
STATIC TIMING ANALYSIS FOR SELF RESETTING CIRCUITS

Vinod Narayanan

Barbara A. Chappell �

Bruce M. Fleischer

IBM T.J Watson Research Center

Yorktown Heights, NY 10598

ABSTRACT

Static timing analysis techniques [1, 2] are widely
used to verify the timing behavior of large digital de-
signs [11] implemented predominantly in conventional
static CMOS. These techniques, however, are not suf-
�cient to completely verify the dynamic circuit families
now �nding favor in high-performance designs [11]. In
this paper, we describe an approach that extends static
timing analysis to a high-performance dynamic CMOS
logic family called self-resetting CMOS ( SRCMOS )
[3, 4]. Due to the circuit structure employed in SRC-
MOS, designs naturally decompose into a hierarchy of
gates and macros; timing analysis must address and
preferably exploit this hierarchy. At the gate level,
three categories of constraints on pulse timing arise
from considering the e�ects of pulse width, overlap,
and collisions. Timing analysis is performed at the
macro level, by a) performing timing tests at macro
boundaries and b) using macro-level delay models. We
de�ne various macro-level timing tests which ensure
that fundamental gate-level timing constraints are sat-
is�ed. We extend the standard delay model to handle
leading and trailing edges of signal pulses, across-chip
variations, tracking of signals, and slow and fast op-
erating conditions. We have developed an SRCMOS
timing analyzer based on this approach; the analyzer
was implemented as extensions to a standard static
timing analysis program, thus facilitating its integra-
tion into an existing design system and methodology.

1 INTRODUCTION

Static timing analysis is a method to verify the tim-
ing behavior of digital systems [1, 2]. In this approach,
the timing behavior of the system is characterized in a
pattern-independent fashion. Static timing analysis is
signi�cantly faster than traditional timing simulation,
and is hence used extensively for the timing veri�ca-
tion of large digital designs. Timing analysis tools for
static CMOS circuit families are well developed and
readily available commercially.

Dynamic CMOS circuits have inherent performance
advantages over static CMOS; hence they are be-
ing widely used today in high performance designs.
There are di�erent families of dynamic circuitry;

�Currently at Intel Corporation, Hillsboro, OR 97124

self-resetting CMOS (SRCMOS) is one such high-
performance circuit family [3, 4, 5].

Currently available timing analysis tools do not yet
deal e�ectively with dynamic circuit constraints. In
this paper, we present our extensions of static tim-
ing analysis concepts to verify SRCMOS circuits. Our
approach is implemented as an add-on module to an
existing static timing analysis tool, and �ts into exist-
ing design methodologies.

We begin the with a discussion of the basic opera-
tion and timing requirements of SRCMOS gates. We
discuss the SRCMOS macros, a natural intermediate
level in large designs. Our overall approach to timing
is based on modeling the behavior of macros, and ap-
plying static timing analysis techniques at the macro
boundaries. Many of the timing considerations we dis-
cuss for SRCMOS extend to other high-performance
dynamic CMOS families, such as domino CMOS.

2 SELF-RESETTING CMOS LOGIC

2.1 Static vs Dynamic Logic Circuit Fam-
ilies

To operate correctly, a static CMOS gate must pro-
duce an output at a valid level and which is logi-
cally correct for any combination of valid input levels.
The production of valid levels is usually trivial in sta-
tic CMOS (with some complication if ratioed logic is
used). As a result, logical veri�cation can be treated
as a purely topological problem, so that logic and tim-
ing are generally analyzed completely independently.
In static CMOS, timing a�ects logic only when data
is captured at latches. Therefore, all timing problems
can be solved by adding delay at latch inputs, either to
the data for fast paths or to the clock for slow paths.

While static circuits use push-pull con�gurations,
dynamic circuits employ uni-polar switching. That is,
logic inputs can cause transitions in only one direc-
tion. Uni-polar switching has several consequences.
First, all circuits must be reset from one cycle to the
next. Second, information is carried by the presence
or absence of pulses, not a steady-state voltage. Uni-
polar switching also allows performance in the active
direction to be traded o� against noise margin.

A dynamic CMOS gate will operate correctly only
if certain constraints on device size and signal timing,

ICCAD ’96
1063-6757/96 $5.00   1996 ΙΕΕΕ



as well as topology, are met. For example, input pulses
that are to act together must overlap by an amount
that depends on the gate's device sizes and topology;
they are not e�ective if they occur in the same cy-
cle but without enough overlap. Timing problems can
give rise to unexpected pulses or mask required pulses.
In other words, timing problems can lead to logic er-
rors which cannot be solved by adding delay to clock
or data inputs to latches.

2.2 SRCMOS Circuit Fundamentals

The basic operation of SRCMOS circuits can be
understood by referring to Figure 1 and Figure 2. A
non-inverting SRCMOS logic gate, shown in Figure 1,
is similar to a domino CMOS gate. The key di�erence
between SRCMOS and domino is only implicit in the
�gure; the gate is reset by locally-generated reset sig-
nals rather than a global clock. Less important, but
typical of SRCMOS, are the presence of a weak static

evaluate pfet for testability [5], and the absence of a
ground-interrupt device.

The gate has active-high pulsed inputs and out-
put. It's (non-inverting) logic function depends on
the topology of the nfet tree. If inputs go high in the
right combination and at the same time, a conducting
path is created from node (TL) at the top of tree to
ground. If this conducting path exists for some mini-
mum time, TL falls and the output rises to create the
leading edge of the output pulse. Once enough input
pulses end, the RL input can arrive (fall) to reset TL,
and once TL is reset high, the RH input can arrive
and terminate the output pulse.

         

RL

RH

StE

Output

Inputs nFET tree

TL

Figure 1: Basic SRCMOS Gate

In SRCMOS, there is a natural hierarchy level |
the macro | above the gate level. An SRCMOS
macro includes a number of SRCMOS gates and a
local reset generator, as shown in Figure 2. The
reset generator is triggered by one or more of the
pulsed signals in the macro. Triggering options include
simple OR-ing of dual-rail signals, quorum or major-
ity circuits, and interlocking of signals from multiple
paths. In any case, the reset generator must be trig-
gered whenever the macro is activated. A delay chain,
started by the trigger circuit, generates the required
reset signals. One of these signals resets the trigger,
so that the reset signals are self-terminating in normal

operation. The reset generator may also include static
inputs to force all reset signals on or o� for test modes
[5].

RL RH

I O

RL RH

I O

RL RH

I O

RL RH

I O

RL RH

I O

RL RH

I O

RL RH

I O

RL RH

I O

RL RH

I O

Trig Reset generator (delay chain)

Inputs

Test
modes

Outputs

Figure 2: SRCMOS Macro

In summary, the macro as a whole is triggered by
the leading edges of its input data pulses, some of the
gates evaluate in sequence (as in domino logic), some
of the outputs produce pulses, and the whole macro
returns to the standby state until new pulses arrive
the following cycle. Note that this process takes place
without direct dependence on a global clock signal.
In SRCMOS logic, a single edge of a single lightly-
loaded clock launches data from the registers; unlike
domino logic, the reset time is hidden in the cycle by
the internal operation of the logic macros.

There are other approaches to improving cycle time
and reducing clock loading through local reset gener-
ation. For example, in self-timed rings [10] reset sig-
nals are returned from later gates in a hand-shaking
scheme. In delayed-reset logic [8], [9], reset and logic
signals are generated together within the logic gates,
and both propagate forwards.

Our design methodology for custom SRCMOS
macros uses careful planning and tuning of logic and
reset delays within a macro. Of all the gate-level tim-
ing constraints one could write for a macro, nearly
all are satis�ed by this plan. The intra-macro timing
plan and a small set of external timing constraints are
developed together; macro veri�cation is performed
within the bounds of the external constraints. Sta-
tic timing analysis at the macro-to-macro level then
veri�es the consistency of the external constraints.

3 STATIC TIMING ANALYSIS FOR

SRCMOS

Typically, static timing analysis programs propa-
gate arrival times of each logic level independently,
from separate timing equations for rising and falling
transition. Also, timing checks (usually called tests)
are typically performed only at latch boundaries and
primary outputs. Most timing analyzers allow them
to be speci�ed at other points, but are not optimized



to check a large number of points throughout the cir-
cuit. The tests ensure that static CMOS signals settle
to the correct logic level before getting latched.

For SRCMOS, it is important to check the tim-
ing characteristics at many di�erent points of interest.
Usually, the tests are speci�ed at all macro bound-
aries. The tests cannot be speci�ed independently for
each transition; they are usually based on pulse-width
related constraints. Although the tests are speci�ed
at the macro boundaries, they are designed to sup-
port the fundamental gate-level constraints. These
gate level constraints ensure that a) pulses occur when
required, and b) no unexpected pulse occurs. The
gate-level timing constraints are discussed in detail in
Section 3.1. In standard domino logic [7], analysis of
constraints at the gate level is avoided by connecting
a global clock phase to reset and ground-interrupt de-
vices in every gate. As a result, the trailing edges of
all pulses are tied to global timing [11], and analysis of
timing constraints is pushed into cycle-time analysis.

3.1 Timing Constraints For SRCMOS
Gates

The design philosophy we follow for SRCMOS cir-
cuits is that the pulse widths within the macro are
tuned based on macro requirements, while the output
pulse widths are tuned based on global interconnect
requirements. In this scenario, it is not feasible to
design receivers for a wide variation in pulse width
and arrival times without a signi�cant degradation in
performance. Since dynamic circuits are used in situ-
ations demanding high performance, it is preferrable
to enforce a timing discipline at the macro boundaries
than to design receivers for a wide variation in pulse
widths.

Following this circuit design approach, we must
make sure that several categories of timing constraints
are satis�ed at each SRCMOS gate. We then specify
tests at macro boundaries that ensure that the gate
level constraints are satis�ed. Broadly, we may catego-
rize these constraints into a) Pulse overlap constraints,
b) Pulse width constraints and c) Collision avoidance
constraints. Each of these categories is dealt with in
more detail below.

3.1.1 Pulse Overlap Constraints

For pulse-based circuits to work correctly, the pulses
arriving at di�erent inputs must be active for a speci-
�ed common period of time. This is illustrated by the
schematic for the AND-OR gate shown in Figure 3.
The gate is activated by pulses on some combination
of inputs to form a path from the node TL to ground,
for some minimum time. Looking at the timing dia-
gram in Figure 3, in cycle 1 the output is produced by
inputs A and B. In cycle 2, there is no output, because
A and B do not have enough overlap. In cycle 3, the
output is produced by inputs C and D; A need not
overlap with C or D. We would therefore de�ne two
pulse overlap constraints, one on A and B, the other
on C and D. To avoid an explosion of constraints for
a complicated gate, we could de�ne instead one con-
servative constraint per gate, requiring that all pulses

that do arrive overlap by a given amount.

RL

RH

StE

Output
TL

A

B

C
D

A

B

C

D

Output

Figure 3: SRCMOS AND-OR Gate

In practice, timing tests are speci�ed for macros,
not gates. We may use some pulse overlap constraints
at a macro's inputs to ensure pulse overlap at its
internal gates, without exposing that internal struc-
ture to timing analysis. Within a macro, however, we
may avoid static timing analysis in favor of a pattern-
sensitive approach. In that case, it may be quite fea-
sible to check the overlap of just relevant inputs and
allow non-overlap for others without an explosion of
explicit gate-level rules. For example, a simulation-
based veri�cation of the gate in Figure 3 should not
ag cycle 3 in the timing diagram as an error.

Deriving the pulse overlap constraints for a macro's
inputs is part of our macro-design methodology. If the
constraints are getting unwieldy or impossible to sat-
isfy, two techniques can help ensure overlap at gates
while allowing simple or even no overlap constraints at
the macro inputs. First, the assignment of reset sig-
nals to gates within a macro provides some levelization
and synchronization to the logic pulses' trailing edges.
Using that levelization in planning the timing of the
leading edges can help ensure solid overlaps at each
gate. Second, transparent latches at the macro inputs
can stretch early inputs and can be used to avoid any
external overlap constraints.

3.1.2 Pulse Width Constraints

For correct operation of circuits, input signals must
have a certain minimum pulse width. Pulse width
constraints are generally necessary when a signal is the
only input to a gate (i.e., a bu�er or pulse stretcher).
If pulse overlap constraints are present, they create



implicit pulse width constraints. If not, or if wider
pulses are required, then explicit pulse width con-
straints must be given.

3.1.3 Collision-Avoidance Constraints

As described earlier, an SRCMOS gate must be reset
after it has evaluated. During this reset phase, the
input signals must remain quiet so that they do not
collide with the reset process. This can be illustrated
by looking at the example in Figure 1.

If the RL pulse were to overlap or collide with the
input pulses, a low-resistance path from would be cre-
ated from V dd to Ground , and the gate's average
power dissipation could increase dramatically. Such
collisions can result from wide or late input pulses as
in cycle 1 in Figure 4, or from early input pulses collid-
ing with the previous cycle's reset, as in cycle 3 in the
�gure. A ground-interrupt device between the nfet
tree and ground, with its gate connected to RL, as
in domino, would prevent overlaps from creating un-
due power dissipation. Ground-interrupt devices have
drawbacks, however: increased forward delay, area,
and reset loading. Even with a ground-interrupt de-
vice, the input pulse must still end before RL does, to
avoid spurious double pulses at the output of the gate.

RL

Input

Figure 4: Pulse Collisions between Reset and Input

Within a macro, tuning the delays of the reset chain
and the reset devices within gates prevents most po-
tential collisions. Reset delays may be de-tuned rel-
ative to forward delays, to reduce area, reset power,
and loading on the forward path. In such cases, signal
pulse-widths grow from stage to stage; judicious use
of ground-interrupt devices in some logic stages can
counteract this pulse growth.

Judicious use of ground-interrupts in an early stage,
together with advancing or delaying early resets, can
also provide extra margin against collisions between
leading edge of the input and the preceding reset sig-
nal, or the trailing edge of the input and the following
reset signal.

3.2 Component Timing Models
Timing analyzers use timing or delay models to es-

timate the delay through di�erent components, based
on the electrical environment in which the component
is instantiated. These timing models are further pa-
rametrized for variations in fabrication processes and
operating conditions. Timing models for SRCMOS
components require su�cient information to ensure
that a) no unwanted pulses occur, and b) all required
pulses do occur.

First, we need to chose the granularity of the leaf
level components for delay modeling. The timing
equations which describe the leaf level components
are derived through extensive simulations followed by
curve �tting. Clearly, some accuracy is lost for each
component that is thus modeled. These inaccura-
cies can add up for all the components that are on
a path. In most semi-custom approaches, individ-
ual cells which implement primitive functions (such as
latches, AND gates, OR gates etc..) are the leaf level
components. This could produce an error of 20% or
more between the estimated and actual timing results.

To estimate the worst case delay for a given com-
ponent, each component is modeled for its typical de-
lay under worst case patterns; in typical operation, it
is unlikely that all the components are stimulated by
their worst case pattern in the same cyle. In general,
accurate analysis of critical paths can't be achieved by
static timing analysis at the end of the design loop, but
requires careful planning, design, control of parasitics,
and good analysis.

Gate delay models for standard cell libraries are
usually characterized using a single input switch
model. Depending on the nature of the gate, the slow
path or fast path delays are signi�cantly a�ected by
simultaneous switching at the inputs. For SRCMOS
circuits, the component models must account for si-
multaneous switching to some degree. Simultaneously
switching inputs can a�ect the delay from a gate's crit-
ical input to its output by �20% in one-stage static
gates, or �10% in two-stage dynamic gates.

There can be signi�cant delay variations across any
given chip. These variations arise from two di�erent
sources; across-chip variations in Leff , and across-
chip variations in operating conditions. For example,
in a 2.5 V technology, transient across-chip supply-
voltage variations of �.25 V are likely. This variation
in supply voltage can lead to a corresponding change
of about 10% in gate delay.

One also needs to decide how the trailing edge of
the pulse is propagated. It is not desirable for the
trailing edge does depend on the trailing edge of the
input pulses; variations in pulse width would accu-
mulate over several stages, and would soon lead to
problems with pulse intersection or collision in later
stages.

Based on the above considerations, we made the
following choices for our timing models.

� In order to improve accuracy, we chose to
model the components at the granularity of large
macros. For example, the incrementer described
in [4] would be characterized through extensive
simulation of cross sections, and then delay mod-
els would be generated for that macro from the
simulation results.

� Separate timing equations are used for fast (early)
path and slow (late) path analysis. Both slow
and fast timing models are generated with typi-
cal, worst-case and best-case process conditions.
Since the same analysis is done at each process
condition, we assume the typical process in the
rest of this paper.



� The slow delay ( Ds ) equation coe�cients are
generated assuming the slowest operating condi-
tions for a typical process with the slowest exci-
tation pattern. The determination of the slowest
excitation pattern is the responsibility of the de-
signer.

� The fast delay ( Df ) equation coe�cients are
generated assuming the fastest operating condi-
tions for a typical process with the fastest exci-
tation pattern. Again, the determination of the
fastest excitation pattern is the responsibility of
the designer.

� The basic pulse width is de�ned with a sensitivity
to the load capacitance, but independent of the
input pulse width. Then the minimum and maxi-
mum pulse widths ( PWmin and PWmax ) values
at the receiving end are computed based on lead-
ing edge transition times and RC delays. The
output pulse width is independent of the input
pulse width. The macro design is constrained to
guarantee that the sensitivity of the output pulse
width to input pulse width can be expressed with
this model.

The timing models use equations of the form

delay = D + A� (TR � TRd)+

B � (CL �CLd) +X � (CL�CLd)
2 +

Y � (TR� TRd)
2

where D is a constant delay, TR is the transition time
of the rising edge, TRd is the design value of the lead-
ing edge transition time, CL is the load capacitance
and CLd is the design value of the load capacitance.
Note that this is just the well known k-factor [6] ap-
proach. However, we have centered the equation on
the design values | in addition to being more intu-
itively obvious to the designer, this forces some plan-
ning in the design for expected values.

In addition to the model described above, two new
delay modeling concepts are used. These are the no-
tions of delta delay and tracking.

� Delta Delay ( DD ): In a typical SRCMOS
macro, groups of output pins are often related.
Also, groups of input pins usually use the same
signal to derive the reset, and hence have re-
lated constraints. So, all the delay equations are
typically speci�ed for an entire group of signals.
When a group of signals is modeled together,
there can be some variation in the delay between
the di�erent signals; for example, if a bundle of
signals is modeled with a single delay equation,
there will be some spread between the strands
of the bundle due to geometric considerations.
The worst case spread that can occur between the
signals is modeled by the parameter DD called
delta-delay.

� Tracking: As mentioned earlier, across-chip
variations can create signi�cant changes in the

delay behavior of a given macro. When we ana-
lyze the pulses at the inputs of a macro, we may
not know the operating conditions at the points
where those signals are created. This uncertainly
implies that we have to be conservative in per-
forming various checks. Hence, we have to assume
that the maximum possible spread will occur be-
tween these signals. In certain cases, we can infer
that the signals are all derived from sources op-
erating under similar conditions. For example,
they may all be coming from the same macro. In
this case, in addition to having similar operating
conditions, they may also have the same pattern
dependence (i.e., we can assume that those sig-
nals are in the same mode, early or late). Such a
group of signals is said to track.

The signi�cance of the above two concepts will be-
come clearer when we discuss modes of analysis in
Section 3.3 and timing speci�cations in Section 4.

3.3 Early and Late Mode Analysis

As mentioned earlier, timing analysis is performed
in two modes, early and late. Early mode analysis is
used to detect problems with fast paths in the design.
Fast path conditions could lead to insu�cient hold
times and to race condition failures. In this analy-
sis, we use the fast delay equations, Df to model the
di�erent components.

Late mode analysis is used to detect problems with
slow paths, i.e., slow paths typically lead to setup vi-
olations at latch points. In this case, we use the slow
delay equations, Ds to model the components.

Early AT Late AT

DDDD

Figure 5: E�ect of DD

The delta-delay speci�cation, as de�ned in the pre-
vious section, changes the fast and slow delay values.
We de�ne the delta delay in such a way that it adds
to the fast delay and subtracts from the slow delay
values. The delay ranges are de�ned by the following
inequality:

Df � (Df +DD) � (Ds �DD) � Ds

This is pictorially depicted in Figure 5.



Minimum Pulse Width WAmin

Maximum Pulse Width WAmax

Minimum Hold Time DHmin

Maximum Hold Time DHmax

Minimum Quiet Time DQ
Minimum Setup Time DS
Maximum Target Time T

Table 1: Available timing tests

4 TIMING TESTS FOR SRCMOS

In this section, we describe the various tests that
we use to verify the timing constraints for SRCMOS.
An attempt is made throughout to use conventional
static timing analysis terminology.

As described earlier, our timing model uses exten-
sive grouping to minimize the amount of data that
must be entered by the designer. The two most com-
monly used types of groups are setup groups and pulse
zone groups.

A setup group may have one or more reference sig-
nals and one or more data signals. Basically, the ref-
erence signals are used for timing information, and
the timing of the data signals must be checked with
respect to the reference signal. In this case, the refer-
ence signals are analogous to clock signals.

A pulse zone group consists of only data signals.
Here, the timing information is derived completely
from the data signals. All signals in the group must
obey timing tests with respect to the latest arriving
signal in the group.

The timing tests that can be speci�ed are shown
in Table 1. However, not all of these tests apply
to both types of groups described above. These tests
have been described only for the cases where pulse
signals interact with each other. In practice, several
tests between pulse and static signals are also required,
since every design uses a mixture of static and dynamic
circuits.
Notation: The notation used in the rest of this

section is summarized in Table 2.

Pulse Width Computation

Our timing models specify the pulse width at the out-
put of the driver as a function of the load capacitance;
to obtain the pulse width at the receiver, we need
to adjust this based on RC e�ects. Since we do not
propagate the trailing edge of the pulse through the
RC network, we approximate the degradation of the
trailing edge based on the RC delay the leading edge
(RCLT ). In general, this approach tends to err on the
conservative side. The computation is described by
the following equations:

PWmin(rcv) = PWmin(drv) +

0:5 � (TTdrv + RCLT )

PWmax(rcv) = PWmax(drv) +

0:5 � (TTdrv + RCLT )

Description Notation
Set of pulse zone group signals PZ
Set of data signals in setup group DATA
Set of reference signals in setup group REF
Early Mode Arrival Time ATmin
Late Mode Arrival Time ATmax
Leading Edge Transition Time LT
Trailing Edge Transition Time TT
RC Delay RC
Minimum Pulse Width PWmin

Maximum Pulse Width PWmax

Minimum Hold Time DHmin

Maximum Hold Time DHmax

Minimum Quiet Time DQ
Minimum Setup Time DS
Maximum Target Time T
Receiver of net rcv
Driver of a net drv

Table 2: Notation

4.1 Minimum and Maximum Pulse

Width

The minimum and maximum pulse width tests are
de�ned only for pulse zone groups. Typically, mini-
mum pulse widths are de�ned for macros which use
pulse stretchers (transparent latches) at their inputs.
In these cases, the input pulse must be a) long enough
for the pulse stretcher to �re, and b) short enough
that it does not interfere with the resetting of the
pulse stretcher. However, there are no tests between
di�erent signals in the group. The pulse width tests
are checked against the actual pulse widths at all the
macro inputs in a pulse zone group. The tests can be
described by the following equations:

8p 2 PZ; PWmin(p) � WAmin

8p 2 PZ; PWmax(p) �WAmax

4.2 Minimum and Maximum Hold Time

The hold time tests are applied to data signals in
setup groups and to all signals in pulse zone groups.
The signals are checked relative to the latest arriving
signal in the group. The objective of the minimum
hold time test is to ensure that pulse intersection con-
straints are satis�ed for the circuit under test.

In the default case, we have to make the worst case
assumption that the reference signal might arrive in
late mode, while the data signals might arrive in early
mode. For a setup group, the minimumhold time test
can be described by the following inequality:

min
d2DATA

fATearly(d) + PWmin(d)g

� max
r2REF

fATlate(r)g � DHmin

If the reference and data signals belong to the same
tracking group, then, the early mode and late mode



values are checked separately using the following for-
mulae:

min
d2DATA

fATearly(d) + PWmin(d)g�

max
r2REF

fATearly(r) +DDg � DHmin

min
d2DATA

fATlate(d)�DD + PWmin(d)g�

max
r2REF

fATlate(r)g � DHmin

Note that DD a�ects the reference signals in early
mode and the data signals in late mode.

The minimumhold time test is analogously applied
to the pulse zone groups, with the main di�erence that
it is applied between the latest arriving signal and all
other signals (i.e., there is no distinction between data
reference signals). The general test for pulse zone
groups is expressed by equation 1 while the test for
the case where all the signals track is expressed by
equation 2 and equation 3.

min
p2PZ

fATearly(p) + PWmin(p)g�

max
p2PZ

fATlate(p)g � DHmin (1)

min
p2PZ

fATearly(p) + PWmin(p)g�

max
p2PZ

fATearly(p) +DDg � DHmin (2)

min
p2PZ

fATlate(p) + PWmin(p) �DDg�

max
p2PZ

fATlate(p)g � DHmin (3)

The maximum hold time test arises from the re-
quirement to have inputs inactive before the reset
process starts. The expressions for checking maximum
hold time can be constructed in a similar manner to
those for minimumhold time; they are ommitted here
for brevity.

4.3 Minimum Setup Time
Minimum setup time test is used for setup groups.

The objective of the setup time test is to ensure
that pulse intersection requirements are met; it works
jointly with the minimumhold time test to ensure this.

In the general case, the setup time test is checked
between the arrival times of the reference signals in
early mode and the arrival time in late mode of the
data signals. This is expressed in equation 4.

min
r2REF

fATearly(r)g�

max
d2DATA

fATlate(d)g � DS (4)

For the cases where the reference and data signals
track, the tests can be done using the DD value. This
is shown in equation 5 and equation 6.

min
r2REF

fATearly(r)g�

max
d2DATA

fATearly(d) +DDg � DS (5)

min
r2REF

fATlate(r) �DDg�

max
d2DATA

fATlate(d)g � DS (6)

4.4 Minimum Target Time
The minimumtarget time test is used only for pulse

zone groups. The minimum target time test speci�es
that all signals within a pulse zone group must ar-
rive within a certain interval of each other. This test
works with the minimumhold time test to ensure that
su�cient pulse intersection is achieved. The general
case test is expressed by equation 7. The case where
the signals track is expressed by equation 8 and equa-
tion 9.

max
p2PZ

fATlate(p)g�

min
p2PZ

fATearly(p)g < T (7)

max
p2PZ

fATlate(p)g�

min
p2PZ

fATlate(p)�DDg < T (8)

max
p2PZ

fATearly(p) +DDg�

min
p2PZ

fATearly(p)g < T (9)

4.5 Minimum Quiet Time
The quiet time test is used to ensure that pulse

collision is avoided. The quiet time test is speci�ed
against the leading edge of the appropriate signal.
This test speci�es that a new pulse cannot appear on
the given signal for DQ time units from the given ref-
erence point. Since this test applies across cycle time
boundaries, tracking has no e�ect on this test.

This test can be speci�ed for both pulse zone groups
and setup groups as described by equation 10 and
equation 11. In these equations, CT refers to the tar-
get cycle time used for the static timing analysis1.

min
p2PZ

fATearly(p)g +CT�

max
p2PZ

fATlate(p)g � DQ (10)

min
d2DATA

fATearly(d)g+ CT�

max
r2REF

fATlate(r)g � DQ (11)

5 IMPLEMENTATION

The timing analysis system for SRCMOS has been
implemented using an existing static timing analysis
tool STEP [11] as the basic engine. The small-gate
delay model was adapted to handle large macros. In
our methodology, the analysis of each macro was done

1This is typically di�erent from the actual target cycle time,

since adjustments have to be made for clock skew and other

e�ects.



by the designer, using pattern-dependant simulation.
The various coe�cients for the delay and pulse width
equations are extracted from the simulation results.
The values for the timing tests are speci�ed by the de-
signer. A timing rule is then created for each macro,
combining the delay equation coe�cients and the tim-
ing tests. The timing analysis program reads this rule.

The leading edge of the pulse is propagated using
the existing timing analyzer. The timing analyzer cre-
ates arrival times, required arrival times and slacks for
at all nodes for the leading edge of the signal[1]. Af-
ter this operation is complete, the SRCMOS timing
analyzer is dynamically loaded and executed.

The overall ow of the SRCMOS timing analyzer is
as follows:

Create logic network data model
Read special SRCMOS timing tests
Read arrival time values from prior
analysis
Run SRCMOS Timing Analyzer:

Compute pulse widths at outputs of macros
Compute pulse widths at inputs based on
driving pulse width and RC
Identify which tests are to be performed
under tracking conditions
Perform timing tests de�ned for input groups
and pulse zone groups

Create error messages for failing tests

6 CONCLUSIONS
A method to extend static timing analysis to SRC-

MOS circuits has been described. Such techniques will
become critical as dynamic circuit use becomes more
widespread. Even though many of the constraints that
arise out of such circuit techniques may be new, it is
very important to base new tools on existing tools and
methodologies.

A program based on the described approach has
been implemented, and exercised on unit-level models
containing moderate number of macros. A full chip
exercise is still pending.

7 Acknowledgements
Many people at IBM Yorktown Heights and IBM

Austin contributed to this work in di�erent ways.
Scott Neely participated extensively in the implemen-
tation of the program. Ruud Haring, Terry Chap-
pell, Joel Silberman, Ed Seewann, Marty Schmook-
ler and Don Mikan contributed to the development
of the timing constraints and tests. Gary Nusbaum,
Clint Miller and Bob Swanson helped in integrating
the timing analysis tool into the design methodology.

References
[1] R.B. Hitchcock, G. L. Smith, and D. D. Cheng,

\Timing analysis of computer hardware," IBM J.
of Research and Development. 26, pp. 100{105,
January 1982.

[2] K.A. Sakallah,T.N. Mudge, and O.A. Olukotun,
\checkTc and minTc: Timing Veri�cation and
Optimal Clocking of Synchronous Digital Circuit-
s", ICCAD 1990, pp. 552{555, November 1990.

[3] T. I. Chappell, B. A. Chappell, S. E. Schus-
ter, J. W. Allen, S. P. Klepner, R. V. Joshi,
R. L. Franch, \A 2-ns cycle, 3.8ns access 512-kb
CMOS ECL SRAM with a fully pipelined archi-
tecture," IEEE JSSC, vol. 26, no. 11, pp. 1577{
1585, Nov 1991.

[4] R.A. Haring, M.S. Milshtein, T.I. Chappell,
S.H. Dhong, B.A. Chappell, \SelfResetting Logic
Register and Incrementer," To appear - Proceed-
ings of the 1996 Symposium on VLSI Circuits,
June 1996.

[5] T.I. Chappell, R.A. Haring, T.K. Jaber, E. See-
wann, M.P. Beakes, B.A. Chappell, B. M. Fleis-
cher, \High Performance Self Resetting Circuits
with Enhanced Testability," IBM Research Re-
port RC20321, January 1996.

[6] Weste and Eshraghian, \Principle of CMOS VLSI
Design, 2nd Edition", pp. 220-225, Addison-
Wesley, 1992.

[7] Weste and Eshraghian, \Principle of CMOS VLSI
Design, 2nd Edition", pp. 308-310, Addison-
Wesley, 1992.

[8] L. A. Lev et al, \A 64-b microprocessor with mul-
timedia support," IEEE J. Solid-State Circuits,
vol. 30, no. 11, pp. 1227{1238, Nov 1995.

[9] D. Wendell, \Reset logic circuit and method,"
U.S. Patent 5,438,283.

[10] T. Williams, \Performance of iterative compu-
tation in self-timed rings," J. VLSI Signal Pro-
cessing, Kulwer Publishers, vol. 7, pp. 17{31, Feb
1994.

[11] R.E. Mains, T.A. Mosher, L.P.P.P. van Ginneken,
R.F. Damiano, \Timing Veri�cation and Opti-
mization for the PowerPC Processor Family,"
IEEE Internation Conference on Computer De-
sign, pp. 390{393, 1994.


