7

add -> A | AM | AM

#A = 3, #M = 2, #AM = 6

2 N(add) + 2 N(mul) <= 6

modifying left side

add -> A | AM | AM

mul -> M | AM | AM

28 bits

mul -> M | AM | AM | AM

= 6 = 5

[add, add, add]

[add, mul]

[mul, mul]

[add, add, add] [add, add, add]

[add, add, mul]

[add, mul, mul]

max(6/3, 9/2, (2*6+3*9)/6) max(6/3, 9/2, (2*6+3*9)/7) max(6/3, 9/2, (2*6+2*9)/6)

[add, add, mul]
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An example in Table 5.1 illustrates the design process. In this example we consider a loop with 6 � � � operations
and 9 ����	 operations. The initial instruction set and the corresponding inequalities are shown in Figure 4.2. The
performance requirement of the loop under consideration is given as ��� � � .

In Table 5.1, the first column corresponds to the initial design depicted in Figure 4.2 (c). The virtual resource7 ) with respect to the third inequality is identified as the bottleneck, which lower bounds the ��� to 7, as calculated
in the sixth row. In the second column we evaluate the decision to modify the right hand side of the bottleneck by
increasing the number of instances to 7. As a result of this ����� modification, ��� is now lower bounded by 6. A
new instruction � � � ���� �!�������	 � is added to the instruction set, thereby increasing the instruction width to 26 bits.
In the third column we evaluate the decision to modify the left hand side coefficients unevenly by decreasing the
larger one. The lower bound on the ��� is now 5 and the instruction width amounts to 28 bits. From this example, we
see that the design in the third column meets the performance requirements, although it increases the wordlength
to 28 bits. We consider a more elaborate example in the next chapter.
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Chapter 6

Experimental results

In this chapter, we provide several experiments of constructing the ����� for certain instruction set and applying the
constructed ��� � to an existing scheduler. These experiments are automated when all the maximum instructions
are provided. We also provided a small case study of instruction set design, which is performed manually. The
first example shows that our method can deal with very flexible designs using complex instructions in DSPs and
ASIPs. The second experiment proves that the ��� � approach can be used to evaluate the restrictiveness of an
instruction set. This provides quite useful information for the instruction set design. Loop folding can be applied
efficiently to loop kernels with the ��� � approach, which is presented by the third example.

6.1 Complex instructions in TMS320C25

Often in an instruction set for a ��� ��� architecture, operation types are represented by a reservation table and
are constrained by issue slots. In this case, approaches in [8] [29] can translate the issue slot constraints to
static resource constraints and apply the results for a scheduler. However, the instruction sets of DSPs or ASIPs
are designed with many irregularities. For instance, in TMS320C25 processor, complex instructions � 	 � ���� � � ,� ��� $����� � � , � 	 � �� ��� � � are introduced to exploit the limited parallelism in the data path. Such complex instruction
constraints cannot be expressed as a reservation table, because not all the combinations of the operation types
are valid, e.g., � ���#$��� ��� � � is not a valid instruction. Thus virtual resources cannot be derived directly using the
reservation table approaches, but our method can still deal with it.

sacl -> SLM, SMP, SPA, SLMPA

apac -> SPA, SLMPA

pac -> SMP, SPA, SLMPA

mpy -> SLM, SMP, SLMPA

lt -> SLM, SLMPA

[lt]
[mpy]

#SLM = 1, #SMP = 1, #SPA = 1 #SLMPA = 2

[pac]

(b) SRM for this instruction set

[sacl]
[apac]

[lt, pac]
[lt, apac]
[mpy, apac]

(a) (complex) instructions

Figure 6.1. Instructions for TMS320C25 and the SRM

Instructions for the TMS320C25 processor are shown in Figure 6.1(a). They indicate potential parallelism
to be exploited. This instruction set can be proven to have an ��� � and it is given in Figure 6.1(b). We have
implemented UTDSP benchmarks [30] for the TMS320C25 processor and the result is in Table 6.1.
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Table 6.1. Scheduling result of UTDSP benchmarks on TMS320C25 processor

fft

lattice filter

iir filter

fir filter

lms fir filter

26

without SRM

60

with SRM

24 68

5 8 0 12 8

26

10

24

5

17

|E|

22 40 42 2217

14 17 14 10 29 17 11

10 10 18 107 67

#instruction #instruction

20 920

5

14 350

10

T(ms) T(ms)

60

|V| |E| |V|

The column “without ��� � ” assumes there is no approach to exploit the instruction-level parallelism ( � � � ) in
the processor, while “with ����� ” reports the scheduling results by constructing the ����� and applying the ����� to
the scheduler. In each case, the first and second column show the number of nodes and edges in the

�����
of each

example, while the third and fourth column report the number of instructions and runtime of the scheduler. Since
the complex instructions are quite small, the runtime of constructing the ����� can be ignored. In the first case,
each operation is encoded with one specific instruction, after scheduling the number of clock cycles equals the total
number of operations. While in the second case, since each operation can use multiple virtual resources, during
the implementation, we explicitly expressed the resource usage of each operation, which causes the increase of the
number of nodes. The number of instructions is reduced compared to the first case for all the examples except for
‘fir filter’. The runtime is increased for each example; it is dependent on the usage of virtual resources for each
operation.

6.2 Evaluating the restrictiveness of an instruction set

One of the merits of the ��� � approach is that by performing instruction scheduling for applications with different
����� s, one can directly see from the results how restrictive an ��� is. Experiments below perform the scheduling
and register binding for benchmarks with two instruction sets ��� � and ��� � in Chapter 4. Assume that the hardware
resources are ' "/� , # � " and %�� ����� , each with two number of instances available. Each resource has a delay
of one clock cycle. Table 6.2 lists the results for ‘fdct’, ‘idct’, ‘ar’ for AR filter and ‘wdf’ for fifth-order digital
elliptical wave filter. The second and third columns show the latency and register requirements (one register file
for allocating all the values) assuming that the all the given functional resources can be used in parallel maximally,
the fourth and fifth columns for ��� � and the sixth and seventh columns for ��� � . #in is the number of inequalities
of the ����� .

Table 6.2. Scheduling and register binding results for benchmarks
FS

L RF L SRM RFSRM L SRM

IS2IS1

RFSRM

fdct

idct

ar

wdf

3#in

13 12 16 12 21 14

14 11 13

8

8 8 11

15 11 20

10 11 76 14

16 16 19

6 4

From this table we can see that both the latency and register requirements when the functional resources can
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be used maximally are minimum for all the examples. Although using the same resources, ��� � is obviously more
restrictive than ����� , since all the scheduling results are increased quite substantially. Register requirements are
also increased because when some operations are postponed during scheduling in order to meet the instruction set
constraints, the values they consume have to be stored in registers for a longer time, which increases the register
pressure.

Table 6.3. TMS320C62x instruction set

cmpgt

cmplt

add

sub

mov

add

sub

mov

M

add

sub

mov

or

not not

and and

or

shr

shl

Load
Store

Shift

Logic

Integer
Adder

ld

st

Multiplier mpy

L S D

6.3 Loop folding with the SRM approach

��� ��� instruction sets have an ����� because of their orthogonal instruction format, such as the TMS320C62x
architecture. The C62x has two identical data paths with four functional units each. Each data path has 16 32-bit
registers. Table 6.3 shows part of the instructions for one group of data path supported by TMS320C62x.

Using the convex hull approach, virtual resources can be created for this instruction set. ����� s can also be
applied to software pipelining easily, since it only provides a static boundary without modifying the scheduling
and register binding algorithms themselves. Table 6.4 shows the scheduling and register binding results for

� ���
speech-coding algorithms. ‘Convolution’ and ‘viterbi’ are the half-rate convolutional encoder and one viterbi step
for viterbi decoder in channel codec. ‘weight’ and ‘inverse’ are the weighting filter and APCM inverse quantization
algorithms for regular pulse excitation encoding in speech codec. ‘reflect’ is the reflection coefficients for lpc code.

Table 6.4. Scheduling and register binding results for GSM speech-coding algorithms

6

14

19

39

55

invers

convol

reflect

weight

viterbi

11

19

2

T(ms)

5

7

5

8

6

10

7

|V| II RF |V|’

12

22

34

57

108

10

20

170

640

15570

In Table 6.4,
� � �

is the number of operations in each application. ��� is the minimal initiation interval when
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software pipelining is applied. � � is the register requirements under the minimal initiation interval restrictions.
The fifth column reports the number of nodes after mapping operations to virtual resources. The last column
reports the total runtime including mapping, scheduling and register binding.

6.4 Instruction set design

We also performed a case study for the instruction set design using the ��� � approach.

(1)

(2)

(3)

(4)

(5)

(6)

SRM

3

2

2

4

5

5

II

5

5

(b) SRM and the estimated initiation intervals

8

8

7

7

N(a) + N(l) <= 3

N(s) + N(l) <= 2

N(m) + 2N(l) <= 2

N(s) + 2N(m) + 3N(l) <= 4

N(a) + 2N(m) + 3N(l) <= 5

N(a) + N(s) + 2N(m) + 2N(l) <= 5

AL

SL

ML

SML

AML

ASML

[a, m, m]

[a, s, s, m]

[a, a, s, l]

[a, a, s, m]

[a, a, a, m]

[a, a, a, s, s]

inequality #

(a) instruction set

Figure 6.2. An instruction set and the SRM

For the instructions given in Figure 6.2 (a) an ����� can be obtained using the approach in Chapter 4. We use
the fast method for performance evaluation explained in Chapter 5 rather than performing detailed scheduling.
Since the topology of the

�����
of the loop is irrelevant for this analysis, we give only the number of operations

and their resource usages. We assume the loop contains 9 � � � operations, 3 ����� operations, 4 ����	 operations and
6 	 � operations. � � � and ����� are encoded with 8 bits each, ����	 and 	�� with 16 bits. For reason of convenience,
we abbreviate � � � , �
��� , ����	 and 	 � as � , � , � and 	 . The instruction width is constrained to 40 bits. The fourth
column gives the number of instances of each virtual resource and the fifth column lists the estimated initiation
interval for each virtual resource. From the column, we obtain that the lower bound � ��� is 8. Assuming the
objective ��� is set as 6, this design is far below the performance requirements.

Table 6.5. Modification for candidates (3) and (4)

3l4l

3r4l

3r4r

3l4r

II

5
6

6
6

5
6

6
6

[m, l]

N(m) + N(l) <= 2
N(s) + 2N(m) + 2N(l) <= 4

N(m) + 2N(l) <= 3
N(s) + 2N(m) + 3N(l) <= 5

N(m) + N(l) <= 2
N(s) + 2N(m) + 3N(l) <= 5

N(s) + 2N(m) + 2N(l) <= 4
N(m) + 2N(l) <= 3

extra instructionsnew inequality WL

40

40

40

40

[m, l]

[m, l]
[s, m, m]

[m, l]
[s, m, m]

Table 6.5 shows the different results by applying the modification methods in Chapter 5 to the bottleneck
candidates (3) and (4). The first column refers to the design decision under evaluation. For example, ‘3l4r’
represents the decision to modify the left hand side of inequality (3) and the right hand side of inequality (4). The
second column presents the modified inequalities. The third column estimates the ��� according to the new ����� .
Because of the modification, the resource constraints are relieved, and subsequently more instructions are allowed.
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The fourth column gives the new instructions besides those already provided in Figure 6.2 (a). The fifth column
calculates the wordlength with the new instruction set.

Table 6.6. Modification for candidates (5) and (6)

5l6l

5r6r

5l6r

5r6l

II

6
6

6
6

6
6

6
6

N(a) + 2N(m) + 2N(l) <= 5

[s, m, m], [a, m, l]

N(a) + N(s) + 2N(m) + N(l) <= 5

N(a) + 2N(m) + 3N(l) <= 6
N(a) + N(s) + 2N(m) + 2N(l) <= 6

N(a) + 2N(m) + 2N(l) <= 5
N(a) + N(s) + 2N(m) + 2N(l) <= 6

N(a) + 2N(m) + 3N(l) <= 6
N(a) + N(s) + 2N(m) + N(l) <= 5

WL

40

48

48

40

[a, m, l]
[a, s, m, m], [a, a, m, m]
[a, a, s, s, m], [a, a, a, s, m]

[a, m, l]
[a, s, m, m]
[a, a, s, s, m], [a, a, a, s, m]

extra instructionsnew inequality

[s, m, m], [a, m, l]

From Table 6.5 we can see that all designs sufficiently reduce the bottleneck. We choose the design of row three
for the next iteration because it gives the best combination of performance improvement and extra instructions.
The next identified bottlenecks are virtual resources (5) and (6) in Figure 6.2 and the same procedure is repeated
and shown in Table 6.6. From this table, we can see that the second and third design exceed the wordlength
limitation and have to be omitted. The first and fourth design meet both the timing and code size constraints and
are acceptable.

This example shows that the ����� approach provides the good bases for tuning between performance and code
size during the instruction set design. This administrative approach is quite efficient for current embedded proces-
sor design because without looking at the detailed encoding and performing exact scheduling for the applications
the designer can already obtain the knowledge of which adjustment he should take.
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Chapter 7

Conclusions

In this paper, we propose a method for code generation for highly encoded instruction set processors and in-
struction set design. The purpose of the method is to deal with the strong phase coupling between instruction
selection and scheduling, caused by the instruction set. We replace the instruction set constraints with a set of
virtual resources that implement the individual operations contained in the instruction set. This reduces the need
for explicit instruction selection, because any schedule satisfying the resulting static resource constraints can be
implemented by the instruction set. With this static resource model, the scheduler has the opportunity to generate
better schedules in terms of timing and register requirements. Furthermore, software pipelining can be applied
more effectively to exploit the available � � � .

Our experiments demonstrate that a static resource model of an instruction set offers the possibility to measure
the effectiveness of an instruction set with respect to exploiting the processor resources. This enables instruction
set designers to make tradeoffs between the performance and the code size associated with an instruction set.

The ����� model also allows instruction set design in terms of allocating (virtual) functional resources, a practi-
cal method used in the HLS of ASICs. We have described an iterative design flow comprising a bottleneck analysis
based on fast performance estimation of the instruction set on a set of performance-critical loops. The availability
of critical virtual resources is increased to relieve the bottleneck, resulting in an extension of the instruction set.
A small case study demonstrates the practical applicability of the ��� � approach to instruction set design. The
resulting instruction set is supported by efficient classic resource constrained compilation, thereby preventing the
considerable performance overhead introduced by explicit instruction selection, currently used in ASIP compilers.
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Chapter 8

Future work

The key of the ��� � approach is to represent some architectural constraints, e.g. encoding constraints with static
resource constraints, i.e., resources only provide a fixed upper limit and any usage within this limit is valid. It
is natural to extend this work to support other architectural constraints, e.g. interconnection constraints and bus
constraints. In order to avoid using a large register file because of the large area and long access time, designers
tend to partition the architecture into clustered data paths. As a consequence, explicit move operations have to be
inserted between different clusters for the communication. In order to make use of the register files in a flexible
way and reduce explicit move operations as much as possible, some registers are maintained as a common part,
which can be written by all the functional units, while others are clustered for access of local functional units,
which we think can be modeled by an ����� . Another application of ��� � is to support � � � � instruction sets
with some improvement of register allocation, since multiple values have to be stored in one register when multiple
operations are executed at the same clock cycle by one instruction.

In high-level synthesis, multiple-precision specifications used to be implemented on hardware in a simple way,
i.e., operations are mapped on wider functional resources, filling the operands with 0’s and discarding some bits
of the solutions produced. Some work [10] suggests the implementation in more efficient way, e.g. the execution
of an operation during several cycles or the execution of multiple operations on a unique resource during the same
cycle. Also this resource selection and binding has to be integrated with scheduling to obtain high performance.
Efficient results can be obtained using the ��� � approach for multiple-precision systems because the data path
precisions resemble instruction set constraints very closely.

26



Bibliography

[1] Avis D. and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrangements and
polyhedra. Discrete and computational geometry, vol. 8 (1992), p. 295-313.

[2] Avis D. and D. Bremner, R. Seidel, How good are convex hull algorithms?. Computational geometry: theory
and applications, vol. 7 (1997), p. 265-301.

[3] Aho A.V. and S.C. Johnson, Optimal code generation for expression trees. Journal of ACM, vol. 23 (1976),
no. 3, p. 488-501.

[4] Aho A.V. et al., Code generation using tree matching and dynamic programming. ACM transactions on
programming languages and systems, vol. 11 (1989), no. 4, p. 491-516.

[5] Araujo G. and S. Marlik, M. Lee, Using register-transfer paths in code generation for heterogeneous
memory-register architectures. In: Proc. 33rd Design automation conference, Las Vegas, Nevada, USA,
June 3-7, 1996. New York: ACM, 1996. P. 591-596.

[6] Bashford S. and R. Leupers, Phased-coupled mapping of data flow graphs to irregular data paths. Design
automation for embedded systems, vol. 4 (1999), no. 2/3, p. 119-165.

[7] ftp://ftp.ifor.math.ethz.ch/pub/fukuda/cdd/ (Last access: April 2002.)

[8] Eisenbeis C. and Z. Chamski, E. Rohou, Flexible issue slot assignment for VLIW architectures. Presentation
at the 4th Int. workshop on software and compilers for embedded systems, St. Goar, Germany, September
1-3, 1999. Available through the first author (affiliation: INRIA, Rocquencourt, France).

[9] Emmelmann H. et al., Beg - a generator for efficient back ends. SIGPLAN notices, vol. 24 (1989), no. 7, p.
227-237.

[10] Ercegovac M. and D. Kirovski, M. Potkonjak, Low-power behavioral synthesis optimization using multiple
precision arithmetic. In: Proc. 36th Design automation conference, New Orleans, LA, USA, June 21-15,
1999. New York: ACM, 1999. P. 568-573.

[11] Fauth A. et al., Describing instruction set processors using nML. In: Proc. European design and test confer-
ence, Paris, France, March 6-9, 1995. Los Alamitos: IEEE computer society, 1995. P. 503-507.

[12] Fraser A.W. et al., Engineering a simple, efficient code-generator generator. ACM letters on programming
languages and Systems, vol. 1 (1993), no. 3, p. 213-226.

[13] ART Designer Tutorial, Frontier Design, Melbourne, Florida, USA, 2001. V2.2 rev25. Tutorial.

[14] Hanono S. and S. Devadas, Instruction selection, resource allocation and scheduling in the AVIV retargetable
code generator. In: Proc. 35th Design automation conference, Anaheim, CA, USA, June 9-13, 1998. New
York: IEEE, 1998. P. 510-515.

27



[15] Liem C. and T. May, P. Paulin, Instruction-set matching and selection for DSP and ASIP code generation. In:
Proc. European design and test conference, Grenoble, France, September 19-23, 1994. Los Alamitos: IEEE
computer society, 1994. P. 31-37.

[16] Leupers R. and P. Marwedel, Instruction selection for embedded DSPs with complex instructions. In: Proc.
European design automation conference, Paris, France, March 11-14, 1996. Los Alamitos: IEEE computer
society, 1996. P. 200-205.

[17] Leupers R., Retargetable code generation for digital signal processors. Dordrecht (The Netherlands):
Kluwer, 1997.

[18] Leupers R., Code selection for media processors with SIMD instructions. In: Proc. Design automation and
test in Europe conference and exhibition, Paris, France, March 27-30, 2000. Los Alamitos: IEEE computer
society, 2000. P. 4-8.

[19] Leupers R., Register allocation for common subexpressions in DSP data paths. In: Proc. Asia south pacific
design automation conference, Pacifico Yokohama, Japan, January 25-28, 2000. Piscataway: IEEE, 2000. P.
235-240.

[20] Mesman B. and C. Alba-Pinto, C. van Eijk, Efficient scheduling of DSP code on processors with distributed
register files. In: Proc. International symposium on system synthesis, Boca Raton, Florida, USA, November
1-4, 1999. Los Alamitos: IEEE computer society, 1999. P. 100-106.

[21] McMullen P. and G.C. Shephard, Convex polytopes and the upper bound conjecture. Cambridge (UK): Cam-
bridge university press, 1971.

[22] Novack S. and A. Nicolau, N. Dutt, A unified code generation approach using mutation scheduling. In: Mar-
wedel P. and G. Goossens (eds), Code generation for embedded processors. Dordrecht (The Netherlands):
Kluwer, 1995. Chapter 12.

[23] Paulin P. et al., FlexWare: a flexible firmware development environment for embedded systems. In: Marwedel
P. and G. Goossens (eds), Code generation for embedded processors. Dordrecht (The Netherlands): Kluwer,
1995. Chapter 4.

[24] Paulin P. and C. Liem, Embedded systems: tools and trends. Tutorial at the European design and test confer-
ence, Paris, France, March 11-14, 1996. Available through the first author (affiliation: STMicroelectronics,
Central R&D, Ottawa, Canada).

[25] Preparata R.P. and M.I. Shamos, Computational geometry: an introduction. Heidelberg (Germany): Springer,
1985.

[26] Rau B.R. and C.D. Glaeser, Some scheduling techniques and an easily schedulable horizontal architecture
for high performance scientific computing. In: Proc. 14th Workshop on microprogramming, Chatham, Mas-
sachusetts, USA, October 12-15. New York: IEEE, 1981. P. 183-198.

[27] Xtensa, Tensilica Inc., http://www.tensilica.com/technology.html. (Last access: April 2002.)

[28] Texas Instruments, TMS320C6000 CPU and instruction set reference guide, 2000. http://dspvillage.ti.com/.
(Last access: April 2002.)

[29] Timmer A. and M. Strik, J. van Meerbergen, J. Jess, Efficient code generation for in-house DSP cores. In:
Proc. European design and test conference, Paris, France, March 6-9, 1995. Los Alamitos: IEEE computer
society, 1995. P. 244-249.

28



[30] UTDSP Benchmark Suite. http://www.eecg.toronto.edu/˜corinna/DSP/infrastructure/UTDSP.html (Last ac-
cess: April 2002.)

[31] van Praet J. and G. Goossens, D. Lanner, H. De Man, Instruction set definition and instruction selection
for ASIPs. In: Proc. International symposium on high-level synthesis, Niagara-on-the-lake, Ontario, Canada,
May 18-20, 1994. Los Alamitos: IEEE computer society, 1994. P. 70-75.

[32] Wilson T. and G. Grewal, B. Halley, D. Banerji, An integrated approach to retargetable code generation. In:
Proc. International symposium on high-level synthesis, Niagara-on-the-lake, Ontario, Canada, May 18-20,
1994. Los Alamitos: IEEE computer society, 1994. P. 11-16.

[33] Woudsma R. et al., EPICS: A flexible approach to embedded DSP cores. In: Proc. 5th Int. conference on
signal processing, applications and technology, Dallas, Texas, USA, October 18-21, 1994. Waltham (MA,
USA): DSP associates, 1994. P. 506-511.

[34] Zhao Q. and T. Basten, B. Mesman, C.A.J. van Eijk, J.A.G. Jess, Static resource models of instruction sets.
In: Proc. Int. symposium on system synthesis, Montreal, Quebec, Canada, September 30-October 3, 2001.
New York: ACM, 2001. P. 159-164.

[35] Zhao Q. and B. Mesman, T. Basten, Practical instruction set design and compiler retargetability using static
resource models. In: Proc. Design, automation and test in Europe, Paris, France, March 4-8, 2002. Los
Alamitos: IEEE computer society, 2002. P. 1021-1026.

29


	Abstract
	Keywords
	Contents
	1. Introduction
	2. Related work
	3. Problem statement and approach
	3.1 Definitions
	3.2 Problem statement
	4. Construction of an SRM
	4.1 Using inequalities for the construction of an SRM
	4.2 A general approach for deriving inequalities
	4.3 Deriving resources
	5. Design of the instruction ser architecture from an SRM
	5.1 Performance and bottleneck analysis
	5.2 Madification of the SRM
	6. Experimental results
	6.1 Complex instructions in TMS320C25
	6.2 Evaluating the restrictiveness of an instruction set
	6.3 Loop folding with the SRM approach
	6.4 Instruction ser design
	7. Conclusions
	8. Future work
	Bibliography

