
Abstract

This paper extends the token flow model of Buck and Lee
([1],[2]), an analytical model for the behavior of dataflow
graphs with data-dependent control flow, in two ways:
dataflow actor execution may depend on integer, rather
than Boolean, control tokens, and multiphase implementa-
tions of actors are permitted. These extensions permit
data-dependent iteration to be modelled more naturally,
reduce the memory required for implementations, and
result in bounded-memory solutions in more cases than
before. A method for generating efficient single-processor
programs from the graphs is also described.

1. Introduction and motivation
Dataflow graphs have proven to be an effective repre-

sentation for problems in digital signal processing,
because the representation is natural to researchers and
implementers (algorithms in DSP and digital communica-
tions are often expressed as block diagrams with dataflow
semantics). When the actors in the dataflow graph are
restricted to be synchronous, meaning that the number of
data values produced by each output, or consumed by each
input, of each actor are constrained to be constant and
known at “compile time,” it is not difficult to determine
the consistency of the graph, determine its memory
requirements, and schedule the execution of the graph on
one or more processors. These techniques are explained in
detail in [3]. Algorithms whose control flow is completely
deterministic can be effectively represented using this syn-
chronous dataflow (SDF) paradigm. Since many digital
signal processing algorithms have little to no data-depen-
dent decision-making, SDF-based tools, and tools based
on dataflow languages with SDF-like characteristics such
as Silage [4], have proven effective in producing software
implementations ([5],[6],[7]) as well as in the synthesis of
custom hardware ([4],[8]).

It is typically found, however, that some data-depen-
dent decision-making is required in many DSP algorithms,
but not much: timing recovery in a modem, for example, is
one example of a portion of a problem that requires data-

dependent, asynchronous sampling. Despite its limita-
tions, SDF has some very desirable properties. It is there-
fore desirable to extend SDF while retaining these
properties as much as possible.

1.1. The token flow model: Boolean-controlled dataflow
Actors with at least one conditional input or output port

are calleddynamic actors. The canonical dynamic actors,
whose history goes back at least to [9], are SWITCH and
SELECT, shown in figure 1.

In previous work ([1], and originally in [2]), SDF was
extended to permit the use of a restricted class of dynamic
dataflow actors, actors that fall into the category ofBool-
ean-controlled dataflow (BDF) actors. Such actors are a
superset of SDF actors (that includes SWITCH and
SELECT) and have the following properties:

• The number of values (also calledtokens) consumed by
an input port, or produced by an output port may be a
two-valued function of the value of a Boolean token
that is received by another input port (the control port)
of the same actor. Such a port is a conditional port. One
of the two values of the function is zero.

• For output ports we also permit the control port to be an
output: in this case, the control token’s value announces
whether there are data on the conditional port.

• Control ports are never conditional ports, and always
transfer exactly one token per execution.

Fig. 1. The canonical dynamic dataflow actors ,
SWITCH and SELECT.
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The BDF rules are designed so that the execution of
actors can be scheduled by considering only the values of
the Boolean tokens and the numbers of other tokens in the
graph; we call this information thestate of the graph.

1.2. Why extend the BDF model?
It is shown in [1] that the set of dataflow actors consist-

ing of SWITCH, SELECT, and a small number of SDF
actors that perform arithmetic on integers are Turing-
equivalent, and therefore in a sense complete. Neverthe-
less, the Boolean-controlled dataflow model does not
directly express certain actors that have been found to be
useful. Most of these actors have the property that the con-
trol token is an integer rather than a Boolean token, which
might be used in two ways:

• Specification of the number of tokens produced or con-
sumed on some arc (e.g. a REPEAT actor, where the
number of repetitions is read from an input port), or

• Enabling or disabling the arc depending on whether the
token has a specific value or belongs to some set of val-
ues (as in a multi-way CASE construct).

It is possible to synthesize either a REPEAT actor or a
multi-way CASE from the SWITCH, SELECT, and SDF
actors. In some cases, however, the constructs that natu-
rally arise for iterations have shortcomings. Consider the
design of a subgraph that, given an integer token with
valuen, computes a token with value

(1)

assuming that the function  is computed by an
atomic actor. Let us assume that the functionf is relatively
expensive to evaluate, and we wish to leave open the pos-
sibility that thef evaluations be computed in parallel. We
could produce a subgraph that implements this function
using the BDF model by constructing a DO-WHILE loop
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Fig. 2. This graph implements the function
 using BDF actors. The actors SWITCH-2

and SELECT-2 switch two data streams with
one control token, e.g. SWITCH-2 copies D1 to
either T1 or F1 and copies D2 to either T2 or F2.
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(see figure 2), but this graph implies a serial execution of
the f actors, and the data dependency between the itera-
tions is difficult to analyze away. The parallelism is more
naturally expressed with actors that have integer control
tokens. Consider two such actors: one that, given an inte-
ger valuen, producesn output tokens with values ranging
from 0 to , and one that, given an integer valuen on
its control port, readsn tokens from its input data port and
outputs their sum. Let us call the former actor IOTA (after
the operation from the APL language that it resembles)
and the latter actor SUM orΣ. Then the simple system in
figure 3 naturally models the solution. While it is true that
we could produce BDF systems corresponding to the
actors IOTA and SUM, it would be desirable to have a
model that could represent such actors directly, rather than
as composite systems of simpler actors.

When we consider the solution in figure 3, we are con-
fronted with a problem. In the graph in figure 2, all data-
flow arcs can be implemented with only one storage
element for each arc. However, unless a limit is placed on
the size of the input,n, unbounded memory will be
required to produce the implementation in figure 3. Even
with a limit, large amounts of memory will be required.
We therefore permitmultiphase implementations of data-
flow actors. Consider IOTA. A multiphase implementation
would read the input value on its first phase, then output
one value on each subsequent phase. If the SUM actor has
a similar implementation, then the graph in figure 3 can be
implemented with only one token per arc. This type of
multiphase implementation is related to the cyclo-static
synchronous dataflow model of [10], extended to permit
the number of phases to be variable.

We will find it convenient to treat multiphase and cyclo-
static actors simply as alternate implementation possibili-
ties for actors that compute an entire operation in one
phase, and it is possible to conceive of an implementation
environment that freely substitute single-phase and mul-
tiphase implementations of the same actor as is conve-
nient, especially for cyclostatic versions of SDF actors
such as those in the Grape-II system [10].

Our extended model, which we will call integer-con-
trolled dataflow or IDF, permits actors to have integer con-
trol tokens of the following types:

• Type 1 (CASE): the number of tokens transferred is
either a constant, or zero, depending on whether the
value of the control token is a member of some set.
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Fig. 3. This graph computes the same function
as figure 2 using coarser-grained actors with
integer-valued control tokens.
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• Type 2 (REPEAT): the number of tokens transferred is
a constant multiple of the control token.

BDF actors are a special case of IDF actors. If only
Type 1 control tokens are considered, there is not much
new in the IDF theory: we simply have mapping functions
to turn integer tokens into Boolean values, and, with
respect to any controlled arc, a control token may still be
regarded as “true” or “false.” However, relations among
Boolean streams may be more easily discovered and rep-
resented in some cases given CASE arcs.

1.3. Multiphase actors
Multiphase actors are a generalization of the cyclostatic

synchronous dataflow actors that appear in Grape-II [10].
The multiphase actors we will consider implement the
interface of an IDF actor by executing in more than one
phase. Phases of the same actor need not be executed con-
secutively. The phases have the following structure:

• An optional starting phase. This phase may perform ini-
tialization functions, as well as read tokens from input
ports. Specifically, it may read an integer-valued control
token that specifies the number of phases. The starting
phase never produces outputs.

• Intermediate phases. These intermediate phases may be
all the same (example: a REPEAT star that outputs the
same value once on each phase) or they may be differ-
ent. Intermediate phases may read, write, and compute.

• An optional final phase. This phase may write out final
results. The final phase never consumes inputs.

The scheduler functions “know” the I/O behavior of the
actor during each phase. Some parts of the analysis ignore
the existence of phases and treat the actor as the starting
phase, intermediate phases, and final phase were always
executed in succession. In all cases, this composite behav-
ior corresponds to the general IDF actor described above.

2. Analysis questions for dataflow graphs
For all (SDF, BDF, IDF) dataflow graphs, the analysis

conditions that occur when attempting to synthesize an
implementation of the graph are as follows:

• Are there sequences of actor executions that return the
graph to its original state? Graphs that lack such
sequences (cyclic schedules) because of differences in
flow rates are said to be inconsistent (see figure 4). For
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Fig. 4. An inconsistent SDF graph. Numbers adja-
cent to arcs give the number of tokens produced
or consumed per actor execution.

graphs with dynamic actors, consistency may depend
on the values of the control tokens produced [2].

• Does the graph deadlock? A graph is deadlocked if it
reaches a configuration in which no actor can be exe-
cuted, as in figure 5.

• Does the graph have abounded-length cyclic schedule?
This means that the number of actor executions
required to return the graph to its original configuration
is bounded. This question is important if the graph is to
be scheduled with a hard real-time constraint.

• Can the graph be scheduled to use bounded memory? In
general, a bounded-length cyclic schedule implies
bounded memory but not vice versa.

3. A brief review of SDF theory
For SDF graphs, algorithms exist to answer all four

questions for any graph [3]. Furthermore, questions 2 and
4 become trivial: whenever cyclic schedules and exist and
deadlock does not occur, all graphs have bounded length
schedules and therefore require bounded memory.

In SDF graphs, the number of tokens produced by an
actor on an output port, or consumed by an actor from an
input port, is fixed and known at “compile time.” Initial
tokens on arcs, corresponding to algorithmic delays, are
permitted. SDF graphs can represent manifest iteration, as
in figure 6. Here actor 2 clearly must execute ten times as
often as actor 1, for example.

When an SDF graph is to be executed repeatedly, the
compiler should construct just one cycle of a periodic
schedule. The first step is to determine how many invoca-
tions of each actor should be included in each cycle. This
can be determined using information about the number of
samples consumed and produced.Consider the connection
of three actors shown in figure 7. Let  denote the number
of tokens consumed by theith actor, and  denote the
number of tokens produced by the ith actor, as shown in
the figure. Let  denote the number of times theith actor

1 2
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Fig. 5. A deadlocked SDF graph.

Fig. 6. Nested iteration in an SDF graph.
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Fig. 7. : SDF actors annotated with the number of
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for use in explaining balance equations.
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is repeated in the each cycle of the iterated schedule. Then
it must be true that

; (2)

We can construct atopology matrix  that contains the
integer  in position  if thei th actor produces
tokens on thej th arc. It also contains the integer  in
position  if thei th actor consumes  tokens from
the j th arc. Then the system of equations to be solved is

(3)

where  is a vector full of zeros, and  is therepetition
vectorcontaining the  for each actor. Printz calls (3) the
“balance equations” [5]. If this procedure were carried out
for the graph in figure 6, one solution would be

. (4)

This solution is the smallest one with integer entries.
For a connected SDF graph, it is shown in [3] that a

necessary condition to be able to construct an admissible
periodic schedule is that null space of  has dimension
one. From (3) we see that  must lie in the null space of

. When this condition is met, there always exists a vector
that contains only integers and lies in this null space. If
there are nonzero solutions to the balance equations and
there are enough initial tokens in any cycle of the graph to
avoid deadlock, there are always bounded-length sched-
ules (the length is the sum of the elements of the repetition
vector) and there are always bounded-memory implemen-
tations.

4. Dynamic graphs with integer control
For dynamic dataflow graphs, the analysis questions

concerning schedule length and bounded memory become
more interesting, because cyclic schedules that are
unbounded in length, or that may require unbounded
memory on arcs, may occur. The techniques used to
extend SDF graph theory to include some dynamic actors
were first proposed in [2] and developed more fully in [1].
Of the methods presented in [1], we will principally be
concerned with extending the following two:

• Solving the balance equations in symbolic form to
determine whether bounded-length schedules exist, and

• Clustering the graph to find control structures.

4.1. Solving the balance equations
We solve the balance equations for dynamic dataflow

graphs by using symbolic expressions for the number of
tokens produced and consumed on conditional arcs. For
BDF, these symbolic expressions were of the form ,
which expressed the proportion (over some interval) of
tokens on the Boolean control stream  with value
TRUE. When BDF is extended to support IDF actors with
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type 1 control arcs, such as the CASE and ENDCASE
actors in figure 8, we have quantities of the form
instead, designating the proportion of integer control
tokens on control stream  whose value isj.

Using the CASE and ENDCASE actors, we can pro-
duce the three-way branch analog to the canonical if-then-
else construct, as shown in figure 9. The topology matrix
for this graph can be written down easily by recording the
number of tokens produced or consumed by each actor on
each arc. If the resulting system is solved, we can deter-
mine that the repetition vector for the graph is

(5)

Note that there are nonzero solutions for the repetition
vector regardless of the value of . Graphs that have this
property are calledstrongly consistent in [2]. Strong con-
sistency implies a balance of long-term flow rates, but says
nothing about bounded-length schedules or bounded-
memory implementations: strongly consistent graphs can
still require unbounded memory (see [1] for examples).
Finding bounded complete cycles will assure bounded
memory, so we shall now show how to find them.

We are interested in determining the properties of mini-
mal complete cyclic schedules of the graph. To do this we
note that quantities like  must be the ratio of two inte-
gers: the number of tokens on control stream 1 with value
0 during a complete cycle divided by the number of tokens
on stream 1 in a complete cycle. Letn be the number of
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Fig. 8. The CASE and ENDCASE actors, anno-
tated with IDF analysis quantities. The DEF
(default) output is used if the control is neither 0
nor 1.
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integer control tokens produced, and let  be the number
of control tokens whose value isi. Then in the above equa-
tion,  and we have

(6)

We now find the smallest integer solution to determine
what a minimal complete cycle consists of. It is

(7)

where  is 1 if the control token is 0 and 0 otherwise,
and  is 1 if the control token is 1 and 0 otherwise.

For type 2 arcs, we will find that quantities like , the
average (arithmetic mean) value of the integer control
token on control stream  over some interval, appear; for
example, as the label on the output of the IOTA actor in
figure 3. Except in rare circumstances, any graph with a
type 2 actor will have unbounded cycle length, unless
some restriction is placed on how large the values of the
control tokens can be. Consider figure 10. After solving
the balance equations, finding the smallest integer solu-
tion, and noting that the average value of the control
stream over one control token is just the value of that
token, we obtain

(8)

as the minimal repetition vector for a cyclic schedule,
wherec is the value of the control token produced.

Type 2 arcs, in which the number of tokens transferred
on an arc is proportional to the value of an integer control
token, introduce a new complication into IDF theory. If we
have even a single type 2 arc in the system, we immedi-
ately have unbounded schedule length, because there is no
limit on how large an integer control token’s value might
be. Unbounded memory can be avoided in many cases by
using multiphase implementations. But there are distinct
differences between a case like the IDF graph of figure 3
and a BDF graph with data-dependent iteration. The BDF
graph may represent a system that never returns to its ini-
tial state; however, we are assured that the IDF system
always terminates. In the IDF case, while the cycle length
is not absolutely bounded, it is bounded if we possess an
upper bound on the value of the computed tokens, and fur-
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Fig. 10. In this graph, actors 2 and 4 have type 2
arcs. These are annotated by quantities , the
average value over the interval considered of
control tokens on the stream .
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thermore it is guaranteed to be finite even without such a
bound. Thus for IDF we have an important distinction
between “bounded length schedule” and “finite length
schedule” and we can speak of bounds that are functions
of the maximum values of certain control tokens.

4.2. Clustering to find control structure
We will now present a algorithm for clustering a

dynamic dataflow graph that follows the rules we have
described to find control structures such as iteration (over
a fixed or variable range), if-then-else, and do-while. It is a
generalization of the algorithm described in [1] (which, in
turn, generalizes techniques in [11]). In that work, cluster-
ing is motivated as a way to produce bounded-memory
implementations for graphs that contain data-dependent
iteration, such as figure 2. Because of space limitations,
the algorithm will only be described qualitatively here.

The goal of the clustering algorithm is to map the graph
into its traditional control structures such as iteration, if-
then-else and do-while, whenever possible. The substruc-
tures are treated as atomic actors from their exterior. If the
interior of each control structure has a bounded cyclic
schedule, the graph can be scheduled in bounded memory.

For the purposes of this discussion, we say that two
actors areadjacent if there is an arc that connects them.
With respect to this arc, we call the actor that produces
tokens on the arc thesource actor and the actor that con-
sumes tokens from the arc thedestination actor. Two adja-
cent actors have thesame repetition rate if the number of
tokens the source actor produces on an arc is always equal
to the number of tokens the destination actor consumes
from the arc (for conditional or multiphase ports, the con-
ditions and phases must match).

The algorithm clusters the graph to find control struc-
ture by repeatedly applying two transformations:

• Themerge pass combines adjacent actors with the same
repetition rate into clusters. This transformation is
allowed whereever deadlock is not created and required
control signals are not buried inside clusters.

• Theloop pass may make an actor or cluster conditional,
add repetition by a constant factor, add a do-while loop,
or (new in IDF as compared to BDF) execute a clustern
times wheren is read from some arc, as appropriate to
enable additional merge operations to take place in the
next merge pass.

• Each transformation results in clusters that obey the
rules for IDF actors; furthermore, an valid sub-schedule
for each cluster can be found by a topological sort of
data dependencies, since all rates within clusters match.

For BDF actors, the clustering algorithm is described in
detail in [1]. There are two new features that must be sup-
ported: multiphase ports and repetition based on a run-
time token. When a cluster containing a multiphase port is



modified by the loop pass, the effect is to “sum” the phases
together, producing a non-multiphase port. Similarly, the
loop pass can convert an actor that reads one token into an
actor that readsn (wheren is variable).

As an example, consider the graph in figure 11, and
assume that we have multiphase implementations for
IOTA andΣ. The initial phase of IOTA reads the number
of phases to be executed from the input and sets an inter-
nal state variable to zero. Each intermediate phase of
IOTA outputs the value of the internal state variable and
increments it. The initial phase ofΣ sets an internal state
variable, the sum, to zero, and reads in the number of
phases. The intermediate phase adds the input token to the
sum. The final phase outputs the sum.

The clustering algorithm merges IOTA and f() into one
cluster because their repetition rates match. The resulting
cluster can be merged withΣ because the streams that pro-
vide the number of phases of the actor are identical. A
repeat_x loop, wherex is the input token, is then added
around the cluster consisting of IOTA, f(), andΣ. The
intermediate phases form the body of the loop, the starting
phases come just before the loop, and the ending phases
come just after. The resulting cluster reads one token and
writes one, so we have a rate match. The pseudocode gen-
erated for a single-processor implementation is

READ x;
iota_state := 0;
sum_out := 0;
repeat x times

iota_out := iota_state;
iota_state := iota_state + 1;
f_out := f(iota_out);
sum_out := sum_out + f_out;

end repeat;
WRITE sum_out;

In this manner, memory-efficient single-processor
implementations can be produced.

5. Further work
Parallel implementations from IDF graphs have not

been addressed here. The hierarchical clustering produced
by this model may be suitable for exploitation by frame-
works such as those by Ha [12]. Ha’s system, by incorpo-
rating probabilistic assumptions about the control
constructs (if-then-else, do-while, repeat_x), generates
parallel schedules for those constructs. The assumptions of

IOTA ΣREAD WRITE

Fig. 11. This graph uses the actors from figure 3.
We assume multiphase implementations of IOTA
and Σ; the former writes one token per phase, the
latter reads one token per phase.

f()
independence of control streams made in that model may
be unrealistic in many cases, however.

For parallel implementations, multiphase actors would
supply a set of precedence relationships for the phases to
aid in parallel scheduling. In some actors, intermediate
phases are independent, in others, sequential dependencies
will occur. In still other cases, successive phases may be
partially overlapped, as in the systolic actors of the Mac-
DAS system of [7]. In that system, hierarchical actors are
scheduled as units and are expanded only as needed to
accomplish load balancing. It seems reasonable to expect
that the clustered data structures described here could be
used instead as the units of hierarchy.
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