
Static Slicing of Threaded Programs

Jens Krinke
krinke@ips.cs.tu-bs.de

TU Braunschweig
Abteilung Softwaretechnologie

Abstract

Static program slicing is an established method for analyz-
ing sequential programs, especially for program understand-
ing, debugging and testing. Until now, there was no slicing
method for threaded programs which handles interference
correctly. We present such a method which also calculates
more precise static slices. This paper extends the well known
structures of the control flow graph and the program depen-
dence graph for threaded programs with interference. This
new technique does not require serialization of threaded pro-
grams.

1 Introduction

Static program slicing [19] is an established method for an-
alyzing sequential programs, especially for program under-
standing, debugging and testing. But today even small pro-
grams use parallelism and a method to slice such programs is
required. Dynamic slicing of threaded (or concurrent) pro-
grams has been researched by several authors. But only one
approach for static slicing of threaded programs is known
to us [1, 2]. A drawback of this approach is that the cal-
culated slices are not precise enough, because it does not
handle interference. Interference is data flow which is intro-
duced through use of variables which are common to parallel
executing statements. We approach that problem and present
a more precise algorithm for static slicing of threaded pro-
grams with interference.

The analysis of programs where some statements may
explicitly be executed in parallel is not new. The static analy-
sis of these programs is complicated, because the execution
order of parallel executed statements is dynamic. Testing and
debugging of threaded programs have increased complexity:
they might produce different behavior even with the same

input. The nondeterministic behavior of a program is hard
to understand and finding harmful nondeterministic behav-
ior is even harder. Therefore, supporting tools are required.
Unfortunately, most tools for sequential programs are not ap-
plicable to threaded programs, as they cannot cope with the
nondeterministic execution order of statements. One simple
way to circumvent these problems is to simulate these pro-
grams through sequentialized or serialized programs [18].
These are “product” programs, in which every possible exe-
cution order of statements is modeled through a path where
the statements are executed sequentially. This may lead to
exponential code explosion, which is often unacceptable for
analysis. Therefore, special representations of parallel pro-
grams have been developed.

In the following sections we will first introduce our no-
tation of threaded programs and show how to extend con-
trol flow graphs (CFGs) and program dependence graphs
(PDGs) to threaded PDGs, which are our base for slicing.
The problem of static slicing threaded programs is explained
in section 4, where we also present an algorithm to slice
these programs. The last two sections present some related
work and discuss the conclusions and further work.

2 The threaded CFG

A common way to represent procedures of a program are
control flow graphs (CFG). A CFG is a directed graph G =
(N, E, s, e) with node set N and edge set E . The statements
and predicates are represented by nodes n ∈ N and the
flow of control between statements is represented by edges
(n,m) ∈ E and written as n → m. Two special nodes s and
e are distinguished, the START node s and the EXIT node e
which represent the beginning and the end of the procedure.
Node s does not have predecessors and node e does not have
successors. The variables which are referenced at node1 n
are denoted by ref (n), the variables which are defined (or
assigned) at n are denoted by def(n).

1In the rest of this paper we will use “node” and “statement” interchangeable, as
they are bijectively mapped

A path in G is a sequence P = 〈n1, . . . , nk〉 where ni →
ni+1 for all 1 ≤ i < k. A node p is reachable (q →! p)
from another node q, if there is a path 〈q, . . . , p〉 in G.
i. e. “→!” is the transitive, reflexive closure of “→”. We
assume that every path in a CFG is a possible execution or-
der of the statements of the program. If we pick some state-
ments out of this sequence they are a witness of a possible
execution.

Definition 2.1 We call a sequence 〈n1, . . . , nk〉 of nodes a
witness, iff ni →! ni+1 for all 1 ≤ i < k.

This means that a sequence of nodes is a witness, if all
nodes are part of a path through the CFG in the same order
as in the sequence. Every path is a witness of itself.

A thread is a part of a program which must be executed
on a single processor. Threads may be executed in paral-
lel on different processors or interleaved on a single proces-
sor. In our model we assume that threads are created through
cobegin/coend statements and that they are properly syn-
chronized on statement level. Let the set of threads be " =
{θ0, θ1, . . . , θn}, n = |"|+1. For simplicity we consider the
main program as a thread θ0.

A sample program with two threads is shown in Figure 1.
Thread θ1 is the block of statements S3, S4 and S5 and the
other thread θ2 is the block with S6 and S7. S1, S2 and S8 are
part of the main program θ0.

A threaded CFG (tCFG) extends the CFG with two spe-
cial nodes COSTART and COEXIT which represent the cobe-
gin and coend statements. The enclosed threads are han-
dled like complete procedures and will be represented by
whole CFGs, which are embedded in the surrounding CFG.
The START and EXIT nodes of these CFGs are connected to
the COSTART and COEXIT nodes with special parallel flow
edges. We will distinguish the edges through p

c f−→ q for
a sequential control flow edge between nodes p and q and
p

pf−→ q for a parallel flow edge. Figure 2 shows the tCFG
for the example program of Figure 1.

θ(p) is a function which returns for every node p its in-
nermost enclosing thread. In the example we have θ(S2) =
θ0, θ(S4) = θ1 and θ(S6) = θ2. "(p) is a function that
returns for every node p the set of threads which cannot
execute parallel to the execution of p, e. g. "(S4) = ∅ or
"(S2) = {θ1, θ2}.

The definition of witnesses in CFGs may also be applied
to tCFGs. But this does not take the possible interleaving of
nodes into account and we have to extend the definition:

Definition 2.2 A sequence l = 〈n1, . . . , nk〉 of nodes is a
threaded witness in a tCFG, iff

∀t∈" : l
∣∣t = 〈m1, . . . ,m j 〉 ⇒ ∀ j−1

i=1 : mi
c f,p f
−→! mi+1

where l |t is the subsequence of l = 〈n1, . . . , nk〉 in which
all nodes ni with θ(ni) *= t have been removed.

S1: x = ...;
S2: i = 1;

cobegin {
if (x>0) {

S3: x = -x;
S4: i = i+1;

} else {
S5: i = i+1;

}
}{

S6: i = i+1;
S7: z = y;

} coend;
S8: ... = i;

Figure 1: A threaded program

x = -x

START

... = i

STARTSTART

COSTART

i = 1

x = ...

i = i+1

i = i+1

i = i+1
if (x>0)

z = y

EXIT EXIT

COEXIT

EXIT

S1

S2

S4

S5

S6

S8

control flow

parallel flow

S3

S7

Figure 2: A threaded CFG

x = -x

START

... = i

STARTSTART

COSTARTi = 1x = ...

i = i+1 i = i+1

i = i+1if (x>0) z = y

S1 S2

S4 S5

S6

S8

control or parallel flow

data dependence

control dependence

interference dependence

S3

S7

A

B

DC

E

Figure 3: A threaded PDG

Intuitively, a threaded witness can be interpreted as a wit-
ness in the sequentialized CFG. This definition assures that
a sequence of nodes, which are part of different threads, is
a witness in each of the different threads. Every ordinary
witness in the tCFG is automatically a threaded witness. In
our example of Figure 2, 〈S1, S4, S6〉 and 〈S1, S2, S8〉 are
threaded witnesses and 〈S5, S6, S4〉 or 〈S1, S4, S5〉 are not.
The sequence 〈S1, S2, S8〉 is also an ordinary witness but the
sequence 〈S1, S4, S6〉 is not.

3 The threaded PDG

A program dependence graph [5] is a transformation of a
CFG, where the control flow edges have been removed and
two other kinds of edges have been inserted: control depen-
dence and data dependence edges.

Definition 3.1 A node j is called data dependent on node i ,
if

1. there is a path P from i to j in the CFG (i →! j).

2. there is a variable v, with v ∈ def (i) and v ∈ ref (j)

3. for all nodes k *= i of path P ⇒ v /∈ def(k).

Node j is called a postdominator of Node i , if any path
from i to EXIT must go through j . A node i is called a pre-
dominator of j if any path from START to j must go through
i . In typical programs, statements in loop bodies are pre-
dominated by the loop entry and postdominated by the loop
exit.

Definition 3.2 A node j is called (direct) control dependent
on node i , if

1. there is a path P from i to j in the CFG (i →! j).

2. j is a postdominator for every node in P except i

3. j is not a postdominator for i .

The PDG consists of the nodes of the CFG and control
dependence edges p cd−→ q for nodes q which are control
dependent on nodes p, and data dependence edges p dd−→ q
for nodes q which are data dependent on nodes p.

Definition 3.3 A node j is called transitive dependent on
node i , if

1. there is a path P = 〈i = n1, . . . , nl = j〉 where every
nk+1 is control or data dependent on nk

2. P is a witness in the CFG

Note that the composition of control and data dependence
is always transitive: A dependence between x and y and a
dependence between y and z are implying a path between x
and z from the definition of control and data dependence.

There have been some attempts to define threaded vari-
ants of PDGs. To the best of our knowledge none of these
explicitly represents the dependences which result from in-
terference. Interference occurs if a variable is defined in one
thread and referenced in another parallel executing thread.
In the example of Figure 1 we have an interference for the
variable i between θ1 and θ2. The value of i at statement

S1: i = 1;
cobegin {

while (z>0) {
cobegin {

S2: x = i;
}{

S3: y = x;
} coend;

}
}{

S4: z = y;
} coend;

S5: x = z;

Figure 4: A program with nested threads

S6 may be the value computed at S2, S4 or S5. The value
of i at statement S8 may be the value computed at S4, S5 or
S6. However, if the statements S4, S5 and S6 are properly
synchronized, the value of i will always be 3.

Definition 3.4 A node j is called interference dependent on
node i , if

1. θ(i) *= θ(j) and θ(j) /∈ "(i), i. e. θ(i) and θ(j) may
potentially be executed in parallel,

2. there is a variable v, such that v ∈ def (i) and v ∈ ref (j)

Dependences between threads which are not executed in par-
allel are ordinary data dependences.

The dependences introduced by interference cannot be
handled with normal data dependence as normal dependence
is transitive and interference dependence is not. The transi-
tivity of the data and control dependence results from their
definitions, where a sequential path between the dependent
nodes is demanded. The composition of paths in the CFG
always results in a path again.

Interference dependence is not transitive: If a statement x
is interference dependent on a statement y, which is interfer-
ence dependent on z, then x is only dependent on z iff there
is a possible execution where these three statement are exe-
cuted one after another: The sequence 〈x, y, z〉 of the three
statements has to be a threaded witness in the tCFG. In the
example of Figure 3 statement S4 is interference dependent
on statement S6, which in turn is interference dependent on
statement S5. However, there is no possible execution where
S4 is executed after S5 and thus S4 cannot be interference
dependent on S5, 〈S5, S6, S4〉 is no threaded witness.

A threaded program dependence graph (tPDG) consists
of the nodes and the edges of the tCFG with the addition of
control, data and interference dependence edges. In contrast
to the standard PDG, where the control flow edges have been

x = i

START

STARTSTART

COSTARTi = 1

COSTART

y = x

while(z>0) z = y

S1

S2 S3

S4

control or parallel flow

data dependence

control dependence

interference dependence

x = z
S5

Figure 5: The tPDG of Figure 4

removed, we need the control and parallel flow edges for
reasons we will explain later. As usual, the EXIT and COEXIT
nodes can be removed, if the control and parallel flow edges
are adapted accordingly. The tPDG of the example is shown
in Figure 3.

More complicated structures like loops or nested threads
may be handled in the same way. An example is shown in
Figure 4. In the tPDG in Figure 5 there is both a data and an
interference dependence edge between statement S2 and S3.
Both statements and their threads may be executed in paral-
lel (therefore the interference dependence). The statements
and their threads may also be executed sequentially through
different iterations of the enclosing loop.

The technique to calculate the edges is beyond the scope
of the papers, they can be calculated with standard algo-
rithms [8]. A simple version would assume the existence
of a boolean function parallel(i, j) which returns true if it is
possible for nodes i and j to execute in parallel (see [12] for
an overview of ways to calculate this function). An interfer-
ence dependence edge i id−→ j will be inserted for all (i, j)
if there is a variable v which is defined at i , referenced at j
and parallel(i, j) is true.

4 Slicing the tPDG

Slicing on the PDG of sequential programs is a simple graph
reachability problem [14], because control and data depen-
dence is transitive.

Definition 4.1 The (backward) slice S(p) of a (sequential)
PDG at node p consists of all nodes on which p (transitively)
depends:

S(p) = {q|q →! p}
The node p is called the slicing criterion.

This definition may easily implemented through a graph
reachability algorithm. As interference dependence is not
transitive, this definition of a slice for PDGs is not valid
for tPDGs and hence the standard algorithms are not really
applicable.2

The basic idea of our approach stems from a simple ob-
servation: Because every path in the PDG is a witness in the
corresponding CFG, every node p which is reachable from
a node q in the PDG, is also reachable from q in the cor-
responding CFG. This does not hold for the threaded vari-
ants. The definition of a slice in the tPDG establishes a
similar property, because it demands that the tPDG contains
a threaded witness between every node in the slice and the
slicing criterion.

Definition 4.2 The (backward) slice Sθ (p) of a tPDG at a
node p consists of all nodes q on which p transitively de-
pends:

Sθ (p) = {q | P = 〈n1, . . . , nk〉,
q = n1

d1−→ . . .
dk−1−→ nk = p,

di ∈ {cd, dd, id}, 1 ≤ i < k.
and P is a threaded witness
in the tCFG}

A slice from the statement S4 of the example program in
Figure 1 is shown in Figure 3 as framed nodes. The respon-
sible edges are drawn in a thicker style. Note that there are
interference edges between statement S6 and S5 which does
not force the inclusion of statement S5 into the slice because
S4 is not reachable from S5 in the tCFG. The standard slic-
ing algorithm would include the statement S5 into the slice,
which is, albeit correct, to inaccurate.

The algorithm to slice sequential programs is a simple
reachability algorithm. However, it is not easy to transform
the definition of a threaded slice into an algorithm because
the calculation of threaded witnesses would be too costly.

2The “classical” definition of a slice is any subset of a program that does not change
the behaviour in respect to the criterion: a program is a correct slice of itself. There-
fore, if interference is modelled with normal data dependence, the resulting slices are
correct but unprecise.

Input: the slicing criterion s, a node of the tPDG
Output: the slice S, a set of nodes of the tPDG

Initialize the worklist with an initial state tuple:

C = (s, (t0, . . . , t|"|))
∣∣∣∣ ti =

{
s if θ(s) = θi
⊥ else

worklist w = {C}
slice S = {s}
repeat

remove the next element c = (x, T) from w
Examine all reaching edges:
for all edges e = y cd,dd−→ x do

T ′ = [y/θ(y)]T
if θ(y) *= θ(x) then
Normal dependence between threads:
reset the exited threads
(which cannot execute parallel to y)
for all t ∈ "(y) do

T ′ = [⊥/t]T ′

c′ = (y, T ′)
if c′ has not been already calculated then

mark c′ as calculated
w = w ∪ {c′}
S = S ∪ {y}

for all edges e = y id−→ x do
t = T [θ(y)]

if t = ⊥ or y
c f,p f
−→! t *= y then

The inclusion of the edge still results
in a threaded witness
c′ = (y, [y/θ(y)]T)

if c′ has not been already calculated then
mark c′ as calculated
w = w ∪ {c′}
S = S ∪ {y}

until worklist w is empty.

Figure 6: Slicing algorithm

Therefore we present a different slicing algorithm in Fig-
ure 6. Its basic idea is the coding of possible states of exe-
cution in all threads in tuples (t0, t1, . . . , t|"|−1), where the
ti are nodes in the tPDG with θ(ti) = θi . The value ti repre-
sents a node which has not yet been reached by the execution
of thread θi and it is still possible to reach node ti . A value
of ⊥ does not restrict the state of execution. This is used
to keep track of the nodes p where a thread has been left
through following an interference edge. If we follow another
interference edge back into the thread at node q, we are able
to check that p is reachable from q. This assures that paths
over interference edges are always threaded witnesses in the
tCFG. This is the reason why we have to keep the control
and parallel flow edges in the tPDG.

We denote the extraction of the i th element t i in a tuple
T = (t0, t1, . . . , tn) with T [i]. The substitution of the i th
element ti in a tuple T = (t0, t1, . . . , tn) with a value x will
be denoted as [x/i](T).

The algorithm keeps a worklist of pairs of nodes and state
tuples which have to be examined. Every edge reaching the
node is examined and is handled dependently of its type. In
case of a control or data dependence edge, a new pair con-
sisting of the source node and the modified state tuple is in-
serted into the worklist. The new state tuple has the source
node as the actual state of its thread. If the edge crosses
threads, the state of the left threads are resetted. In the other
case its an interference dependence edge. It may only be
considered if the state node of the source node thread is
reachable from the source node in the tCFG (all examined
paths are still threaded witnesses). Then, the new pair with
the updated state tuple is inserted into the worklist. The re-
sulting slice is the set of nodes which is constructed of the
first elements of the inserted pairs.

In the following we will demonstrate an application of
the algorithm to calculate a backward slice for node S4. The
worklist w is initialized with the element (S4, (⊥, S4,⊥)).
This element is immediately removed from the worklist and
all edges reaching S4 are examined. The edge E cd−→ S4
does not cross threads and the state of the thread θ(S4) =
θ(E) is updated before the created element (E, (⊥, E,⊥))

is inserted into the worklist. The edge S2
dd−→ S4 does cross

threads and the state of the exited threads is reset. This cre-
ates a new element (S2, (S2,⊥,⊥)). The edge S6

id−→ S4
creates (S6, (⊥, S4, S6)), because the state of θ(S6) is ⊥.
Let us step forward in the calculation and assume the work-
list is {(S6, (⊥, S4, S6)), (C, (⊥,C,⊥)), . . .}. There are four
edges reaching S6:

1. S2
dd−→ S6 crosses threads and creates the element

(S2, (S2,⊥,⊥)). As this element has already been vis-
ited, it is not inserted into the worklist again.

2. D cd−→ S6 does not cross threads and inserts the ele-
ment (D, (⊥, S4, D)) into the worklist.

3. S5
id−→ S6: as (⊥, S4, S6)[θ(S5)] = S4 and the con-

dition S5
c f,p f
−→! S4 is not fulfilled, this edge has to be

ignored.

4. S4
id−→ S6: the condition T [θ(S4)] *= S4 cannot be

fulfilled and this edge has to be ignored.

In the third step, the edge has to be ignored because it would
destroy the property that every node in the slice is part of a
threaded witness. The condition which is not fulfillable in
step four may be relaxed if we drop our assumption that the
program is properly synchronized on statement level. The
remaining calculations are presented in Figure 7.

w : {(S4, (⊥, S4,⊥))}
E cd−→ S4 ⇒ (E, (⊥, E,⊥))

S2
dd−→ S4 ⇒ (S2, (S2,⊥,⊥))

S6
id−→ S4 ⇒ (S6, (⊥, S4, S6))

w : {(E, (⊥, E,⊥)), (S2, (S2,⊥,⊥)), (S6, (⊥, S4, S6))}
C cd−→ E ⇒ (C, (⊥,C,⊥))

S1
dd−→ E ⇒ (S1, (S1,⊥,⊥))

w : {(S2, (S2,⊥,⊥)), (S6, (⊥, S4, S6)), (C, (⊥,C,⊥)), (S1, (S1,⊥,⊥))}
A cd−→ S2 ⇒ (A, (A,⊥,⊥))

w : {(S6, (⊥, S4, S6)), (C, (⊥,C,⊥)), (S1, (S1,⊥,⊥)), (A, (A,⊥,⊥))}
S2

dd−→ S6 ⇒ (S2, (S2,⊥,⊥)) already visited

D cd−→ S6 ⇒ (D, (⊥, S4, D))

S5
id−→ S6 ⇒ S5

c f,p f
−→! S4 is not fulfilled (T [θ(S5)] = S4)

S4
id−→ S6 ⇒ T [θ(S4)] *= S4 is not fulfilled (T [θ(S4)] = S4)

w : {(C, (⊥,C,⊥)), (S1, (S1,⊥,⊥)), (A, (A,⊥,⊥)), (D, (⊥, S4, D))}
B cd−→ C ⇒ (B, (B,⊥,⊥))

w : {(S1, (S1,⊥,⊥)), (A, (A,⊥,⊥)), (D, (⊥, S4, D)), (B, (B,⊥,⊥))}
A cd−→ S1 ⇒ (A, (A,⊥,⊥)) already in worklist

w : {(A, (A,⊥,⊥)), (D, (⊥, S4, D)), (B, (B,⊥,⊥))}
no edge reaching A exists

w : {(D, (⊥, S4, D)), (B, (B,⊥,⊥))}
B cd−→ D ⇒ (B, (B,⊥,⊥)) already in worklist

w : {(B, (B,⊥,⊥))}
A cd−→ B ⇒ (A, (A,⊥,⊥)) already visited

⇒ Sθ (S4) = {S4, E, S2, S6,C, S1, A, D, B}

Figure 7: Calculation of Sθ (S4)

If we assume that the analyzed programs has no threads,
" = {θ0}, then this algorithm is similar to the sequential
slicing algorithm. In that case, the second iteration over all
interference dependence edges will not be executed and the
worklist will only contain tuples of the form (n, (n)), where
n is a node of the PDG. Hence the standard slicing algorithm
on PDGs is a special case of our algorithm, which has the
same time and space complexity for the unthreaded case.

In the threaded case the reachability y
c f,p f
−→! x has to

be calculated iteratively. This determines the worst case for
time complexity in the number of interference edges: the tra-
versal of these edges might force another visit of all nodes
that may reach the source of the edge. Therefore, the worst
case is exponential in the number of interference dependence
edges. We believe that the number of interference depen-
dence edges will be very small in every program, as inter-
ference is error prone, hard to understand and to debug. The
required calculation time will be much less than the time re-
quired to analyze serialized programs.

5 Related work

There are many variations of the program dependence graph
for threaded programs like parallel program graphs [15, 2, 1,
4]. However, most of them are unusable for static slicing.

Dynamic slicing of threaded or concurrent programs has
been approached by different authors [4, 13, 3, 9] and is sur-
veyed in [17].

The only other approach to static slicing of threaded pro-
grams known to the author is the work of Cheng [1, 2]. He
introduces some dependences, which are even more special-
ized than our interference dependence. These are needed for
a variant of the PDG, the program dependence net (PDN).
His selection dependence is a special kind of control depen-
dence and his synchronization dependence is a mixture of
control and data dependence. Our interference dependence
is most similar to his communication dependence, where de-
pendence is introduced through explicit interprocess com-
munication. Although our tPDG is not mappable to his PDN
and vice versa, both graphs are similar in the number of
nodes and edges.

Cheng defines slices simply based on graph reachability.
The resulting slices are not precise, as they do not take into
account that dependences between parallel executed state-
ments are not transitive. Therefore, the integration of his
technique of slicing threaded programs into slicing threaded
object oriented programs [20] has the same problem.

6 Conclusions and further work

We have presented extended versions of the control flow and
program dependence graphs for threaded programs, called
the threaded control flow graph and threaded program de-
pendence graph. The tCFG is similar to other extensions of
the CFG for threaded programs. The tPDG is new, as it cap-
tures the interference in threaded programs. With the tPDG
we are able to calculate better static slices of threaded pro-
grams than previous approaches.

We believe that, as more and more programs are using
threads, static slicing of them will become more important.
We plan to extend our method to handle

procedures. The presented algorithm works only intrapro-
cedural. However, known techniques [7] for interpro-
cedural slicing can be integrated straightforward.

synchronization. For simplicity, we have assumed implicit
synchronization of the analyzed programs. Our plan is
to integrate explicit synchronization similar to [2].

different threads. The cobegin/coend model is not al-
ways sufficient to model different types of parallelism.
We are planning to extend our technique for different
kind of threads like fork/join.

object orientation. The problem of slicing object oriented
programs is orthogonal to slicing threaded programs,
the integration of slicing object oriented programs like
[11] should be possible, following similar techniques
as [20].

Our next goal is the integration of this technique in our
slicing tool [6, 16] for sequential standard C programs. As
this tool is able to generate and simplify path conditions
based on program slices, we will develop new constraints
stemming from threaded program for these path conditions
to obtain an even better slice accuracy.

Acknowledgments

The author wishes to thank Gregor Snelting, Torsten Rob-
schink and especially Bernd Fischer for their helpful sup-
port. This work was funded by the Bundesministerium für
Bildung und Forschung, FKZ 01 IS 513 C9.

References

[1] J. Cheng. Slicing concurrent programs. In Automated
and Algorithmic Debugging, 1st Intl. Workshop, LNCS
749, 1993.

[2] J. Cheng. Dependence analysis of parallel and distrib-
uted programs and its applications. In Intl. Conf. on Ad-
vances in Parallel and Distributed Computing, 1997.

[3] J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Tech-
niques for debugging parallel programs with flowback
analysis. ACM Transactions on Programming Lan-
guages and Systems, 13(4), 1991.

[4] E. Duesterwald, R. Gupta, and M. L. Soffa. Distrib-
uted slicing and partial re-execution for distributed pro-
grams. In 5th Workshop on Languages and Compilers
for Parallel Computing, LNCS 757, 1992.

[5] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimiza-
tion. ACM Transactions on Programming Languages
and Systems, 9(3), 1987.

[6] M. Goldapp, U. Grottker, and G. Snelting. Validierung
softwaregesteuerter Meßsysteme durch Program Slic-
ing und Constraint Solving. In Statusseminar des
BMBF Softwaretechnologie, Berlin, 1996.

[7] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12(1), 1990.

[8] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for
free: Efficient and optimal bitvector analyses for par-
allel programms. ACM Transactions on Programming
Languages and Systems, 18(3), 1996.

[9] B. Korel and R. Ferguson. Dynamic slicing of distrib-
uted programs. Applied Mathematics and Computer
Science, 2, 1992.

[10] B. Korel and J. Laski. Dynamic program slicing. In-
formation Processing Letters, 29(3), 1988.

[11] L. D. Larsen and M. J. Harrold. Slicing object-oriented
software. In Proc. 18th Intl. Conf. on Software Engi-
neering, 1996.

[12] C. E. McDowell and D. P. Helmbold. Debugging con-
current programs. ACM Computing Surveys, 21(4),
1989.

[13] B. P. Miller and J. D. Choi. A mechanism for efficient
debugging of parallel systems. InProc. ACM SIGPLAN
Conf. on Programming Language Design and Imple-
mentation, 1988.

[14] K. J. Ottenstein and L. M. Ottenstein. The program
dependence graph in a software development environ-
ment. In Proc. ACM SIGSOFT/SIGPLAN Software En-
gineering Symposium on Practical Software Develop-
ment Environments, 1984.

[15] V. Sarkar and B. Simons. Parallel program graphs and
their classification. In Proc. 6th Workshop on Lan-
guages and Compilers for Parallel Computing, LNCS
768, 1993.

[16] G. Snelting. Combining slicing and constraint solv-
ing for validation of measurement software. In Static
Analysis; Third Intl. Symposium, LNCS 1145, 1996.

[17] F. Tip. A survey of program slicing techniques. Journal
of Programming Languages, 3(3), 1995.

[18] N. Uchihira, S. Honiden, and T. Seki. Hypersequen-
tial programming. IEEE Concurrency, July-September
1997.

[19] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4), 1984.

[20] J. Zhao, J. Cheng, and K. Ushijima. Static slicing of
concurrent object-oriented programs. In Proc. 20th
IEEE Annual Intl. Computer Software and Applica-
tions Conf., 1996.

