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Static Task-Scheduling Algorithms for
Battery-Powered DVS Systems

Princey Chowdhury and Chaitali Chakrabarti

Abstract—Battery lifetime enhancement is a critical design pa-
rameter for mobile computing devices. Maximizing the battery life-
time is a particularly difficult problem due to the nonlinearity of
the battery behavior and its dependence on the characteristics of
the discharge profile. In this paper, we address the problem of task
scheduling with voltage scaling in a battery-powered single and
multiprocessor system such that the residual charge or the bat-
tery voltage (the parameters for evaluating battery performance)
is maximized. We propose an efficient heuristic algorithm using
a charge-based cost function derived from the analytical battery
model. Our algorithm first creates a task sequence that ensures
battery survival, and then distributes the available delay slack so
that the cost function is maximized. The effectiveness of the algo-
rithm has been verified using DUALFOIL, a low-level Li-ion bat-
tery simulator. The algorithm has been validated on synthetic ex-
amples created from applications running on Compaq’s handheld
computing research platform, ITSY.

Index Terms—Battery optimizations, DVS processors, low
power, scheduling, voltage scaling.

I. INTRODUCTION

BATTERY-OPERATED portable devices are widely used
in mobile computing and wireless communication appli-

cations. Maximizing the battery lifetime is the most important
design metric in such systems. This problem is quite challenging
due to the nonlinear behavior of the battery. Since the amount
of energy delivered by the battery depends on the discharge cur-
rent profile [1], the battery life can be extended by controlling
the discharge current level and shape. In this paper, we propose
an approach based on modifying the discharge current profile
during task scheduling of a dynamic voltage scalable (DVS)
processor such that the residual charge or the battery voltage
(the parameters for evaluating battery performance) at the end
of a task profile is maximized.

Task scheduling for DVS processors has been studied exten-
sively in recent years [2]–[6]. The algorithms can be broadly
classified into static (or off-line) scheduling algorithms where
the task parameters (arrival times, deadline times, execution
times) are known a priori, and dynamic (or on-line) scheduling
algorithms where all the task parameters are not known until
execution time. Both classes of algorithms assume that the pro-
cessor is connected to an infinite source of energy. Strategies
that have been developed to reduce the energy consumption of
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such models do not work well for limited energy sources like
batteries. Furthermore, batteries exhibit nonlinear discharge be-
havior that need to be exploited.

In recent years, there has been significant amount of work
done in studying battery characteristics [1], [7]–[12] and
using these characteristics to shape the discharge profile [9],
[13]–[15]. The method proposed in [13] combines Peukert’s
model [16] with those in [17] to design a schedule where the
load profile has a reduced variance. The method in [14] is
based on the use of the analytical model in [12] and uses a
combination of recovery insertion and voltage scaling.

In this paper we address the problem of static task scheduling
for battery-operated systems which is also based on shaping
the discharge profile. We propose an efficient heuristic method
using a charge-based cost function derived from the accurate
analytical battery model in [12]. First, our algorithm creates a
task sequence that ensures battery survival1, and second, it dis-
tributes the available delay slack so that the residual charge is
maximized. This is an extension of our earlier work presented
in [18]. The proposed sheduling algorithm can be used in appli-
cations where predictability is of utmost importance (example,
aircraft controller, automotive controller, robot arm controller,
etc.) or in real-time scheduling where static scheduling is a first
step that is done during compile time (example, scheduling in
sensor cluster-heads, PDAs, cellphones, etc.). The main contri-
butions of this work are:

• developing several key properties of the cost function with
respect to voltage scaling in task scheduling;

• validating these properties using DUALFOIL [19], a low-
level electrochemical simulator;

• utilizing these properties to develop efficient heuristics to
guide scheduling of tasks with deadlines and dependen-
cies;

• application of the task-scheduling algorithm to aperiodic
and periodic task sets in single-processor as well as mul-
tiprocessor system configuration;

• demonstrating the superiority of this method by run-
ning simulations on synthetic examples created with
tasks having time-varying profiles obtained from ITSY,
Compaq’s handheld computing research platform.

The rest of this paper is organized as follows. The paper
begins with two motivational examples in Section II. Section III
describes the battery models and other preliminaries like task
definition, voltage scaling and the impact of voltage scaling
on the battery current. The basis for the proposed heuris-
tics is explained in Section IV. The proposed battery-aware

1If the battery does not survive the discharge profile, then some tasks are not
completed.
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Fig. 1. Example 1: Same energy but different battery performance.

Fig. 2. Example 2: Nonincreasing and nondecreasing load sequences for
the same task set. (a) Initial task specification. (b) Nonincreasing profile. (c)
Nondecreasing profile.

task-scheduling technique for aperiodic and periodic tasks
running on single-processor systems is described in Section V.
Task scheduling for multiprocessor systems is described in
Section VI. Experimental results are listed in Section VII. The
paper is concluded in Section VIII.

II. MOTIVATION

To motivate the need for battery-aware system design, we
present two examples. The first example (see Fig. 1) describes a
scenario where four algorithms (Cases I–IV) have equal energy
consumption but different discharge current
profiles. Simulations with DUALFOIL show voltage drops of
30.9% (for Case I), 26.9% (for Case II), 22.7% (for Case III),
and 18.7% (for Case IV). If the current profile is repeated, then
the number of iterations that each profile supports before the
battery goes dead is 11 (for Case I), 14 (for Case II), 16 (for
Case III) and 17 (for Case IV). Thus Case IV which corresponds
to the lowest load current has the lowest voltage drop and sup-
ports the largest number of iterations, implying that it has the
best battery performance. This simple example shows that bat-
tery performance is dependent on the discharge characteristics
of an application rather than its energy consumption.

The second example (refer Fig. 2) demonstrates the impor-
tance of task sequencing on the battery performance. Assume
that there are four tasks with arrival time described in

TABLE I
PERFORMANCE OF THE NONINCREASING AND NONDECREASING PROFILE

USING THE DUALFOIL BATTERY

Fig. 3. System-level configuration.

Fig. 2(a). For each task, the duration, current and deadline is
given. Fig. 2(b) and (c) show a nonincreasing profile and a non-
decreasing profile for the same task set. From Table I we see that
the nonincreasing profile does significantly better—a 13.8% im-
provement in the residual charge and a 9.1% improvement in the
battery voltage for a task set duration of only 30 min. Thus the
task-scheduling algorithm should generate load profiles that en-
hance battery performance.

III. BACKGROUND

A. System Configuration

The system configuration for the battery-operated single-pro-
cessor device under consideration is described in Fig. 3. The
system consists of one DVS (dynamic voltage scalable) pro-
cessor driven by a single battery. The battery is used to power
the processor through a dc–dc converter which is essential for
voltage shifting and stabilization. The dc–dc converter has an
efficiency which is typically in the range [0.8, 0.9] [7]. The ef-
ficiency , where and
are the battery voltage and current, and and are the
processor voltage and current.

The DVS processor can change the voltage and speed of the
processor according to system requirements. Examples include
StrongARM, Intel’s X-scale processor, and Transmeta’s Crusoe
processor. These processors utilize the available slack by down-
scaling the voltage resulting in significant reduction in energy
consumption. Note that in this paper, we assume that the change
in voltage is always associated with a change in frequency. For
a long channel CMOS gate with threshold voltage , supply
voltage , and velocity saturation index , the delay is
proportional to . Let denote the initial task
duration, and let denote the new task duration after scaling
the task voltage down by the factor of (i.e., the new task
voltage is ). Using the CMOS gate voltage–delay
relationship, we obtain

(1)

When devices are in saturation, voltage scaling by a
factor of causes the processor current to scale by

. For V and ,
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this can be approximated to . This approximation has been
validated by current–voltage values provided by StrongARM.
Assume that the dc–dc conversion efficiency and the battery
voltage are averaged constants for the duration of a task
execution. Then, the battery current scales by . For
short channel devices, scaling is projected to be between

and . Thus for both short and long channel devices,
scaling results in a large drop in the battery load and leads to
significant maximization of the residual charge at the end of a
task profile as will be apparent in the subsequent sections.

B. Battery Models

In this work, we have considered two battery models: 1) a
high-level analytical charge-based model [12] and 2) a low-level
electrochemical simulator, DUALFOIL [19]. While [12] is sen-
sitive to charge, [19] is sensitive to voltage. Lack of availability
of a single model that handles both charge and voltage prompted
us to consider both these models in our experiments.

1) High-Level Analytical Model: The analytical charge
based model is based on the charge transport of the electrolyte
and is very accurate for time-varying loads as compared to
the Peukert’s model [16]. It gives an analytical relationship
between the current load, discharge time and the corresponding
charge slack at that discharge time. Under a time-varying
discharge , the battery model is of the following form [12]:

(2)

where is the lifetime and and are battery-specific param-
eters. For a constant discharge current , (2) reduces
to:

(3)

Note that is a constant that represents the the total capacity
of the battery and is expressed in charge units (coulombs).
is related to the diffusion rate within the battery and captures
its nonlinear discharge profile. A small value of implies that
the load on the battery has to be reduced (possibly to zero) for
the battery to recover. A large value of means a much better
battery; if is sufficiently large, the second term in (3) becomes
negligible, and we obtain the model of an ideal power source.
The magnitude of the series terms in (3) diminish very rapidly
as grows. Experiments indicate that employing only the first
10 terms is sufficient for accurate lifetime predictions [12].

2) DUALFOIL: For validation purposes, all our exper-
iments have been verified by a low-level battery simulator
DUALFOIL. DUALFOIL numerically simulates a set of partial
differential equations governing the behavior of a rechargeable
Li-ion cell [19]. For any input task profile, DUALFOIL gives
very accurate output in terms of battery voltage as a function
of the discharge time.

3) Battery Configurations Used: Two batteries have been
considered throughout this paper.

• B1: This is a 2.2 Whr Li-ion battery used in Compaq’s
ITSY pocket computer. It has an open circuit voltage of
4.1 V and nominal discharge rate of 640 mA. and

values for B1 have been estimated as 35 220 mA-min and
0.637 min , respectively [20].

• B2: This is the Li-ion battery used in DUALFOIL. It has
an open circuit voltage V and the cutoff voltage

V. The parameters and for B2 have been
estimated to be 40 375 mA-min and 0.273 min , re-
spectively [20].

The low value of for the battery B2 suggests that B2 is
highly nonlinear compared to B1. Note that while analytical
(charge-based) models are available for both B1 and B2, DU-
ALFOIL is only applicable to B2. Thus in evaluating the per-
formance of the algorithms, we consider the residual charge
for both B1 and B2, and the battery voltage or drop from the
open-circuit voltage with respect to the full battery swing, de-
fined as , for B2. Higher the residual
charge, better is the battery performance. In the same note, lower
the voltage drop, better is the battery performance. Since the
voltage range of B2 over its complete battery life is 1.1 V

, any improvement due to application of battery-aware
task scheduling for a few minutes will be of the order of fraction
of a volt.

C. Related Work

Battery-driven system design has been an area of interest in
recent years. The work can be categorized into: 1) battery mod-
eling and metrics to capture its nonlinear behavior [1]; 2) power
management [7], [21], [22]; and 3) task scheduling of battery-
operated devices [13]–[15].

There are two types of battery models: low-level and high-
level. The high-level models include a PSPICE equivalent cir-
cuit [23], a discrete time VHDL model [7] and a stochastic
model [9]. The model in [17] is based on Peukert’s law and in-
troduces the efficiency factor to account for charge nonlinearity.
The stochastic model in [9] is represented as a Markov chain of
battery states with forward transitions corresponding to condi-
tions of discharge and backward transitions corresponding to re-
covery. The analytical model reported in [24] considers special
cases of discharge process (diffusion limited, reaction-limited,
and ohmically limited). The charge-based analytical model in
[12] gives a very accurate estimate of the battery lifetime given
the conditions of discharge.

The nonideal properties of a battery have resulted in a dif-
ferent set of metrics. Martin and Sewiorek [1] showed that peak
power predicts the state of the battery better than the average
power. Thus, decreasing a mobile computer’s active power will
increase the battery life more than decreasing its idle power,
even if both reduce the average power by the same amount. Pe-
dram and Wu [17] use Peukert’s model to show that the battery
efficiency decreases as the average discharge current from the
battery increases. While the model is accurate for only constant
discharge currents, the conclusion that more work can be ex-
tracted out of the battery if the load current is smaller, is still
valid.

Benini et al. studied battery-aware dynamic power man-
agement policies in [7] and [21]. The policies were based
on time-out open loop (battery voltage independent) and
threshold-based closed loop (battery voltage dependent). Park
and Srivastava in [25] introduced novel static and dynamic
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battery state aware aproaches to improve battery utilization.
The key distinction of this work is that is that they look at
the total amount of work done (or service) as the main metric
instead of just the lifetime. The stochastic battery model of
[9] has been applied to bursty network traffic with the aim of
reshaping the traffic to enhance battery performance [8]. The
stochastic model has also been used for battery life estimation
during hardware/software embedded system exploration [10].

There are very few approaches for battery-aware task sched-
uling. Luo and Jha [13] considered static scheduling of tasks
with deadline constraints in a multiprocessor environment. The
method is based on a combination of Peukert’s model with
those in [17] to design a schedule where the load profile has a
reduced variance and average power consumption. Rakhmatov
et al. considered aperiodic task scheduling for single-processor
systems based on the analytical model of [12] in [14] and [15].
Our work is an extension of [14] and [15]; it is different in that
both aperiodic and periodic tasks are considered, the computing
platform could be single or multiprocessor, voltage scaling is
used exclusively (instead of recovery insertion followed by
voltage scaling) and time-varying loads are considered.

IV. BASIS FOR TASK-SCHEDULING HEURISTICS

A. Task Definition

A given task is associated with four parameters: the cur-
rent , the duration , the start time and the deadline .
The current can vary across the duration of a task as in most
real time applications (e.g., MPEG). In that case, the current
is approximated by a staircase function with current being
constant for duration for . If is the number of
steps to represent task , then . For the sake
of simplicity, in many of the examples, the current loads have
been assumed to be constant for the duration of the task. How-
ever, in the experiments described in Section VII, time-varying
loads have been considered.

B. Cost Function

Assume that the discharge profile consists of scheduled
tasks. The profile length is , which is the
finish time of the last task in the sequence. Let

(4)

where

Intuitively, is the charge that the battery has lost in time . The
profile quality metric defined as is the cost function to
be maximized. Intuitively, is the residual charge (the amount
of charge less than the capacity ). Note that a negative at the
end of a profile indicates battery failure.

Fig. 4. Example 3: Recovery insertion versus voltage scaling.

C. Cost Function Properties

There are several important properties of the cost function
that have been presented in [18], [20] and analytically derived
in [20]. These properties are summarized below and illustrated
using examples.

Property 1: For a fixed voltage assignment (only task start
times can be changed), sequencing tasks in the nonincreasing
order of their currents is optimal when the task loads are con-
stant during the execution of the task.

The effectiveness of Property 1 has been illustrated in Ex-
ample 2 in Section II. Sequencing tasks in nonincreasing order
resulted in a 23.6% drop in the battery voltage compared to the
32.7% drop for the nondecreasing order.

For a load current that varies during the execution of a task,
Property 1 has to be applied with caution. There are several pa-
rameters that can affect the conditions of discharge. These in-
clude average load current , load current times duration

, variation of the load current with respect to , peak
current , and peak current times its duration. Extensive
experimentation revealed the following: 1) when are equal,
the load with higher has higher priority; 2) when
are equal, the load with higher has higher priority; 3) when
both and are different, the load with higher has
higher priority; 4) when are same, the load with higher
has higher priority; 5) when are same, the load with higher

has higher priority; 6) when both and are dif-
ferent, the load with higher has higher priority; and 7) when
both and the corresponding durations are different, the
load with higher peak current times duration has higher pri-
ority. These priorities were used in our heuristics when handling
time-varying loads.

Property 2: If a battery fails during some task , it is always
cheaper to repair by downscaling its voltage than by inserting
an off-line period before .

Example 3 illustrates the fact that voltage downscaling always
outperforms rest period insertion. Fig. 4 describes a 2-task pro-
file once when a recovery period of is inserted between the two
tasks, and once when time is used to scale the voltage of the
second task. Here mA, mA, min,

min and recovery min. The residual charge
for B1 and B2 and the voltage at the end of the profile for B2
are listed in Table II. It is clearly seen that voltage scaling does
better than recovery insertion. Thus, anytime there is a battery
failure, it is always better to downscale the voltage (and conse-
quently, the current) of the failing load rather than insert a re-
covery period.
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TABLE II
PERFORMANCE OF RECOVERY INSERTION AS OPPOSED TO VOLTAGE SCALING

Fig. 5. Example 4: Effect of slack utilization on later slack.

TABLE III
EFFECT OF SLACK UTILIZATION ON LATER TASK

Property 3: Given a pair of two identical tasks in the profile
and a delay slack to be utilized by voltage downscaling, it is
better to use the slack on the later task than on earlier task.

Example 4: Consider three identical tasks where each task has
a load current of 150 mA, execution delay of 2 min and the slack
of 1.9 min (see Fig. 5). This slack can be used either on Task 1 or
Task 2 or on Task 3 as described by Case I, Case II, and Case III
in Fig. 5. Table III gives the residual charge and voltage values
for each case. Note that for both the battery configurations, Case
III does best. This indicates that it is better to schedule tasks as
early as possible and push all the recovery to the end.

Property 4: In a multiprocessor system, the assignment of
loads among the processors should be such that the resulting
load profile is the steepest.

In such a system, the charge that the battery has to deliver at
any time instant is proportional to the sum of the current loads
of all the active processors at that instant. Experiments show
that the steeper the current slope ( versus time), the better
the battery performance. This is illustrated with the help of the
following example.

Example 5: Consider a two processor system that has to exe-
cute six tasks with current values 200, 175, 150, 125, 100, and
75 mA each for a period of 20 min. Possible nonincreasing as-
signments are as follows.

Assignment 1: .
Assignment 2: .
Assignment 3: .
Assignment 4: .

These assignments are graphically demonstrated in Fig. 6.
Distributing the load such that Processor 1 is assigned tasks with
loads 200, 150, and 100 (mA) and Processor 2 is assigned with
loads 175, 125, 75 (mA) result in the largest residual battery
charge as seen in Fig. 6. The results for assignments 1–4
are listed in Table IV. It can be observed that the load with the

Fig. 6. Example 5: Effect of current slope on the quality factor.

TABLE IV
RESULTS FOR THE MULTIPROCESSOR LOAD ASSIGNMENTS

steepest profile (Assignment 1) gives the best performance in
terms of charge as well as voltage.

V. TASK SCHEDULING FOR A SINGLE PROCESSOR SYSTEM

A. Problem Definition

Given the battery parameters and , the task dependen-
cies and the task specifications (arrival, execution and deadline
times), and the set of supported discrete voltages, schedule the
tasks such that the deadline and precedence constraints are met
and the profile quality metric is maximized. We consider both
aperiodic as well as periodic task sets.

1) Proposed Algorithm: The proposed scheduling algo-
rithm operates in two phases.

Phase I: Obtain feasible schedule by: 1) using the ear-
liest deadline first (EDF) algorithm; 2) trying to generate a
nonincreasing order of loads; and 3) ensuring that there is
no failure during the battery discharge. In case of failure,
downscale the voltage of a failing task by the minimum
amount.
Phase II: Utilize the available slack by voltage down
scaling as much as possible starting from the end of the
profile.

The top-level view of the algorithm is shown in Fig. 7. We
first describe the algorithm for aperiodic tasks and then point
out the extensions for periodic tasks.

Phase I: Generating a Feasible Schedule
At the start of this phase, all the task voltages are assigned

to (the highest voltage value). First, the tasks are arranged
according to the earliest deadline first (EDF) policy. Then, a
greedy approach is used to reschedule them so that a nonin-
creasing order of task currents is obtained, if possible. This step
is justified by Property 1. After the task order is finalized, the
algorithm checks whether , i.e., the battery survives the
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Fig. 7. Top-level view of the algorithm for aperiodic tasks for a
single-processor system.

resulting discharge profile. If a failure is detected for some task
(i.e., is negative), it calls the failure recovery procedure.
Failure Recovery: The failure recovery procedure reshapes

the profile so that the battery survives all the tasks. Task or-
dering is not changed; however, voltages for some tasks are
scaled down. In each call, the procedure repairs the earliest
failing task as follows. It downscales the task voltage by the
minimum amount such that the following two conditions are sat-
isfied: 1) the task no longer fails, and 2) the deadlines are met
(voltage downscaling increases the task duration). If condition 2
is violated, the program control shifts to the previous task in the
sequence, and the same procedure is repeated until condition 1
is satisfied for the failing task in question. If the program con-
trol moves all the way to the first task without successful repair
of the battery failure, then the given the task set is infeasible in
terms of the battery charge. The rationale behind downscaling
the voltage as little as possible is that it leads to a delay slack
(available at the end of this step) being as much as possible.
Failure recovery process is repeated until all the failing tasks are
repaired. Unlike [14] we do not consider rest period insertion
as an alternative to the voltage downscaling, since according to
Property 2, the latter always outperforms the former.

Phase II: Slack Distribution
This phase is based on Property 3, which suggests that the

profile cost is reduced when the slack is used as much as possible
by late tasks. The tasks are considered one by one, starting from
the last task in the sequence. The last task is scaled to the lowest
possible voltage subject to deadline constraints. The process is
repeated until there is no slack available or none of the tasks can
be assigned to a lower voltage.

Fig. 8. Example 6: Load profiles after each step of the proposed aperiodic
task algorithm. (a) Initial task specifications. (b) Load profile after greedy
sequencing. (c) Load profile after failure recovery. (d) Load profile after slack
utilization.

Energy overhead: The energy overhead due to voltage
scaling if the charge at the output capacitance of the dc–dc
converter is pumped back into the input capacitance is given
by where is the highest
operating voltage, is the voltage of the task after scaling,

is the efficiency of the dc–dc converter and is the
capacitance of the bypass capacitor at the output node of the
converter. values typically range from 0.8 to 0.9 and
values typically range from 10 to 200 F. Note that if the
processor sinks the charge, then the overhead is a lot larger and
is given by .

2) Illustrative Example (Independent Task Set): To illustrate
execution of the algorithm in its entirety, we use Example 6
shown in Fig. 8. Assume that the operating voltages are selected
from the set , consistent with the
voltage range of the StrongArm SA1100 DVS processor. The
time overhead due to voltage scaling is not considered since it
is usually a few microseconds [26]. The task loads in Example 6
are chosen (unusually) high to demonstrate the failure recovery
mechanism. We assume that all the tasks are ready at time
for this example. Fig. 8(b) displays the load profile after the ini-
tial sequencing. The battery fails during task III, and the quality
factor is negative. Fig. 8(c) displays the load profile after re-
pairing task III: its voltage is scaled from 3.3 V to 3.0 V. The
battery no longer fails, and all the tasks can be completed. The
length of this profile is 38.3 min; however, the last task IV is not
due until min. After utilization of the available slack,
the profile length increases to 44.92 min [see Fig. 8(d)], and the
quality factor increases from 336 mA-min to 4329 mA-min
(i.e., more than 10X improvement). The energy overhead if the
dc–dc converter sinks the charge is J for
and F .
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Fig. 9. Example 7: Different approaches to slack utilization for aperiodic
tasks. (a) Initial task specifications. (b) Load profile after leveling out
voltages. (c) Load profile after flattening current load. (d) Load profile using
battery-aware algorithm. (e) Load profile using our algorithm.

The algorithm proposed in [14] does not fare well for this
example. The battery repair using recovery insertion is unsuc-
cessful for this task set as the amount of recovery period needed
is greater than 45 min which is the deadline for the last task in
the sequence.

3) Comparative Example: Fig. 9 describes Example 7 illus-
trating the advantage of the proposed slack utilization approach.
The initial task specification is given in Fig. 9(a). Our algorithm
generates the final profile as shown in Fig. 9(d). For compar-
ison purposes, three alternative profiles are presented. The first
alternative, shown in Fig. 9(b), is generated with the goal of lev-
elling out the task voltages (i.e., all the tasks are assigned to the
same voltage). This is a strategy used for minimizing energy
consumption of a system powered by an ideal power source [4].
The second alternative, shown in Fig. 9(c), is generated with
the goal of minimizing the peak current of the profile (i.e., the
profile is flattened) [13]. The third alternative, referred to as bat-
tery-aware, first assigns tasks to the lowest available voltage and
then upscales the voltage starting from the first task (so that the
profile is a decreasing one) to meet the timing constraints [14].

Table V describes the results for this example using the ana-
lytical model as well as DUALFOIL. The proposed approach is
superior both in terms of residual charge as well as voltage. For
instance the drop in voltage is only 41.8% compared to 50.9%
for the level voltage method, 59.1% for the level current method
and 46.4% for the battery aware approach. If the dc–dc converter

TABLE V
PERFORMANCE COMPARISON OF THE VARIOUS SLACK UTILIZATION SCHEMES

FOR APERIODIC TASKS

sinks the charge and – F, the en-
ergy overhead for the level voltage approach is [68–1360.8] J,
for the level current approach is [49.41–988.3] J, for the bat-
tery-aware approach is [41.76–835.2] J, and for our approach
is [83.52–1764] J.

B. Scheduling for Periodic Tasks

A feasible schedule for periodic tasks exists if and only if
there exists a feasible schedule for its hyperperiod [27], where
the hyperperiod is defined as the lowest common multiple of the
periods of all the task graphs in the task set. The scheduling algo-
rithm for periodic tasks is based on application of battery-aware
scheduling techniques (developed for aperiodic tasks) within the
hyperperiod.

Phase I: Generating a feasible schedule
A best nonincreasing schedule within a hyperperiod that

meets all timing constraints is created. Failure detection and
recovery is done at this stage in the same way as is done for
the hard aperiodic tasks. However, the failing tasks need to
identified and repaired within a hyperperiod.

Phase II: Slack distribution
The available slack is distributed starting from the last task in

the hyperperiod as described in Section V-A.1.
1) Comparative Example: Fig. 10 describes an example il-

lustrating the advantage of our approach for a periodic task set.
There are three tasks with periods 2, 4 and 6 min, respectively;
the hyperperiod is 12 min (L.C.M of 2, 4 and 6). The initial task
specification is described in Fig. 10(a). The slack utilization al-
gorithm generates the final profile as shown in Fig. 10(b). For
comparison purposes, an alternative profile generated with the
intention of levelling out the current and reducing the peak cur-
rent [13] is shown in Fig. 10(c). For each of the two cases, the
corresponding quality factor using the analytical model and
the battery voltage at the end of the discharge using DUALFOIL
are displayed in Table VI. One can see that our approach is su-
perior in terms of charge as well as voltage.

VI. TASK SCHEDULING FOR A MULTIPROCESSOR SYSTEM

A. Multiprocessor System Configuration

The system configuration for the DVS based multiprocessor
system under consideration is described in Fig. 11. A single bat-
tery drives multiple processors; each processor has a dedicated
dc–dc converter connected to it. The terms in Fig. 11
represent the battery voltage and battery current. and

represent the operating voltage and current of processor
(i); refers to the current drawn from the battery by pro-
cessor . Therefore, .
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Fig. 10. Example 9: Different approaches to slack utilization for periodic tasks. (a) Initial task specification. (b) Task profile using the proposed algorithm. (c) Task
profile using the levelling current algorithm.

TABLE VI
PERFORMANCE COMPARISON OF THE VARIOUS SLACK UTILIZATION

SCHEMES FOR PERIODIC TASKS

Fig. 11. System-level configuration for a multiprocessor system.

B. Problem Definition

Given the battery parameters and , the task graph de-
scribing the task profile and task specifications (arrival times,
deadlines and durations), schedule the tasks among the pro-
cesses such that all the deadline and precedence constraints are
met and the profile quality metric at the end of the task set is
maximized.

C. Proposed Approach

The scheduling algorithm for the multiprocessor system is an
extension of the algorithm for the single-processor system. A
list-based scheduling technique with a battery-aware priority
function is used to assign the tasks among the processes. The
top-level view of the algorithm is described in Fig. 12.

Fig. 12. Top-level view of the multiprocessor task-scheduling algorithm.

1) Phase I: Permissible Schedule Assuming No Battery
Failure: At the start of this phase the task voltages are as-
signed to the highest voltage value. The proposed scheduling
technique is list based, where the ready nodes are assigned to
the processing elements according to a battery-aware priority
function. The priority function includes deadline (first priority)
and nonincreasing order of currents (second priority). Since
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Fig. 13. Example 10: Task scheduling in a multiprocessor system using our approach. (a) Initial task specifications. (b) Input task graph. (c) Processor assignment
after Phase one. (d) Processor assignment after Phase two.

is the sum of the loads assigned to each processor, and
since each processor also has the current loads arranged in
nonincreasing order, this assignment results in the slope of the
battery load current being the sharpest, thus conforming to bat-
tery Property 4. After all the tasks have been assigned, if there
is slack available in the task set, the slack utilization procedure
is called to enhance the value. Note that in the processor
assignment, inter-processor communication is avoided as much
as possible. This might lead to some processors being active
most of the time and others being relatively idle.

2) Phase II: Slack Utilization: This phase is based on Prop-
erty 3 which suggests that the greatest improvement in the pro-
file cost is obtained when the slack is used as much as possible
by the later tasks. The tasks are considered one by one starting
with the tasks with the latest finish time and scaled to the lowest
possible voltage subject to deadline constraints. The process is
repeated until there is no slack available or none of the tasks
can be assigned to a lower voltage. This is essentially the same
technique that is used for slack utilization in a single-processor
system and described in Section V-A2.

D. Illustrative Example

Example 9 in Fig. 13 illustrates the algorithm in its entirety.
Fig. 13(a) describes the initial task specification. The task graph
in Fig. 13(b) defines the precedence relation amongst the tasks.
Fig. 13(c) is the feasible schedule generated after phase one of
the algorithm. Since the last task completes at and its
deadline is the slack utilization algorithm can be applied.

TABLE VII
PERFORMANCE OF THE ALGORITHM FOR THE MULTIPROCESSOR SYSTEM

Fig. 13(d) shows the new schedule after slack utilization. E1 and
E2 in 13(c) and (d) refer to the inter-processor communication
delay and cost which are assumed to be 0.01 min and 1 mA, re-
spectively. The value for Fig. 13(c) is 26 508 mA-min and is
28 462 mA-min for Fig. 13(d) after slack adjustment. For com-
parison purposes, the task set was scheduled using the popular
EDF, level current [13] and the minimum energy technique pro-
posed in [28]. The results have been listed in Table VII. All the
competing approaches give lesser residual charges and higher
drop in battery voltages compared to our approach.

VII. EXPERIMENTAL RESULTS

This section shows the performance of our algorithm on syn-
thetic examples created with tasks whose profiles were gener-
ated by sampling an application running on ITSY every 30 s.
Since all these applications are time-varying, each task can be
considered to be composed of sub-tasks, where no local sched-
uling within the sub-tasks can be carried out. Global sched-
uling amongst these tasks can however be carried out subject to
timing and dependency constraints. The load profiles for these
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Fig. 14. Current profiles for the real-time applications running on ITSY.

Fig. 15. Synthetic aperiodic task graphs created with applications described in
Fig. 14. Node [A, B]: A is the execution time and B is the deadline in minutes.

applications for a 3-min interval are shown in Fig. 14 [29]. The
time-varying profiles for tasks 3–7 look relatively flat due to the
current scale used. For maximum flexibility of scheduling, the
arrival times of the tasks in all the experiments are assumed to
be though this is not a limitation of the algorithm.

A. Evaluation Results for Aperiodic Tasks

Fig. 15 describes the dependency and timing constraints for
four synthetic test cases generated using tasks 1–7 of Fig. 14.
Case I corresponds to the case when the dependencies lead to a
strictly increasing profile, Case II corresponds to the case when
there are no dependencies and thus has the maximum flexibility
for scheduling and slack utilization, and Cases III and IV are
randomly generated, with Case III having fewer dependencies
than Case IV. The performance of our algorithm (in terms of

TABLE VIII
PERFORMANCE OF THE APERIODIC TASK SCHEDULING ALGORITHM FOR

THE SYNTHETIC EXAMPLES IN FIG. 15

Fig. 16. Synthetic periodic task graphs created with applications described in
Fig. 14. Node [A]: A is the execution time in minutes. (a) Case I. (b) Case II.

residual charge) is tested against both B1 and B2. The residual
charge for both the batteries (using the analytical model) and
the voltage at the end of the task profile for B2 have been listed
in Table VIII. It is clear that application of our heuristic (non-
increasing+slack utilization) gives the highest value of as
well as higher voltage. The drops in voltage due to the various
schemes is not an eyecatcher, since the battery was subjected
to a load for only approximately 20 min. However, even for
such a short duration, our algorithm did significantly better than
(say) level current; 14.5% reduction versus 18.1% reduction
for Case I, 11.6% reduction versus 14.9% reduction in Case II,
11.7% reduction versus 14.0% reduction in Case III, and 20.0%
versus 18.9% in Case IV. Longer task profiles result in a higher
drop in the battery voltage but the trend remains the same. For
instance, if Case I is repeated 3 times, then the voltage in B2 is
4.0 V (27.2% drop) for level current and 4.036 V (24.0% drop)
using our approach. Thus the difference in the drop in voltage
does not change much across iterations, %
for one iteration versus % for three iterations.

B. Evaluation Results for Periodic Tasks

Fig. 16 describes two synthetically generated periodic task
graphs: Case I consists of a set of dependent tasks that have the
same period and Case II consists of a set of independent tasks
with different periods. The node label corresponds to the task
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TABLE IX
PERFORMANCE OF THE ALGORITHM AT THE END OF ONE HYPERPERIOD FOR

THE PERIODIC TASK GRAPHS DESCRIBED IN FIG. 16

Fig. 17. Synthetic aperiodic task graphs created with applications described
in Fig. 14 for the multiprocessor system. Node [A, B]: A is the execution time
and B is the deadline in minutes.

TABLE X
PERFORMANCE OF THE ALGORITHMS FOR THE SYNTHETIC EXAMPLES IN FIG.

17 FOR THE MULTIPROCESSOR SYSTEM

described in Fig. 14. The results of the task set after one hy-
perperiod using our approach and the competing levelling cur-
rent approach are listed in Table IX. For Case I (II), the drop
in voltage using our approach is 9.0% (13.6%) as opposed to
14.5% (17.3%) when level current was used. Thus application
of our algorithm resulted in superior performance, in terms of
both residual charge and battery voltage.

C. Evaluation Results for Aperiodic Tasks on Multiprocessor
Systems

Fig. 17 describes the dependency and timing constraints for
three three synthetically generated test cases. Case I corresponds
to the case when there are no dependencies and thus has the
maximum flexibility for scheduling and slack utilization and
hence the steepest profile after processor allocation, and Cases
II and III are randomly generated. Interprocessor communica-
tion has been assumed to cause a delay of 0.01 min and a current
overhead of 0.1 mA. The performance of our algorithm is tested
against both B1 and B2 and listed in Table X. The performance

of our approach is compared against the competing level current
approach. It is clear that application of our heuristic does better
in terms of both residual charge and voltage. For example, in
Case I, the drop in voltage for our approach is only 10.9% as
opposed to a drop of 28.1% if level current was used.

VIII. CONCLUSION

In this paper we addressed the problem of aperiodic and pe-
riodic static task scheduling for battery-operated systems that
increase battery lifetime by maximizing the residual charge or
the battery voltage. The scheduling algorithm has been applied
to both single-processor as well as multiprocessor systems. The
heuristic algorithm is based on nonincreasing ordering of loads,
voltage scaling to distribute the available slack and scaling tasks
starting from the end of the profile. These properties have been
analytically proven to yield better battery performance. While
we could not provide a formal proof, the proposed algorithm
for the case when there are no task dependencies, is likely to
be optimal. Even for the case where there are task dependen-
cies, the algorithm consistently outperforms the competing en-
ergy-aware and battery-aware approaches.

Finally, the proposed static scheduling algorithm can be com-
bined with a greedy run-time algorithm to generate battery-
aware dynamic task-scheduling algorithms. This is the object
of our current research.
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