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Static Turning Analysis of Vehicles Subject to Externally Applied 
Forces - A Moment Arm Ratio Formulation 

C. C. MacADAM* 

A formulation for representing the static turning response of a two-axle vehicle due to  applied 
external o r  control forces is expressed in terms of a simple ratio of two distances along the vehicle 
longitudinal axis. The two distancescoincide with points on the vehicle at which externally appl.ied/ 
control forces and their reactive inertial forces act with respect to  the vehicle neutral steer point. The 
resulting formulation is equivalent to the rotational equilibrium equation written with respect to the 
neutral steer point. The method allows a siml~le "visual analysis" of the steady turning process by 
showing how key forces and associated moment arms can change with respect to  one another due to  
vehicle modifications or  different operatingconditions, thereby affecting the static turning response 
of the vehicle. 

1. INTRODUCTION 

The intent of this paper is to present a simplified formulation of the static 
turning response of a two-axle, pneumatic-tired vehicle subject to arbitrary 
lateral external forces. The laterally applied forces may have a variety of 
sources, such as, the intentional control force introduced from a steered wheel, 
or, an external disturbance force produced by the aerodynamic shape of the 
vehicle's body. The basic approach separates forces acting on the vehicle mass 
into two categories. The first category of forces is termed here control forces and 
comprises any external force associated with steering or disturbing the vehicle. 
The second category of forces is termed motion forces and comprises only those 
tire force components associated with sideslip and yawing motion of the vehicle 
- absent of any steering. Inertial forces acting on the vehicle mass are also 
included in this latter category. The conventional analysis that follows helps to 
identify these force terms. Linear relationships are assumed so that forces may 
be superimposed. The net result is that the static turning motion of a vehicle can 
be described simply in terms of a ratio of two distances along the vehicle 
longitudinal axis. The two distances are those associated with points on the 
vehicle axis at which the control force(s) and motion forces act with respect to 
the neutral steer point and mass center of the vehicle. 

Consequently, knowledge of how the neutral steer point, the mass center, or 
location of the control forces may change due to modifications to a vehicle, 
allows a sirnple visualization of hour the static turning response of the vehicle 
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346 C. C. MacADAM 

will likewise be affected. The development and discussion which follows will 
arrive at  a "formula" which encapsulates this concept. Three examples of 
applying its use to different vehicle control problems completes the paper. 

2. MATHEMATICAL ANALYSIS 

The linear equations governing the static turning motion of a two-axle vehicle 
equipped with pneumatic tires are well known [ I ,  2,3,4,5,6] .  However, for 
purposes of notation and subsequent referral, the basic lateral force and yaw 
moment equilibrium equations written with respect to the vehicle mass center 
are presented in equations (1) and (2) respectively, using Figure I as a reference 
diagram. 

Gf+F, ,+F, -mUr=O (1) 

Figure I .  Diagram of Forces Acting on  Vehicle. 

where, 

I;;/ is the total lateral tire force at  the front axle 
6, is the total lateral tire force at  the rear axle 
F, is an arbitrary lateral force (aerodynamic or otherwise) 
m is the vehicle mass 
U is the vehicle speed of travel 
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STATIC TURNING DUE TO EXTERNALLY APPLIED FORCES 347 

r is the vehicle yaw rate 
d is a distance forward of the mass center which locates the applied 

lateral force F, 
u is the distance of the front axle forward of the mass center 
b is the distance of the rear axle behind the mass center 
L is the vehicle wheelbase = a + b 

The linearized lateral tire forces are given by, 

where, 

Gf is the front tire cornering stiffness (both tires) 
C,, is the rear tire cornering stiffness (both tires) 
v is the vehicle sideslip velocity a t  the mass center 
r is the vehicle yaw rate 

is the steer angle of the front tires 
and, 

6, is the steer angle of the rear tires 

Substituting equations (3)-(4) into equations (1)-(2) and rearranging, results in 
an  equivalent set of two simultaneous equations for lateral force and yaw 
equilibrium involving sideslip velocity, v, and yaw rate, r:  

The force terms appearing on the left hand side of equation (5) are referred to 
here as control forces and include the arbitrary applied force F, as well as those 
components of the total tire forces resulting from steering of the wheels. The 
force terms appearing on the right hand side of equation (5) are referred to here 
as motion forces and include the inertial force acting on the mass center as well 
as those components of the tire forces attributable only to sideslip and yaw 
motion (tire forces of the non-steered wheel). 

By combining the left hand side control forces into one total force, FT, acting 
at  a distance, e ,  ahead of the mass center, the equations (5)-(6) can be simplified 
to: 

where, FTand e are given by, 
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348 C. C. MacADAM 

FT = F,+ c,/.SJ+C,,6, (9) 
and, 

e = (dF,+aC,/SJ-bC,r6r)/(F,+C,J6f+C,rbr) ( 1  0 )  
Solution of equations (7)-(8) results in the following expression for the ratio 

of yaw rate to the total control force, FT: 

~/FT = [(bGr - aG/) + e(Cb/+ Cr)l/ 

[(a + b)2C4/C,,/U - (aCqf - bGr) m u ]  (1 1) 

By noting that the distance, c, from the neutral steer point forward to the mass 
center is given by the expression, 

and following its substitution into equation (1 1) and rearrangement of terms, 
the following simple expression is obtained which relates the vehicle yaw rate to 
the total control force: 

or, in terms of the steady-state lateral acceleration, a, = U r, 

Figure 2 supplements equation (13) by illustrating the quantities involved. 
Equation (13) can be viewed as the yaw moment equilibrium equation written 
with respect to the neutral steer point. Since moment terms involving front and 
rear tire force components that depend upon sideslip velocity cancel one 
another about the neutral steer point (by definition), no coupling terms 
involving sideslip velocity a t  the neutral steer point appear in this form of the 
moment equilibrium equation. Accordingly, only those forces that affect the 
rotational equilibrium of the vehicle about the neutral steer point appear in 
Figure 2. 

In diagram (A) of Figure 2, the distance (c +e) is the moment arm of the 
applied lateral control force about the neutral steer point. The distance c is the 
moment arm of the inertial force, mUr, acting about the neutral steer point at  
the mass center. The distance 5 is equal to the resisting moment of the equal and 
opposite non-steered tire force components, Z$ and 5, generated by a pure 
rotation of the vehicle about the neutral steer point, normalized by the inertial 
force mUr (i.e., 5 = tire yaw damping moment about nsp/mUr). Diagram (A) 
can be simplified by not including the tire damping forces, qf and 5, provided 
that the inertial force, mUr, is translated forward to the point located by 5, 
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or, equivalently: 

Figure 2. Diagram of Forces and Moment Arms. (A) lntertial Force Acting at the Mass Center; 
(B) lntertial Force Located at Distance 5 Ahead of the Mass Center. 
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350 C. C. MacADAM 

thereby retaining the tire yaw damping moment, 5 mUr. See diagram (B) of 
Figure 2. 

Under this latter formulation, if the vehicle is viewed as a simple lever, having 
a fulcrum or pivot point located a t  the neutral steer point (nsp), the steady 
turning process is analogous to a basic mechanical statics problem. The applied 
control force, FT, acting at a distance (c + e), produces a force of reaction, mUr, 
acting at a counter-balancing moment arm distance (c + 5). Subsequent 
examples will utilize diagram (B) of Figure 2 to illustrate the moment arm 
formulation in several applications. 

The moment arms c and e depend upon the tire stiffnesses, mass distribution, 
and relative magnitudes and location of any steered wheel or additional external 
forces. The moment arm, 5, is similarly dependent, but is also a function of the 
speed of the vehicle and is given by the expression, 

As seen, the moment arm, 5, which is proportional to the tire yaw damping 
moment, varies as 1/U2 - changing in magnitude from infinity to zero with 
increasing vehicle speed. Consequently, changes in vehicle speed strongly 
influence the moment arm, 5, but have no effect on the moment arms c o r e .  For  
oversteer vehicles (c < 0 and the nsp lies ahead of the mass center), the classical 
condition for directional stability [ I ,  31 occurs in the diagram of Figure 2 when 
the moment arm 5 equals the moment arm-c: The forward speed a t  which this 
occurs is of course the critical speed, LI,, = (-L/K)1/2, (where K is the understeer 
gradient) obtained when 5 = -c. In contrast, for understeer vehicles (c > 0 and 
the nsp lies behind the mass center), the characteristic speed 161, LI,,, = (L/K)'/*, 
occurs when 5 =  c. 

3. APPLICATIONS 

Diagram (B) of Figure 2 and equation (13) can be used to visualize and predict 
changes in the turning response of vehicles when modifications (planned or 
otherwise) are introduced that cause the moment arms c, e, and 5 to become 
altered. The examples that follow help to demonstrate the graphical utility of 
the moment arm formulation for explaining different vehicle turning responses 
deriving from changes in vehicle understeer, speed, o r  applied forces. 

Example I: Aerodynamic Crosswind Response with Fixed Steering. 

This example addresses the static turning response of a vehicle subject to a 
constant crosswind and associated lateral aerodynamic force, F,. The aero- 
dynamic force, F, ,  acts at  the center of pressure located a distance, d, ahead of 
the center of mass. No steering is assumed to occur. See Figure 3. (Vehicle 
dynamicists and aerodynamicists have used this type oftest as one measure o fa  
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STATIC TURNING D U E  T O  EXTERNALLY APPLIED FORCES 35 1 

Figure 3. High speed - Aerodynamic Force Example. 

vehicle's passive crosswind sensitivity [7,8].) Utilizing equations (9) and (lo), 
the total lateral control force, FT, in this case becomes FT=F,, since 6, = 6/= 0. 
Likewise, the moment arm distance, e, in equation (10) is simply the distance 
from the mass center to  the center of pressure (i.e., e =  d) .  Equation (13a), 
relating the static yaw rate response to  the applied aerodynamic force, then 
becomes, following these substitutions, 

At very high speeds, where aerodynamic forces have a sizeable influence, the 
moment arm 5 is normally quite small ([<L/10, where L = a +  b, the vehicle wheel- 
base). For  most understeer vehicles, the moment a rm c ("static marginV*L) will 
be in the range L/10 to  L/5 .  For  typical passenger cars, the distance to the center 
of pressure will be in the vicinity of L/6 t o  L/3. This then implies a diagram like 
that shown in Figure 3 with c, d, and 5 having the approximate relative lengths 
shown. 

This diagram can be used to see how a baselinc vehicle having these nominal 
characteristics, will respond to  vehicle modifications that introduce a change in 
understeer. For  example, if the rear tire cornering stiffness is reduced so as  to 
introduce less understeer, the neutral steer point nsp would move forward, 
thereby shortening the moment arm c t o  a value c- A. Simultaneously, the 
moment arm, 5 ,  would be reduced slightly t o  a value 5 - 6. Equation (15) and 
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Figure 3 would then suggest that this influence would increase the baseline yaw 
rate since the ratio (c- A + d)/(c- A + 5- E) would clearly increase (for [< d). 

In contrast to this, if the same baseline vehicle is operated in a similar o r  larger 
crosswind at  slower speeds, two primary effects would occur. First, the 
aerodynamic slip angle would increase, producing a rearward shift in the center 
of pressure (due to typical non-linearities in passenger car aerodynamic 
properties) and because of the decreased speed, the moment arm 5 would 
increase. This would then result in a new diagram as shown in Figure 4 with 
moment arm, d, locating the center of aerodynamic pressure, with a length less 
than 5. This new set of operating conditions results in a reduced passive wind 
sensitivity (for the same magnitude of crosswind force) because of: (1) the 
reduced moment arm d, and, (2) the increased tire damping moment arm 5 
produced by the lower speed condition. 

Figure 4. Lower Speed - Aerodynamic Force Example. 

However, under these new baseline conditions, a decrease in understeer for 
the vehicle, similar to that noted above, can have an opposite effect and produce 
a decrease in the vehicle yaw rate. This is because the ratio of moment arms seen 
in equation (15) and Figure 4 is altered oppositely from that seen in Figure 3. 
This ratio, as before, is given by (c  - A + d)/(c - A + 5 - E). Under conditions 
in which d is considerably less than 5, the decrease in c to a value c - A will 
produce a reduced moment arm ratio, thereby resulting in a decreased yaw rate 
compared to its baseline response. (When d is in the vicinity of 5 the picture is 
less obvious because E also reduces the denominator.) 

Finally, for this latter example, even if the speed is not reduced, but the center 
of pressure is moved rearward through body aerodynamic styling changes 
alone, the passive wind sensitivity will still be reduced because of the shortened 
moment arm d. Obviously, as d moves rearward toward the neutral steer point, 
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STATIC TURNING DUE TO EXTERNALLY APPLIED FORCES 353 

the passive wind sensitivity, as measured by the static yaw rate response to  an 
aerodynamic side force, approaches zero (i.e., the moment arm d i n  equation 
(15) approaches a value of -c. 

Example 2: Turning Response due to a Superelevated Road and Gravitational 
Side Force. 

For non-steered vehicles subject to  a gravitational side force from a laterally 
inclined road surface (assuming superelevation levels l), the application of 
equation (13) is similar to  that discussed above for aerodynamic forces. 
However, in this case, the applied force is acting a t  the mass center and therefore 
the moment arm distance, e, in equation (13) and Figure 2 is now zero. 
Consequently, the static yaw rate response due to  a constant gravitational side 
force, F, = W E,  is given by, 

r /F,  = [m U]-I (c)/(c + 6 )  (16) 
where, W is the weight of the vehicle and E is the superelevation of the road 
surface. Further, the ratio of centrifugal lateral acceleration (in g's) produced by 
an amount of road superelevation, E, is given by the simple ratio, c/(c + 5). 
Thus, a t  low speeds where 5 is large, the resulting centrifugal acceleration 
induced by a road surface cross-slope is nil. At very high speeds where 5 is very 
small, the induced centrifugal acceleration (in g's) approaches the amount of 
roadway superelevation, E. For a neutral steer vehicle (c=O), no centrifugal 
acceleration o r  path curvature response is induced from the gravitational side 
force. 

Example .3: Control Forces from Two- Wheel and Four- Wheel Steering Vehicles. 

Control forces attributable to steered wheels can also be introduced and 
analyzed in a similar manner using this formulation. The control force terms 
GJ6,and Gr6,, appearing on the left hand side of equations (5) and (6), are a 
result of steering the front and/or rear wheels. In the absence of any external 
aerodynamic o r  gravitational forces, the total control force, FT, given in 
equation (9) for the front-wheel steering case, is seen to be, 

and the fixed location of this force, e, given by equation (lo), becomes after the 
aforementioned substitutions: 

These equations simply state that for the conventional front-wheel-only steered 
vehicle, the control force, cJSJ, acts a t  the obvious front axle location and is 
located a t  the distance, a ,  forward of the mass center. See Figure 5. 
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C. C. MacADAM 

Figure 5. Conventional Front-Wheel Steer Vehicle. 

The relationship between yaw rate and total lateral control force given by the 
basic relationship in equation (13), then becomes for the front-wheel steer 
vehicle: 

If this is expressed in terms of the front wheel steer angle, the yaw rate to steer 
angle gain is given by, 

The same formulation can also be extended to four-wheel steering vehicles. 
Consider a vehicle having four-wheel steering defined by the simple relation- 
ship, 6 ,=  k6/, so that the rear wheels are steered in proportion to the front 
wheels by an amount k. If k > 0, the wheels are steered in the same direction. 
Such control strategies are often exercised at  mid-range and higher speeds of 
travel. Under such schemes in actual practice, k usually takes on a value of 
about 0.3 [9]. If no additional lateral forces, F , ,  are present, the total control 
force given by equation (9) is seen to be: 

and the fixed location of this force, e, given by equation (lo), becomes after the 
substitution of the above front/rear steering relationship: 

indicating that the steering control force has now moved considerably rearward 
from the front axle. 
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STATIC TURNING DUE TO EXTERNALLY APPLl ED FORCES 355 

The relationship between yaw rate and total lateral control force, given by the 
basic relationship in equation (13), then becomes for the four-wheel steer 
example: 

with the moment arm, e, determined by equation (22). At highway speeds, the 
relative moment arm lengths for this four-wheel steering example are provided 
by the diagram of Figure 6. 

In this figure, 5 is approximately L,/lO because of the elevated speed. The 
moment arm e is assumed to be about L/6 (assuming Gf = C,,, a/b = 0.6, and 
k = 0.3). Lastly, c is approximately L./5,  reflecting a modest level of understeer. 

For cases in which the front-rear steer relationship is more complicated than 
a simple gain factor, k, and which may change with vehicle speed and operating 
conditions, the location, e, of the control force, F,,,, is no longer fixed and can 
move up and down the longitudinal axis of the vehicle. (Note that this is not the 
case with the conventional front-only steering vehicle in which e is fixed at the 
front axle position, e = a ,  as noted earlier.) 

A good example of this control force "leveraging" is provided in most four- 
wheel steering systems when counter-steering of the rear wheels (k < 0) occurs 
at low speeds to improve maneuverability in tight quarters. If equation (22) is 
re-examined with a negative value of k in mind, it is clear that the location of the 
four wheel steering control force, given by e, is extended out to a distance well 
beyond the front axle. For example, if k = -0.3 19, 101, and assuming equal 
front and rear tire cornering stiffnesses, the length of e becomes, 

Consequently, one primary advantage that four-wheel steering vehicles enjoy, 
by comparison to conventional front-wheel steered vehicles, is the great leeway 
available to them in locating the applied control force (for steering purposes) 
through intelligent alteration of its associated moment arm. Most four-wheel 
steering systems which alter the front-rear steering ratio with speed are 
simultaneously adjusting the effective location, e, of the steering control force, 
I$,, and its magnitude. The product of e and F,,, is the corresponding steering 
control moment. Conventional front-wheel steering vehicles maintain a 
constant gain relationship between the steering control force and the steering 
control input (4,, =Cqf af) and a constant gain relationship between the steering 
control moment and the steering input (steering moment = aCb/Sr) However, 
most four-wheel steering systems alter these force/moment relationships by 
changing k as a function of speed. Ordinarily, such four-wheel steering systems 
produce larger steering forces and smaller steering moments at high speeds 
(compared to a comparable front-wheel steering vehicle), and, smaller steering 
forces and larger steering moments at low speeds. This can be seen from 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
i
c
h
i
g
a
n
]
 
A
t
:
 
2
1
:
4
1
 
2
2
 
F
e
b
r
u
a
r
y
 
2
0
1
0



equations (21)  and (22)  and noting that their product, the steering control 
moment, is given by (aC,(- kbC;,,)G(, with k typically ranging from -0.3 to 
+0.3 as speed increases. 

An interesting case develops when the rear/front steering ratio gain, k, is 
chosen in such a manner as to maintain e = 5 in Figure 6. That is, the location, e, 

Figure 6. High Speed - Four-Wheel Steer Example. 

of the control force varies with forward speed and identically to 5. Examination 
of equation (23)  shows that this produces a control system that has a constant 
relationship between steering control force, F,,,, and steady-state lateral 
acceleration, regardless of speed, since rnUr/&,, is unity under this scheme. By 
setting e equal to 5, using the relationships provided by equations (14) and (22) ,  
the resulting speed-dependent expression for k becomes: 

As the forward speed, U,  approaches zero, the expression for k approaches 
-C,//G,, resulting in low speed counter-steering. At very high speeds, k 
approaches aC /bC,,,  and produces front/rear steering of the same polarity. "/. Interestingly, this concept is very similar to the one proposed by Sano et al. [9], 
in which their system is designed to produce a zero steady-state sideslip 
condition at the mass center for all speeds. The expression given by equation 
(25) results in a similar zero sideslip condition at low speed, but at the neutral 
steer point instead of the mass center. 
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4. CONCLUSIONS 

The above moment arm formulation of the steady turning response of a two- 
axle vehicle offers a simple means for visualizing and predicting how the key 
forces acting on a vehicle, and their location, will affect the turning motion. 
Under this formulation, the vehicle can be viewed as a simple lever, with a pivot 
point at the neutral steer point, about which the inertial motion force and the 
applied external control forces are in rotational equilibrium. The inertial force 
can be viewed as a "force of reaction" to the applied control force within the 
context of this statics analogy, but which also describes the,steady turning 
response of the vehicle. The method has direct application to a variety of vehicle 
studies such as: the interaction between vehicle handling and aerodynamic 
properties, gravitational force effects on vehicle turning induced by road surface 
geometry, and multi-wheel steering systems. 
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