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Abstract— This study investigates natural single-arm interac-
tion with kinematic constraints. Smooth, frictionless, kinematic
constraints reduce the degrees-of-freedom of motion at the hand,
but add force freedoms. These force freedoms allow the hand
to push and pull against the constraints with no effect on the
task. Understanding how subjects take advantage of kinematic
constraints will be useful in designing constraint surfaces for
assisted manipulation.

This paper reports the results of an experiment studying how
subjects make use of the presence of a kinematic constraint in a
static planar single-arm task. Subjects are asked to hold a handle
that is free to slide on a linear rail, and to apply a force tangent
to the rail to resist a pulling force. Thus the goal of the task is
to hold the handle stationary. Subjects are also free to apply any
force normal to the rail, as these forces have no effect on the
task. This freedom does not exist without a kinematic constraint.

We find that subjects make use of the force freedom by
applying significant forces against the constraint in a consistent
and constraint-configuration-dependent fashion. We show that
the constraint forces can be predicted by a convex, scale-invariant
objective function on the hand force space. The level curves of this
objective function can be found directly from the experimental
data without any biomechanical modeling.

I. INTRODUCTION

We are investigating the use of passive robotic guides to

assist a human in manipulating a load from one configu-

ration to another. A guide acts as a workless, frictionless

constraint surface that confines the load to a submanifold of

its configuration space. A robot implementing a passive guide

does not amplify human muscle power, but simply redirects

the momentum of the load without affecting the energy. Our

ultimate goal is to design and control assist robots to make

manipulation of heavy loads faster, more comfortable, and

less likely to result in work-related musculoskeletal disorders

(WMSD’s). We believe the more kinematic constraints the

better in manipulation of a load, provided the constraints are

consistent with the task and are the “right” constraints for the

user. Understanding what “right” means is one motivation for

this work.

Our focus is on manipulation of a load with n degrees-

of-freedom before constraints are taken into consideration.

For example, a rigid-body load has n = 6, described by

the body’s x-y-z-roll-pitch-yaw coordinates. We assume the

load is subject to m independent, holonomic, equality con-

figuration constraints. If q is the configuration of the body,

these constraints can be expressed as c(q) = 0, c(q) =
(c1(q), . . . , cm(q)). The constraints are frictionless, so any

generalized reaction force fr (including forces and torques)

acting on the load due to the constraints must be normal to

the constraints, i.e., of the form

fr =

m∑

i=1

wi

∂ci(q)

∂q
, wi ∈ R.

A typical task is to move the load from one point of

the constrained (n − m)-dimensional space to another. To

accomplish this task, the human applies a generalized force

fh to the load. This force can be decomposed into orthogonal

components (with respect to the kinetic energy metric), fh =
fn + ft, where fn ∈ Fn(q) and ft ∈ Ft(q). Fn(q) is the m-

dimensional space of generalized forces that do no work on

the load at q (i.e., normal to the constraints), and Ft(q) is the

(n − m)-dimensional set of generalized forces along the free

motion directions at q (i.e., tangent to the constraints). Of the

force fh, only the portion ft contributes to solving the task;

fn sums with fr ∈ Fn(q) to ensure that the constraints are

maintained, regardless of the human’s choice of fn.1

Thus a typical task specification constrains the initial and

final states of the load, but leaves the following freedoms:

1) Load trajectory in the free space. The human has

freedom in choosing a path (and speed along the path)

for the load in the (n − m)-dimensional free space to

meet the terminal constraints. We will call these “motion

freedoms.”

2) Human body trajectory. A trajectory specification for

the load implies constraints on the the trajectory of the

human, typically the hand(s) manipulating the load. Due

to redundancy, however, the human’s joint trajectories

may not be uniquely specified by the load trajectory.

3) Constraint forces. At each instant along the trajectory,

the human can apply any generalized force in the m-

dimensional space Fn(q) with no effect on the trajec-

tory. We will call these “force freedoms.”

4) Muscle load sharing. Given a specification of the

freedoms (1–3) above, the joint torques are uniquely

specified. However, the sharing of these joint torques

across different muscle groups is not unique.

We are interested in how human subjects naturally make use

of these freedoms in practiced constrained motion.

1In this discussion we ignored the possible role of gravitational forces,
which generally will consist of components in both Fn(q) and Ft(q).



Fig. 1. An example planar single-arm reaching task, constrained by a linear
guide rail.

We begin our investigation into natural human interaction

with kinematic constraints by studying manipulation with a

single arm in a horizontal plane. By immobilizing the wrist,

we can treat the arm as a planar 2R manipulator (shoulder and

elbow). The hand carries a load from one point to another in

the plane, constrained by a guide rail to move along a fixed

path (Figure 1). In our first set of experiments we study natural

static interaction with a constraint. The subject holds a handle

attached to a smooth linear rail and is asked to hold the handle

stationary while the handle is pulled with different forces

tangential to the rail. We are interested in the forces applied

by the subject normal to the rail, which are not necessary for

the task but may simplify the task for the subject. Thus this

paper addresses the force freedoms (3) above.

A. Key Questions

The key questions and answers in this paper are:

1) Do subjects apply forces against the constraints? Such

forces have no effect on the task. Despite the fact that

the application of constraint forces increases the total

force magnitude at the hand, the data show that subjects

consistently apply forces against the constraint, in a

constraint-configuration-dependent manner.

2) Do subjects’ constraint forces scale proportionally with

forces applied in the free direction? The answer appears

to be yes, at least for relatively low applied forces.

3) Can the constraint forces be explained by an objective

function model governing forces applied at the hand?

The answer appears to be yes. This objective function

should be viewed as an explanation and predictor for the

data; it does not require that we commit to a particular

interpretation of it (e.g., that subjects are attempting to

minimize “effort”).

4) Is it possible, from the data alone, to reconstruct level

curves of the objective function implicit in the subject’s

interaction with the constraint? The answer is yes,

and this reconstruction is independent of any strong

assumption on the form of the objective function or

biomechanical modeling.

B. Related Work

Buchanan et al. [1], Flanders and Soechting [2], Gomi [5]

and van Bolhuis and Gielen [11] have studied isometric

experiments, which focus on the muscle load-sharing freedoms

weight

slider

forearm supporthandleforce sensor

rail

lazy susan

Fig. 2. Experimental setup.

(4) from the Introduction. On the other hand, a great deal of

work has studied how the motion freedoms (1) are resolved in

unconstrained reaching motions. With a biomechanical model,

muscle load-sharing freedoms (4) can also be included in

determining natural unconstrained reaching motion.

For human arm (shoulder and elbow) unconstrained point-

to-point motions, two popular models are minimum Cartesian

jerk at the hand (Flash and Hogan [3]), and minimum squared

rate of change of torque at the shoulder and elbow joints (Uno,

Kawato, and Suzuki [9]).

Gomi [4] showed that the natural stiffness at the hand during

motion is altered in the presence of a guiding constraint.

Other previous work on partially constrained arm motion

includes work examining how subjects turn a crank (Russell

and Hogan [7]; Svinin et al. [8]). Russell and Hogan showed

that people apply significant radial forces (compressing or

extending the crank) even though they are workless. Svinin et

al. compared experimental crank rotation force and motion

profiles to those predicted by a model minimizing a weighted

combination of hand force change and joint torque change.

II. EXPERIMENTS

A. Setup and protocol

Subjects were seated in a custom-made high-backed chair

and grasped a vertical handle on a slider on a horizontal

low-friction linear rail. The rail is mounted on a lazy susan,

allowing the rail to be rotated 360 degrees in the plane

(Figure 2). A forearm support is attached to the handle. This

support maintains the arm in a horizontal plane throughout the

experiments without fatiguing the subject.

Each trial consisted of the subject holding the handle while

a weight was hung from a cable attached to the slider, causing

a tangential pulling force on the slider. The subject then

stabilized the position of the handle at the center of the rail

by sight. Forces normal to the rail were then recorded for one

second and averaged. The weight was then removed from the

cable.



In most experiments, the slider handle was located at

(0, 45cm) in a frame fixed to the shoulder (Figure 10). (In

Section IV we discuss different arm configurations.) Sixteen

angles of the rail were used, evenly spaced at 22.5◦ intervals

around the unit circle. At each of the sixteen test positions,

two different weights are hung from the cable, 0.858kg (the

light weight) and 1.759kg (the heavy weight). These result in

tangential forces of 8.4N and 17.3N, respectively. For each

angle and weight, the experiment was repeated three times.

Therefore, for each subject, we collected 16×2×3 = 96 data

points.

B. Experimental Results

The measured force applied by a subject in a given trial can

be decomposed into two orthogonal components: a component

tangential to the rail denoted ft, and whose value is predictably

equal to the pulling force, and a component perpendicular to

the rail denoted fn, which is the object of study.

We recruited eight healthy right-handed male subjects for

our experiments. The experimental results of one subject are

shown in Figures 3 as plots of the applied normal force fn as

a function of the angle of the tangential force applied by the

subject (the +ft-axis). Two plots are shown: one for the light

weight and one for the heavy weight. For each plot, the dotted

line shows the average applied constraint force over the three

trials. The shaded region shows the range of normal forces

measured over the three trials. The solid line is identical to

the dotted line of average normal forces, except it has been

shifted up or down so that its integral over all test angles is

zero (zero mean), a consideration that will be discussed later.

Simple observation of the data indicates that subjects often

apply force normal to the constraint, depending on the angle

of the constraint and the direction of the tangent force, even

though normal forces are not necessary for the task. In fact,

for several of the subjects, the peak value of the normal force

is about as large as the required force along the rail. For the

most part, inter-trial variations are small relative to the peak

constraint forces.

C. Force Scaling

We would like to know if subjects’ normal force fn scales

approximately proportionally with the tangent force ft for a

fixed tangent force direction. The scaling hypothesis can be

written
8.4

17.3
fn,heavy − fn,light = z = 0,

where fn,heavy and fn,light are the normal forces applied

by a given subject at a given angle of the tangent force

ft for the large (17.3N) and small (8.4N) tangential forces,

respectively. First we performed a two-way ANOVA with

“constraint angle” and “force magnitude” as experimental

factors when subject data were pooled. It showed no main

effect for “force magnitude” factor on the data (F=1.143,

p=0.286). Also there was no evidence of system deviation

from scaling hypothesis across subjects for “constraint angle

× force magnitude” interaction (F=0.586, p=0.884, adjusted
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Fig. 3. Subject 1 normal force plot.

R2=0.62). Then we performed two-way ANOVAs for each

subject (n=8). They showed no main effect for the “force

magnitude” factor except for one subject. The results also

showed that there are some idiosyncratic deviations from the

scaling hypothesis within each subject due to the “constraint

angle × force magnitude” interaction. However, the pooled

analysis we did before already showed that deviations from

the scaling hypothesis were different for different subjects

and tended to cancel out or be obscured by the inter-subject

variability. Other analysis, like correlation coefficients for

linear fit (0.876±0.053), also indicate that scaling hypothesis

is reasonable.

III. OBJECTIVE FUNCTIONS AND ISO-COST CONTOURS

We would like to find an organizing principle to predict

normal force data such as that found in Figures 3. This orga-

nizing principle can be expressed as an objective function that

describes the “cost” to the subject of generating a particular

force vector, or it may reflect some facet of the organization

of the motor control system. In either case, the role of the

objective function is to resolve the freedom in the applied

constraint force.

The objective function g(fh) can be viewed as a function
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Fig. 4. Different classes of objective functions as represented by their
iso-cost contours. Top left: A general bowl-shaped objective function. Top
right: A non-convex scale-invariant objective function. Bottom left: A convex
non-scale-invariant objective function. Bottom right: A convex scale-invariant
objective function.

on the hand force space g : R
2 → R, where g gives the

“cost” of the hand force (fhx, fhy). Thus the objective function

forms a two-dimensional surface. A weak assumption on the

form of g is that the cost increases monotonically as we move

outward along any ray from the origin. For low to moderate

hand forces, this seems intuitively correct: the “cost” for a

nonzero hand force fh is greater than for any hand force

αfh for 0 ≤ α < 1. An objective function satisfying this

condition defines a bowl in the force space, and there are

no local minima except the global minimum at (0, 0). The

level curves of a bowl-shaped cost function are concentric,

closed, and star-shaped about the origin. We will call these

level curves iso-cost contours in the hand force space.

Two interesting subclasses of bowl-shaped objective func-

tions are those whose iso-cost contours are all convex, and

those whose iso-cost contours are scale-invariant — each iso-

cost contour is a uniformly-scaled version of every other.

These properties are shown graphically in Figure 4. The

Hessian matrix ∇2
fhfh

g of a convex objective function is

positive definite at all fh, i.e.,

trace(∇2
fhfh

g) > 0 (1)

det(∇2
fhfh

g) > 0. (2)

Scale-invariant objective functions satisfy the property

g(αfh) = k(α)g(fh), α, k(α) ∈ R
+,

for some scaling k(α) satisfying k(1) = 1 and monotonically

increasing with α. A common example of k(α) is a power law

αp. If an objective function is both convex and scale-invariant,

we refer to it as a CSI objective function. These properties of

an objective function generalize immediately to fh in more

than two dimensions.

How can an objective function be used to predict a con-

straint force? Consider the general case of an n degree-of-

freedom load and m constraints. The subject must apply a

L

L L

L

Fig. 5. In each figure, the dotted line represents ft, and the line L is the
line of equivalent forces along the rail. The arrows represent the optimal total
force fh = ft+fn. The line L in the top left figure is tangent to the same iso-
cost contour at two distinct points, meaning that it achieves a cost minimum
at two different fh. This is only possible with non-convex iso-cost contours.
In all other figures a unique optimum is predicted.

(a) (b)

Fig. 6. (a) For some objective functions, scaling the force ft (dotted lines)
does not result in a scaled optimal hand force fh (arrows). (b) For scale-
invariant objective functions, scaling the force ft proportionally scales the
optimal hand force fh.

specific force ft to satisfy the static task requirements. The

subject is free to apply any normal force fn without affecting

the task. Therefore, there is an m-dimensional linear subspace

of generalized forces containing ft that satisfies the task. The

objective function predicts that the subject will choose the

point in this linear subspace that minimizes the cost. At this

point, the linear subspace will be tangent to one of the (n−1)-
dimensional iso-cost surfaces. (If the cost function is non-

convex, a tangent point is not necessarily a minimum.)

For our particular example, m = 1 and the linear subspace

is simply a line. Prediction of the normal force can be done

by a graphical construction. On the plot of iso-cost contours,

construct the line L passing through the point ft = (ftx, fty)
and perpendicular to the direction of the rail. This is the linear

subspace of forces satisfying the task. The optimal total force

fh = ft + fn occurs where the line is tangent to an iso-cost

contour. Examples of the construction are shown in Figure 5.

If the objective function is scale-invariant, the direction of

the optimal total vector force fh depends only on the direction

of ft, and not on its magnitude. In other words, if the required

tangent force ft is scaled by α, then the optimal normal force is

also scaled by α. This does not hold for more general objective

functions, as shown in Figure 6.

In Section II-C we statistically tested the possibility of scale-



invariance, and we found that the data were consistent with

the hypothesis. In addition, as we will see later, the fact that

the experimental normal force plots (such as Figure 3) have

approximately zero mean can be seen as further evidence

of the scale-invariance of the objective function. Also, every

minimization model for static muscle load-sharing we are

aware of in the literature (muscle group stresses or tensions,

or joint torques, raised to the power of 1, 2, or 3 and

summed) implies a CSI (convex and scale-invariant) objective

function at the hand. 2 Several researchers have found that

as the direction of an applied force remains fixed but the

magnitude is scaled, the muscle activation and force patterns

simply scale, further evidence of scale-invariance (Buchanan et

al. [1]; Flanders and Soechting [2]; Valero-Cuevas et al. [10]).

For these reasons, we will proceed with the assumption that

the objective function is scale-invariant. This assumption will

allow us to derive the shape of the iso-cost contours implied

by the experimental data without any detailed biomechanical

modeling or more restrictive conditions on the form of the

objective function.

A. Reconstructing Iso-Cost Contours

The ability to reconstruct iso-cost contours is perhaps

nonobvious, because the experiments do not keep the subject

on the same iso-cost contour. In fact, there is no way to design

the experiments to do so, since we do not know the iso-cost

contours in advance. Since we are assuming scale-invariant

objective functions, however, it is possible to derive the shape

of an iso-cost contour (and therefore all iso-cost contours)

from the experimental data. The reconstruction proceeds as

follows.

Each point on a normal force plot indicates a point in the

hand space (fhx, fhy) space, at an angle β relative to the

+fhx axis. At this point, the direction of the normal force

fn is tangent to the iso-cost contour, as shown in Figure 6(b).

Therefore, the p data points of the normal force plot gives

us a set of angles βi, i = 1 . . . p and a tangent direction

γi associated with each βi. The iso-cost contour must be

generated from this data. Choosing a point at an arbitrary

radius r1 (say r1 = 1) along a ray at angle β1 from the

origin of the (fhx, fhy) space, integrate angularly using the

tangent angle γ1 until β2 is reached. Then using angle γ2,

integrate until β3 is reached, and so on. (More sophisticated

interpolating numerical integration could instead be used.)

Continue around angularly until the curve reaches β1 again. If

the normal force plot comes from a scale-invariant objective

function, the curve will close at β1. The key point is that

for scale-invariant objective functions, the tangent direction γ
depends only on the angle β of the force fh, not the magnitude

||fh||.

2Any CSI objective function defined in the joint torque, muscle tension, or
muscle stress space maps to a CSI objective function in the hand force space,
as linear mappings (from muscle stress to muscle tension, from muscle tension
to joint torques, and from joint torques to hand forces) preserve convexity and
scale-invariance.

What if the curve does not close after integrating the

tangents around 360 degrees? This can certainly happen be-

cause of numerical integration errors, but could there be a

more fundamental reason? What condition does the normal

force experimental data have to satisfy to result in a closed

reconstructed iso-cost contour? It turns out that the integral of

the normal force curve must equal zero, i.e., the normal forces

must be zero mean.

Proposition 3.1: The experimental normal force curve must

be zero mean to yield a closed scale-invariant iso-cost contour

by the integration procedure outlined above.

(Proof omitted for space.)

To reconstruct the iso-cost contour from experimental data,

we first shift the curve of average normal forces by subtracting

the mean value of the normal force. This shifts the curve up

or down by a fixed amount and creates a zero-mean curve. As

can be seen from the plots in Figure 3, the amount of the shift

is generally small relative to the amplitude of the maximum

normal forces. Also, the shifted average curves remain almost

everywhere inside the range of normal force values established

by the three trials. Thus the shift is supported by the varia-

tions in the experimental data. This indicates that the actual

experimental normal force data are indeed approximately zero

mean, as needed to reconstruct the iso-cost contours.

The fact that the experimental normal force curves are zero

mean (within trial-to-trial variations) can be seen as further

evidence of a scale-invariant objective function. While all

scale-invariant objective functions predict zero mean normal

force curves, this is not true for general non-scale-invariant

objective functions.

Four subjects’ reconstructed iso-cost contours from the nor-

mal force data (after shifting) for the hand position (0, 45cm)
in the shoulder frame are shown in Figure 7. Because the

objective function is assumed scale-invariant, only the shape

of the iso-cost contours is of interest; their sizes are arbitrary.

We can make a few general observations about the shapes of

the iso-cost contours. Almost all of the reconstructed contours

are convex, implying a convex objective function. For most

subjects, the shapes of the iso-cost contours found from the

normal force data are almost the same for |ft| = 8.4N

and 17.3N in the experiments. This is predicted by scale-

invariance. The iso-cost contours are stretched in the fhy

direction relative to the fhx direction, indicating that a larger

force in the fhy direction has the same “cost” as a smaller

force in the fhx direction. This is not surprising for this

configuration of the arm, and similar stretching has been

observed in experimentally derived impedance ellipses for the

arm (e.g., Hogan [6]; Gomi [4]).

The key points of the reconstructed iso-cost contours are

that (i) they are found independent of any strong biomechan-

ical modeling assumptions, and (ii) they represent how the

constraint force freedoms (3) described in the Introduction are

used by subjects in solving static manipulation tasks.
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Fig. 7. The reconstructed iso-cost contours for four subjects at the hand
position (0, 45cm) in the shoulder frame. The scale is insignificant; only the
shape matters.

B. Iso-cost contours predicted by biomechanical models

Based on a simplified six muscle groups arm model (van

Bolhuis and Gielen [11]; Gomi [5]) and physiological pa-

rameters of the muscle groups (Gomi [5]), we can use our

data to distinguish how well different biomechanical models

fit experimental data for natural interaction with a constraint.

We will consider the following minimization models for

interaction with the constraint:

• HAND Hand force magnitude ||f || is minimized.

According to this model, the subject applies only forces

tangent to the rail. The constraint force is zero.

• T2 Torque squared,
∑

i τ2
i . For a robot arm with

identical DC motors at the shoulder and elbow, this

solution minimizes the electrical power to the motors.

• MT1 Muscle tension,
∑

i φi, i ∈ {se, sf, ee, ef,
be, bf} represents shoulder extensor and flexor, elbow

extensor and flexor, and biarticular extensor and flexor.

• MT2 Muscle tension squared,
∑

i φ2
i .

• MT3 Muscle tension cubed,
∑

i φ3
i .

• MS1 Muscle stress,
∑

i φi/PCSAi, where PCSAi is

the physiological cross-sectional area of muscle i. This

is a measure of the activation of the muscle.

• MS2 Muscle stress squared,
∑

i(φi/PCSAi)
2.

• MS3 Muscle stress cubed,
∑

i(φi/PCSAi)
3.

The linear models MT1 and MS1 tend to predict activation

of only one of the muscle groups for a given task, while higher-

order models predict greater sharing of the load across the

muscle groups. Any model other than HAND indicates that

the subject chooses a strategy with nonzero constraint forces.

Each of the eight models defines a CSI objective function in

the hand force frame for a given arm configuration. For the T2

model, the iso-cost contours are ellipses that can be found in

closed form. The iso-cost contours for the HAND model are

HAND

T2 

MT1 MT2 MT3

MS1 MS2 MS3

Fig. 8. The eight models of force generation imply iso-cost contours at
the hand position (0, 45cm) in the shoulder frame with L1 = 30cm, L2 =
35cm.
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Fig. 9. The normal force predicted by three different models, T2, MT1, and
MT2. The magnitude of the tangential force ft (along the rail) applied by
the human is 20N, and the direction of ft is varied between 0◦ and 360◦.
The positive direction of the normal force is defined as 90◦ clockwise of the

direction of the tangential force, indicated by the vector f̂n in the figure. The
link lengths of the arm are L1 = 30cm, L2 = 35cm and the arm is at the
(0, 45cm) hand position. The figure shows a tangential force at 245◦, and
the three models predict different normal forces.

simply circles centered at the origin. Iso-cost contours for the

other models can be found numerically (Figure 8). The linear

models MT1 and MS1 result in polygonal iso-cost contours;

the other models have strictly convex iso-cost contours. Note

the strong anisotropy of the MSk iso-cost contours, due to the

presumed large PCSA of the uniarticular shoulder muscles.

Each of the models predicts a normal force plot that can

be compared to a subject’s experimental data, as in Figure 3.

Figure 9 shows predicted normal force plots for three different

models. Each radial local maximum and minimum of the iso-

cost contour predicts zero normal force. For the HAND model,

all points of an iso-cost contour are extremal, and it always

predicts zero normal force.

IV. DISCUSSION AND FUTURE WORK

The results clearly show that subjects make non-trivial use

of the kinematic constraints, suggesting that passive guides

may be useful to a human manipulating a heavy load. This can

be seen from the anisotropy of subjects’ reconstructed iso-cost

contours. Although the iso-cost contours are anisotropic, they
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are not as anisotropic as those for the robotic T2 model. This

suggests that biarticular muscles may act to make force prop-

erties at the hand more isotropic, as suggested by Hogan [6].

In addition to our tests at the hand position (0, 45cm), we

performed the same experiments with a subset of subjects at

hand positions (0, 55cm) (labeled FAR), (0, 35cm) (labeled

NEAR), and (−31.8cm, 31.8cm) (labeled LEFT) in the shoul-

der frame. LEFT is the initial test position rotated 45◦ in the

shoulder frame (Figure 10).

Each of the models in Section III-B predicts that the iso-

cost contour at LEFT has the same shape as the iso-cost

contour at the original position, rotated 45◦. This is in fact

what we see in the reconstructed iso-cost contours for subject

7 (Figure 11). Because the elbow is more extended at the

FAR position, each model predicts that the iso-cost contour

becomes more anisotropic (stretched). This is what we see for

subject 8 (Figure 12).

Our next set of experiments will study constrained point-

to-point motion for the arm in the plane. We have built a

planar 2R manipulandum capable of implementing smooth

programmable guiding paths of arbitrary shape [12]. The ma-

nipulandum relies on a steered unicycle wheel at its endpoint

to direct the motion over a plane. These experiments will allow

us to study dynamic models of interaction with a constraint.

We hypothesize that, as with the static examples presented

iso-cost contour, subject 8, original position
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iso-cost contour, subject 8, FAR position
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Fig. 12. Reconstructed iso-cost contours for subject 8 at the original test
point and FAR.

above, even practiced interaction will involve considerable

normal forces. These normal forces may allow us to distin-

guish between different dynamic models that predict similar

trajectories in the unconstrained case. An open question is

whether a single principle can be used to describe practiced

forces and motions in unconstrained, partially constrained, and

fully constrained manipulation tasks.
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