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Static Shape Control for Adaptive Wings
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A theoretical method was developed, and experimentally validated, to control the static shape of flexible struc-
tures by employing internal translational actuators. A finite element model of the structure, without the actuators
present, is employed to obtain the multiple-input, multiple-output control-system gain matrices for actuator-load
control as well as actuator-displacement control. The method is applied to the quasistatic problem of maintaining
an optimum-wing cross section during various transonic-cruise flight conditions to obtain significant reductions
in the shock-induced drag. Only small, potentially achievable, adaptive modifications to the profile are required.
The adaptive-wing concept employs actuators as truss elements of active ribs to reshape the wing cross section by
deforming the structure. Finite element analyses of an adaptive-rib model verify the controlled-structure theory.
Experiments on the model were conducted, and arbitrarily selected deformed shapes were accurately achieved.

Introduction

SHAPE control of flexible structures has the potential to im-
prove aerodynamic and hydrodynamic lifting-surface perfor-

mance, to reduce drag on submersible components, and to correct
errors on optical, radar, and IR reflectors. We develop a general
method for static shape control of structures and discuss its poten-
tial for adaptive wings.

Adaptive wings with variable leading- and trailing-edge devices
have been studied to enhance maneuvers, to reduce the critical
root-bending moment, to reduce drag, and to improve gust-allevi-
ating response.1'2 Unlike these studies, we are exploring adaptive
wings to improve aircraft performance during transonic cruise, a
problem that requires smaller shape changes, but primarily in the
region between the leading and trailing edges.3'4 The shock-
induced drag can be reduced dramatically during transonic cruise
if the airfoil has the correct shape. Wings that are optimized for a
single cruise condition, therefore, usually have high drag at other
cruise conditions. However, by adaptively modifying the wing
cross section, it is possible to maintain optimum performance as
the flight condition changes. It will be seen that the required shape
changes are small and therefore potentially achievable.

In our previous work,3 we developed a procedure to compute
the adaptive-structure control-system gain matrix; however, the
method required the inverse of the stiffness matrix of the structure
with the actuators removed. In some designs, when the actuators
are removed, the structure becomes a linkage or becomes discon-
nected, and, consequently, the stiffness matrix becomes semidefi-
nite and cannot be inverted. A method that does not require the in-
verse of the system stiffness matrix was developed later.4 Open-
loop experiments validated the method of developing the gain ma-
trix. In these previous studies, when there were insufficient actua-
tors to accurately achieve the desired shape, the solution that was
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developed minimized the error in the equation relating the actuator
loads to the desired shape. In the current study, solutions are devel-
oped that minimize the error between the desired and achievable
shapes. Also, closed-loop control is required for increased accu-
racy and for performing shape control in the presence of unmea-
sured external loads, such as air loads. Early closed-loop control
studies provided evidence that accurate shapes could be achieved
in the presence of external loads.5 In addition to new analytical re-
sults, this paper contains a more complete set of open- and closed-
loop experimental measurements.

Shape Control of Flexible Structures
As shown in Fig. 1, the concept employs one or more flexible

surfaces, which could be curved, separated by translational actua-
tors and possibly other structural members. The variables used in
the structural analysis and their coordinate systems are shown in
Fig. 2, x' and/' are the deformations and forces on the structure,
respectively, in the global coordinate system. A finite element
model of the structure, without the actuators, is developed to
obtain the system stiffness matrix K'. The actuators are repre-
sented by the loads that they exert on the structure. The structural
equations are
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Fig. 1 General structure.
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Surface A

Fig. 2
tems.

Surface B

General structure with global and actuator coordinate sys-

are held. In practical cases, these extra supports are sufficient to
eliminate any semidefinite property of the structure with the actua-
tors removed; therefore, K22 can be inverted. The second of the
equations implied in Eq. (11) is solved for x2, and the result is

(12)

This equation is substituted into the first of the equations implied
in Eq. (11) to obtain

where

Tp = KXl-fe

T — T K K T1
 ~

 L 1 ~A12A221 2

(13)

(14)

where the loads have been separated into fa, a vector of the actua-
tor loads, and fe, a vector of aerodynamic and, possibly, other
external loads.

If/? is a vector of the actuator loads along the actuators, taken as
positive when the actuators are in compression and pushing
against the structure, then

fa =
 T

'P (2)

where T contains the direction cosines of the actuator loads as
well as information specifying that the actuator loads are applied
to the structure in equal and opposite pairs. Since virtual work is
conserved,

u = T'
T
X' (3)

where u is a vector containing the extensions of each actuator.
Next, we select a new set of independent coordinates x =

[xi JC2]
r, where Xi contains the coordinates that will be used to

define the desired shape, and x2 contains the remaining coordi-
nates to form the independent set. For example, if the structure has
curved surfaces, Xi could contain coordinates that are normal to
the surface, and jc2 could contain coordinates that are tangential to
the surface as well as rotational coordinates that may not be
required to define the shape. A matrix G can be formed to trans-
form the vectors from one coordinate system to the other; i.e.,

' = Gx=[Gl G2] (4)

Equation (4) is used to transform Eqs. (1-3), and the results are

Kx=fa+fe (5)

fa =
 T

P (6)

u = T
T
x (7)

where

K = G
T
K'G (8)

fa = G
T
f'a and fe = G

T
fe

T = G
T
T'

From Eqs. (5) and (6),

Kn Kl2\\x

K2l K22 | | x
P +

fel

fc2

(9)

(10)

(U)

where the partitioning of K, T, and fe is consistent with the parti-
tioning of x. K22 is the stiffness matrix of the structure when the co-
ordinates x^ corresponding to the points used to describe the shape,

K - K11-K12K22K12

fe = fei ~ % 12^22 fel

(15)

(16)

K is the stiffness matrix relating the coordinates x\ to the actuator
and external loads. If these loads are given, Xi is uniquely deter-
mined in practical structures; therefore K is invertible.

Often, T is not invertible. In fact, generally the number of actua-
tors will not be equal to _the number of components in the shape
vector jtj; consequently, T may not even be square. We develop
control laws by obtaining solutions that minimize a measure of the
surface error | xl - xld\\ where xld is the desired value of xv and the
double bars indicate the 2 norm, i.e., the square root of the sum of
the squares of the components. Either actuator loads or actuator
displacements can be controlled.

To effectively employ open-loop control, the loads must be
known, and the finite element model of the system must be suffi-
ciently accurate. Closed-loop control does not require a knowledge
of the loads, and results in more accurate shapes.

Open-Loop Control

Actuator-Load Command

Equation (13) is solved for jcj. The result is

(17)

xld, the desired value of jcb is subtracted from both sides to obtain

(18)

To minimize | xl - xl

where pd is the desired actuator-load vector and

V
f =

(19)

(20)

where the dagger indicates the Moore-Penrose generalized inverse,
which has the following properties.6 When the number of actuators
(dimension of p) is equal to the jiumber of specified surface dis-
placements (dimension of jcj), K~ T is square. If it is also nonsin-
gular, the generalized inverse becomes the conventional inverse,
and an exact solution (xl = xid) can be obtained. When there are
fewer actuators than specified displacements, or when there are
excess actuators and K T does not have full row rank, Eq. (19)
provides the solution_that^ minimizes ||*i-*u||. When there are
excess actuators and K T has full row rank, x\d can be achieved
exactly with many values of/?; i.e.,/? is not unique. In this case, the
solution given by Eq. (19) is the one that also minimizes \\p\\ .

Actuator-Displacement Command

If actuator displacements are commanded instead of actuator
loads, the actuator-displacement commands are obtained by the
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following procedure. First, Eq. (7) is partitioned, Eq. (12) is substi-
tuted into the result, and Eq. (14) is used to obtain

(21)

The actuator load vector p is set to the desired value pd in this
equation and Eq. (13), and the result is

= Kxlf-fe

(22)

(23)

where xlf is the best-fit solution to xld, and ud is the desired value
of u. Next, Eq. (19) is substituted into Eqs. (22) and (23), and jc^is
eliminated from the resulting two equations to obtain the desired
actuator command:

where

H=

(24)

(25)

(26)

Closed-Loop Control

Actuator-Load Error

Equation (13) is subtracted from Eq. (23) to obtain

T(pd-p) = K(xlf-Xl) (27)

This equation is solved for
sides of the result, yielding

K-
l
f(pd-p) -

To minimize, | xlf - x}d\\

and Xid is subtracted from both

-*,) =*„-*„ (28)

x}d-Xl) (29)

This equation is independent of external loads and is the desired
feedback relation for closed-loop actuator-load control. When there
are redundant actuators and the desired shape can be achieved
exactly, Eq. (29) also provides the actuator loads that are closest to
the desired loads; i.e., || pd - p\\ is minimized.

Actuator-Displacement Error

From Eqs. (21) and (22),

Equation (27) is solved for
into Eq. (30) to obtain

i + T2K22T2 ( pd - p) (30)

r - #!, and the result is substituted

u-u = (pd-p) (31)

Equation (29) is substituted into Eq. (31), and the result is

ud-u =Hg(xld-xl) (32)

which is the desired feedback relation for closed-loop actuator-dis-
placement control.

Desired Airfoil Shapes
To assess the potential payoff from a variable wing structure, it

is necessary to identify the critical operating conditions under
which shape modifications might significantly improve the aero-
dynamic performance and the range of shape variations that might

be needed. During the last several years, Jameson7'8 has investi-
gated the feasibility of using control theory to formulate the prob-
lem of optimum aerodynamic design. This has led to a new design
method that merges concepts and techniques from computational
fluid dynamics and control theory.

The key ideas are as follows. Suppose that the performance is
measured by a cost function 7. For example, to optimize a wing
section, one might take

(33)

where p is the surface pressure, pD is the desired surface pres-
sure, and the integral is over the surface, while CD is the drag
coefficient, and o^ and oc2 are weighting coefficients. Suppose
now that the shape is defined by a function/(jc). Then one wishes
to calculate the gradient or Frechet derivative g = 37/3/, such
that if a change 6/is made in/, then the first-order change in / is
87 = Js go/ dS. If one sets 8/ = -A,g, where K is sufficiently small
and non-negative, then

(34)

so an improvement is guaranteed unless g = 0, which is the condi-
tion for an optimum. Although g is the derivative in function space
of an infinite-dimensional vector/, it can be calculated indirectly
by solving an adjoint problem, at a cost about equal to that of a
flow situation.8 Thus, successive improvements towards the opti-
mum can be made with iterations, each of which has a computa-
tional cost of about two flow solutions.

This method has been implemented with the transonic potential
flow equation8 and was used in the present study to develop opti-
mum wing sections for a fighter aircraft at different design points.
The simplification that results from the use of the nonlinear poten-
tial flow model makes it possible to perform the design calcula-
tions rapidly enough to allow a range of alternatives to be exam-
ined. Each calculation can be performed in about 10 min on an
IBM RS 6000 model 530 workstation. To check the validity of the
results, we evaluated the performance of each design by calculat-
ing the solution of the Euler equations for a range of transonic con-
ditions.

A hypothetical fixed-wing version of the F-14 aircraft was
selected as an example for this study. The choice of representative
design points for the wing section is complicated by the fact that
the actual F-14 wing has variable sweepback, which is normally
adjusted to keep the effective Mach number and angle of attack in
a range within which the existing section is quite efficient. An
examination of the currently used program for sweep variation
indicated that the most likely opportunity for improvement is in
the transonic regime with the aircraft operating at a high subsonic
Mach number with high lift and low sweep. A representative
cruise condition is Mach 0.73 at 28-deg sweep with a lift coeffi-
cient CL = 0.65. According to the simple theory of sweepback for a
wing of infinite span, these are equivalent to a two-dimensional
condition of Mach 0.69 with CL = 0.85. This was taken as one
design point, labeled "Y" in the study. The existing section already
has a significant shock-induced drag of 39 counts (CD = 0.0039) in
this condition.

The design method was used to try to minimize CD at the design
point while simultaneously minimizing the change in the subsonic
pressure distribution at Mach 0.2 to make the shape changes as
small as possible. To prevent the design method from producing
sections that are undesirably thin, an additional penalty for reduc-
tion of the contained volume was included in the cost function.
Also, the initial section from which the optimization was started
was thickened. In this way a number of sections of varying thick-
nesses were obtained, these being labeled F-14Y, F-14YT, F-
14YU, and F-14YV in ascending order of thickness. Euler calcula-
tions verify that the shock-induced drag can be reduced to values
of 5 to 7 counts at the design point, the thickness may also be
slightly increased.

To examine the influence of modifications in the design point, a
second point "X" was then selected with a slightly higher Mach
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Table 1 Shock-induced drag

Design point X
Design point Y

Airfoil

M = 0.72,
M = 0.69,

CL = 0.75
CL = 0.85

CD

Designation Series Point X Point Y

F-14X
F-14XT
F-14XU
F-14XV

F-14Y
F-14YT
F-14YU
F-14YV

Nominal
Thick
Thicker
Thickest

Nominal
Thick
Thicker
Thickest

0.0007
0.0010
0.0007
0.0008

0.0068a

0.0061a

0.0041a

0.0037a

0.0033a

0.0032a

0.0034a

0.0036a

0.0006
0.0005
0.0006
0.0007

aOff-design condition.

Fig. 3 Optimum wing cross sections for two design points.

ACTUATOR

Fig. 4 Use of adaptive truss for wing rib.

number and lower lift coefficient, Mach 0.72 and CL = 0.75. The
same optimization procedure was used to produce another se-
quence of designs, F-14X, F-14XT, F-14XU, and F-14XV, again
in ascending order of thickness. The existing F-14 section has a
shock-induced drag coefficient of 75 counts in this condition.
Again it was verified with Euler calculations that the shock-in-
duced drag could be reduced to values of 7 to 10 counts without re-
ducing the thickness.

Key results are shown in Table 1. The four airfoils beginning
with the designation F-14X have been optimized for the X design
point, and the four airfoils beginning with the designation F-14Y
have been optimized for the Y design point. The drag is shown at
the design point for which the airfoil has been optimized as well as
for the other design point. For each of these optimum airfoils, it is
seen that the drag is significantly higher at the off-design point and
is reduced to moderate levels at the design point. The airfoils in
each series can be potentially modified from one to the other by
adaptive control; i.e., the F-14X airfoil can be modified into the F-
14Y airfoil, the F-14XT airfoil can be modified into the F-14YT
airfoil, etc. The most desirable pair seemed to be the F-14XU and
F-14YU since they are slightly thicker than the existing F-14 sec-
tion and have approximately the same drag as the thinner F-14X
and F-14Y airfoils. Additional thickness might be used to advan-
tage to reduce structure weight or to increase the wing span, which
reduces the drag induced due to lift. As shown in Fig. 3, the
required shape changes for each of the four series (nominal, thick,
thicker, and thickest) are small and are, therefore, potentially
achievable. Consequently, it appears possible that as flight condi-
tions change, adaptive variation of the wing cross section could
enable the optimum section to be used continuously to dramati-
cally reduce the shock-induced drag, thereby extending the tran-
sonic cruise envelope.

Test Article
One method of implementing the shape-control concept for an

adaptive wing is to incorporate active trusses in the wing-rib struc-
ture (Fig. 4). The diagonal elements are translational actuators that
expand and contract to deform the airfoil. We constructed a model
of an adaptive rib with 14 actuators to demonstrate the shape-con-
trol concept (Figs. 5 and 6). The model is approximately 4 ft wide
and 10 in. high. The upper and lower caps are aluminum with T--
shaped cross sections (3 in. wide, 0.050 in. thick, with 0.50 X 0.25
in. ribs). In the undeformed condition, the upper and lower sur-
faces are flat. Fourteen actuators are used to form the truss struc-
ture. No attempt was made to optimize the actuators. Terfenol-
based magnetostrictive actuators and hydraulic actuators, as well
as other devices, are being considered; however, in our model,
mechanical ball-screw actuators are used since they are relatively
inexpensive and available.

A set of internal linear variable-displacement transformers
(LVDTs) (Fig. 6) measure the actuator displacements, and external
LVDTs (Fig. 7) measure both the upper and lower surface displace-
ments. External loads can be applied to one surface through cables

Fig. 5 Adaptive rib test article.

Fig. 6 Detail of actuators and LVDTs.

Fig. 7 Surface displacement sensors and load-application devices.
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that are guided over pulleys and loaded with lead weights (Figs. 7
and 8). Each of the weights shown is approximately 26.5 Ib.

Finite Element Analysis
A finite element (FE) model, containing 206 beam elements and

30 triangular-membrane elements (Fig. 9), was developed by
employing the Grumman Automated STRuctural AnaLysis
(ASTRAL) Comprehensive Matrix Algebra Program (COMAP)
finite element (FE) system. The structure is pin connected at points
A and B and spring connected to ground at point C in the x, y, and
0 directions to represent spar flexibility. Actuator loads to achieve
commanded shapes of the unloaded structure were computed by
using Eq. (19). The actuator loads were then applied to the FE
model, and the deformations were computed. Since the 14 trans-
verse displacements of the actuator joints were selected to define
the surface shapes, and there are also 14 actuators, the generalized
inverse, Eq. (20), is identical to the conventional inverse, and we
were able to achieve deflections of the joints exactly. Some of the
deformed shapes obtained are illustrated in Fig. 10. The bottom-
surface deflections in Figs. lOb and lOc, at first, seem counterintu-
itive since the loads applied to the surfaces by each actuator must
be equal and opposite but the surfaces do not deform in opposing
directions. However, it is easy to verify that the resultant of the
loads applied at each vertex by the actuators that contact it can
have a vertical component that is zero or upward at each lower ver-
tex as well as at each upper vertex, even though the loads applied
by each actuator are equal and opposite. Racking (Fig. lOd) is one
method of achieving wing twist.

Control System
A nonlinear finite element analysis of the model shows that,

with actuator-load control, nonlinear effects can produce up to 8%
errors in the surface for the camber deformation shown in Fig. lOc.
Consequently, actuator deflection control, which we believe will

produce far more accurate deformations than load control, has
been selected to achieve desired upper and lower rib-surface
shapes. A flow diagram illustrating the control concept is shown in
Fig. 11. Fourteen inner control loops (not shown) employ rate and
velocity feedback to control each actuator.

To limit the dynamic response, the shape-change commands
were varied gradually from the current shape to the desired shape
over a 5-s period according to a one minus cosine waveform. Both
open- and closed-loop control experiments were performed.

In the open-loop experiments, external loads were not applied
since these loads are not measured, and in this case, it is not possi-
ble to achieve desired shapes in the presence of unknown loads.
Desired shapes were commanded and multiplied by the gain
matrix //g to obtain the corresponding actuator lengths in accor-
dance with Eq. (24). Then each actuator was commanded to
assume its computed length. Actuator lengths were measured with
the internal LVDTs, and actuator-length errors were corrected; i.e.,
the loop around each actuator was closed so that its commanded
length could be achieved relatively accurately. To evaluate the
accuracy of the gain matrix, surface shape was measured with the
external LVDTs, but surface errors were not corrected; therefore,
the overall loop was open.

In the closed-loop experiments, unmeasured external loads were
applied and the external LVDTs sensed the rib shape. The surface
error was multiplied by the gain matrix Hg to determine and cor-
rect the actuator stroke errors in accordance with Eq. (32).

Command, Control, and Measurement System
A command, control, and measurement computer (CCMC) was

developed to command the shape of the model, to implement the
control concept, and to facilitate the collection of data. A flow dia-
gram of the system is shown in Fig. 12. The CCMC contains sev-
eral plug-in boards, including a Texas Instruments digital signal
processing (DSP) chip, which is connected to a host 486 micropro-
cessor with the bus used in an IBM PC AT computer. Seventeen
Mbytes of memory enables recording time history data of actuator
deflections, structural deformations, and commanded voltages at a
rate of up to 100 Hz. User-commanded shapes are entered in the
microprocessor and are communicated to the DSP for processing.
Intensive computations such as the calculation of actuator-stroke
error correction commands are performed in the DSP.

Each actuator is controlled by a PMI Motion Technologies
motor controller. The motor controller employs pulse-width modu-
lation of a 20-kHz sinusoidal wave such that the controller/actuator

Fig. 8 Lead weights simulating external loads.

206 BEAM ELEMENTS

30 TRIANGULAR MEMBRANE ELEMENTS

Fig. 9 Finite-element model.

a) Sine/Minus Sine b) Sine/Flat

c) Sine/Sine d) Racking

Fig. 10 Deflections achieved by finite-element analysis.
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Table 2 Shape errors for adaptive wing

Sine/-Sine Sine/Flat Sine/Sine Racking

Closed Closed Closed Closed

Open Free Loaded Open Free Loaded Open Free Loaded Open Free Loaded

1
2
3
4
5
6
7

8
9

10
11
12
13
14

0.001
0.021
0.082
0.123
0.126
0.056
0.033

0.012
0.066
0.070
0.075
0.095
0.036
0.028

0.002
-0.004
-0.003

0.000
-0.001
-0.001

0.002

-0.001
-0.002

0.000
-0.006
-0.002

0.006
0.001

0.001
-0.003
-0.000

0.005
0.004
0.005
0.007

0.001
0.001
0.005

-0.001
0.004
0.011
0.006

-0.002
0.007
0.060
0.107
0.133
0.102
0.087

0.002
0.039
0.058
0.087
0.104
0.076
0.085

0.002
-0.006
-0.005
-0.002
-0.004
-0.004
-0.003

-0.002
-0.004
-0.002
-0.010
-0.005

0.001
-0.004

0.001
-0.005
-0.002

0.004
0.002
0.004
0.004

-0.002
-0.003

0.002
-0.004

0.002
0.008
0.003

-0.002
0.002
0.034
0.073
0.090
0.072
0.022

0.009
0.006
0.040
0.059
0.058
0.036
0.003

0.002
-0.006
-0.006
-0.003
-0.005
-0.004
-0.003

-0.003
-0.006
-0.004
-0.011
-0.006
-0.001
-0.007

0.002
-0.003

0.000
0.005
0.004
0.007
0.008

-0.000
-0.003

0.003
-0.002

0.004
0.010
0.004

-0.009
-0.018
-0.010

0.018
0.018

-0.015
-0.050

-0.012
-0.027
-0.008

0.014
0.001

-0.029
-0.019

0.003
-0.003
-0.003
-0.000
-0.002
-0.004
-0.004

-0.000
-0.002
-0.000
-0.008
-0.004

0.001
-0.007

0.008
0.006
0.010
0.016
0.014
0.015
0.015

0.007
0.009
0.014
0.009
0.014
0.019
0.013

Id

A-

Actuator
motor

controllers

Adaptive
rib

Fig. 11 Diagram of control system.

COMMAND, CONTROL AND
MEASUREMENT COMPUTER

FLEXIBLE SURFACES

Fig. 12 Command, control, and measurement system architecture.

system simulates an ideal proportional position control system
where actuator strokes are closely proportional to commanded po-
sition-error signals. In this sense, the controllers function as linear
amplifiers. Motor-speed regulation provides the necessary damp-
ing for stability. Since the motor controllers require analog input
and the LVDTs produce analog output, an analog-digital input/out-
put (I/O) subsystem is employed. This system contains analog-to-
digital converters and digital-to analog converters, as well as sig-
nal-conditioning circuits. Commands are relayed from the DSP to
the motor controllers via a direct high-speed private bus and the an-
alog-digital I/O subsystem.

A stress-ratio matrix was developed to predict whether any
commanded deformation will result in stresses that are beyond
safe allowable values (ultimate stresses with safety factors of 2).
When this matrix is multiplied by the vector specifying the desired
shape jcj, it provides the ratio of the stresses in each finite element
to their allowable values. The matrix resides in the DSP, and the
stress computations are performed in real time. If a shape com-
mand will result in a stress that is beyond the safe value, the com-
mand is automatically scaled down and the operator receives an

o Open Loop x Closed Loop

ft

a) Sine / Minus Sine

b) Sine / Flat

c) Sine / Sine

d) Racking

Fig. 13 Test results.

indication. Also, if unpredicted actuator deflections cause stresses
that exceed the allowable safe values, the experiment is automati-
cally shut down. This stress monitoring is accomplished at rates of
up to 100 times per sec by measuring the actuator strokes and com-
municating them to the DSP where the stress ratios are computed.
The automatic shutdown is implemented by sending a disable sig-
nal to all of the motor controllers to stop all further actuation.

In addition to these safety features, the forces and deflections
are limited for each actuator. The force and deflection limits differ
for each actuator according to its requirements. The maximum
working range of deflection is ±1 in. and of force is ±100 Ib. Upper
and lower deflection limits are achieved by adjusting the saturation
in the preamplifier in each motor controller. Adjustable current
limits in the controllers are used to limit the output torques to the
motors and thereby limit the output forces of the actuators.

Experimental Results
Open- and closed-loop test results on the free, or unloaded,

structure are shown in Fig. 13 for the four shapes shown in Fig. 10.
The solid line represents the desired shape, and measured results
are shown at each hinge joint. In the sine/minus sine case of Fig.
3a, the amplitude is 0.75 in., whereas in Figs. 3b-3d, the amplitude
is 1.0 in.
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Errors in the test results are shown in Table 2. Rows 1-7 corre-
spond to points on the upper surface, and rows 8-14 correspond to
points on the lower surface, from left to right. Some error analyses
have been performed, and we believe that the open-loop errors are
mostly attributable to slop in the joints of the structure. Except
where the open-loop error is small, with no external loads, the
errors are reduced when the loop is closed. When external loads
are applied and the loop is open, the errors are very high, on the
order of 0.5 in. (not shown in the table); however, they are reduced
to reasonable values when the loop is closed (see columns labeled
"Load" in Table 2). In the closed-loop case, we believe that the
errors are mostly attributable to slop in the joints of the fixtures
connecting the LVDTs to the structure. When the external loads
are applied, larger actuator torques are required. In this case, the
errors increase somewhat because the proportional feedback signal
to the actuator motors becomes small as the errors are corrected,
thereby limiting the motor torques. We have found that the errors
can be reduced somewhat by increasing the gain in the control
loop. Studies are recommended to develop lightweight reliable
actuators to make wing cross-sectional shape control a reality.

Conclusions
A general method was developed for static shape control of

structures with internal actuators. A model of an adaptive rib was
constructed, and finite element analysis of the model verifies that
the method can provide a close fit to any desired shape that does
not overstress the structure. The shape-control method was vali-
dated by tests conducted on the model. Commanded shapes were
obtained during open-loop control experiments of the unloaded
structure and closed-loop experiments of the loaded structure.
When applied to the problem of maintaining optimum airfoil
shapes during transonic cruise, the method has the potential to sig-
nificantly reduce wing drag. For the flight conditions investigated,
Euler theory demonstrated reductions in the shock-induced wing
drag from values ranging from 32 to 68 counts to values of 5 to 10
counts, by small adaptive changes in the wing cross-sectional
shape. Studies are recommended to develop lightweight reliable
actuators to make wing cross-sectional shape control a reality.
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