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We determine the gravitational interaction between two compact bodies up to the sixth power in

Newton’s constant, GN , in the static limit. This result is achieved within the effective field theory approach

to general relativity, and exploits a manifest factorization property of static diagrams which allows us to

derive static post Newtonian (PN) contributions of (2nþ 1) order in terms of lower order ones. We

recompute in this fashion the 1PN and 3PN static potential, and present the novel 5PN contribution.
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Introduction.—The study of the conservative dynamics

of the two-body problem in general relativity (GR) is one of

the pillars which allows us to determine the gravitational

waveform templates for the LIGO/Virgo [1,2] data analysis

pipeline [3,4]. The future generation of detectors such as

the Einstein Telescope [5] and LISA [6] are expected to

gain in sensitivity at least one order of magnitude with

respect to the current generation of ground-based interfer-

ometers. Therefore, more accurate predictions on the

theoretical side will be required for gravitational wave

(GW) astrophysics in the next decade [7,8].

Deviations from the Newton potential due to GR effects

can be studied in the so-called post-Newtonian (PN)

framework, that is by expanding in powers of the two

virial-related quantities, such as the compactness RS=r ∼

GNm=r and the relative (squared) velocity v2 ∼GNm=r,
where RS,m, r, and GN are the Schwarzschild radius of the

system, its mass and size, and Newton’s constant, respec-

tively. The first complete 1PN computation was preformed

by Einstein, Infeld, and Hoffmann in Ref. [9]; since then,

the evaluation of the higher-order terms has been a

formidable effort, whose current state of the art, after the

calculation of the 2PN [10,11] and 3PN [12–14] contri-

butions, is represented by the determination of the energy at

4PN order, which was achieved for the first time in

Refs. [15–17] and later confirmed in Refs. [18–22] and

in Refs. [23–26].

The next complexity level, namely the fifth post-

Newtonian approximation (5PN), is qualitatively important

because of the first appearance of spin-independent finite

size corrections. Several partial results towards this chal-

lenging precision level have become recently available in

the so-called post-Minkowskian expansion, i.e., the expan-

sion in GN only, for any given order in v, up to the third

order in Newton’s constant GN [27–32].

In the present Letter, we provide a novel contribution to

the 5PN dynamics by tackling the determination of the

highest possible power in GN , namely G6
N at 5PN, which

amounts to determine the potential in the static limit. This

goal is achieved by building on the ideas and the method of

Ref. [24], where we computed the static potential at 4PN by

adopting the effective field theory (EFT) approach to GR

[33–37], in combination with techniques for the evaluation

of multiloop scattering amplitudes in momentum space (see

also Ref. [38] for a related computation in direct space).

The computation of 5PN static corrections turns out to be

actually less demanding than the corresponding 4PN ones,

owing to a factorization property of the static contributions,

yielding a drastic simplification at odd-PN orders, which is

explicit and intuitive in the EFTapproach, and is formalized

in the current Letter.

The G6

N subsector computed here is the highest order

ever computed in powers of GN and, if done by brute force,

involves the evaluation of the most complex integrals

present at 5PN, which, within the EFT expansion, come

from the graphs with the largest loop number. Therefore, its

determination, presented here for the first time, paves the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 122, 241605 (2019)

0031-9007=19=122(24)=241605(6) 241605-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.241605&domain=pdf&date_stamp=2019-06-20
https://doi.org/10.1103/PhysRevLett.122.241605
https://doi.org/10.1103/PhysRevLett.122.241605
https://doi.org/10.1103/PhysRevLett.122.241605
https://doi.org/10.1103/PhysRevLett.122.241605
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


way to the completion of 5PN corrections, and confirms

that the adopted methods are suitable to systematically

tackle higher PN-order computations.

Effective field theory approach.—The evaluation of post-

Newtonian corrections to the dynamics of binary systems

can be addressed within the by now established EFT

framework [33], reviewed in Refs. [35,37,39]. Following

the lines and notation of Refs. [23,40], we consider the

action of the system, given by

S ¼ Spp þ Sbulk ð1Þ

in terms of the world-line point particle action, representing

the binary components (for spinless point masses and

neglecting tidal effects)

Spp ¼ −
X

i¼1;2

mi

Z

dτi

¼ −
X

i¼1;2

mi

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνðxiÞdxμi dxνi
q

; ð2Þ

and of the canonical Einstein-Hilbert action plus a gauge-

fixing (harmonic condition) term [18,41],

Sbulk ¼ SEH þ SGF

¼ 2Λ2

Z

ddþ1x
ffiffiffiffiffiffi

−g
p �

RðgÞ − 1

2
ΓμΓ

μ

�

; ð3Þ

whereΓμ≡gρσΓ
μ
ρσ. In the above formula,Λ−2≡32πGNL

d−3,

whereGN is the three-dimensionalNewton constant, andL is

an arbitrary length scale that keeps the correct dimensions of

Λ in dimensional regularization, which cancels out in the

expression of physical observables. In this framework, a

Kaluza-Klein (KK) parametrization of the metric [42–44] is

usually adopted:

gμν ¼ e2ϕ=Λ
�

−1 Aj=Λ

Ai=Λ e−cdϕ=Λγij − AiAj=Λ
2

�

; ð4Þ

with γij ≡ δij þ σij=Λ, cd ¼ 2ðd − 1Þ=ðd − 2Þ and i, j

running over the d spatial dimensions. Accordingly, the

degrees of freedomof the graviton field are reparametrized in

terms of a scalar field ϕ, a vector field Ai, and a symmetric

tensor field σij. The fieldAi is not actually needed in the static

limit because it always comes in associationwith thevelocity

of one of the compact bodies, so it will henceforth be set

to zero.

In terms of the metric parametrization [Eq. (4)], with

Ai ¼ 0, each world-line coupling to the gravitational

degrees of freedom ϕ, σij reads

Spp ¼ −m

Z

dteϕ=Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−cdϕ=Λ
�

v2 þ σij

Λ
vivj

�

r

!
static

−m

Z

dteϕ=Λ; ð5Þ

and its Taylor expansion provides the various particle-

gravity vertices involving ϕ, like the coupling of ϕ to

matter fields, i.e., the mϕn vertex,

ð6Þ

where black lines stands for matter and dashed blue lines

indicate ϕ modes. Also the pure gravity sector Sbulk can be

explicitly written in terms of the KK variables; for the

purpose of this Letter, it is sufficient to report here only the

structure of the static terms not containing the field A⃗ [45]:

Sbulk ⊃

Z

ddþ1x
ffiffiffi

γ
p ffðσijÞ − cdð∇⃗ϕÞ2g; ð7Þ

where f is a function depending on the field σij only. The

complete set of Feynman rules, also involving the fields σij
and Ai (respectively indicated by green and red lines), can

be found in Ref. [24].

The two-body effective action can be found by integrat-

ing out the gravity fields from the above-derived actions

exp½iSeff � ¼
Z

DϕDσij exp½iðSbulk þ SppÞ�: ð8Þ

Within the field-theoretical approach, the functional inte-

gration can be perturbatively expanded in terms of

Feynman diagrams involving the gravitational degrees of

freedom as internal lines only, viewed as dynamical fields

emitted and absorbed by the point particles, which are

taken as nondynamical sources. Each diagram shows a

manifest power counting both in the bodies’ relative

velocities and in GN [any bulk vertex involving k fields

carries a factor ðGNÞðk=2Þ−1 and any mϕn vertex carries a

factor ðGNÞðn=2Þ], thus allowing for a systematic PN

classification. The most elementary diagram in the EFT

approach is represented by the Newton-potential graph

ð9Þ

naïvely dubbed as 0PN diagram.

Factorization theorem.—Definition: Static EFT-gravity

diagrams can be classified according to the type of

couplings between matter and ϕ fields. We can distinguish

between factorizable graphs, which contain at least one

mϕn vertex with n > 1, and prime graphs, which contain

only matter-ϕ vertices of the type mϕ, namely where each

ϕ, coming from the bulk (and not propagating between bulk

vertices), couples individually to matter (see Fig. 1, left).

Factorizable graphs can be obtained by sewing together

two, or more, subgraphs that, upon merging, share a mϕn

vertex (n > 1) (see Fig. 1, right).
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Proposition: Inspection of Eq. (7) shows that the only

bulk gravity vertices allowed in a static graph are those

containing (1) zero or two ϕs and (2) any number of σijs;

the latter cannot however be attached to any particle, see

Eq. (5), so they can just propagate between bulk vertices.

This observation is crucial to prove an important property

of prime graphs, which constitute the first novel result of

this communication.

Theorem: Static prime graphs exist only at even 2n-PN
orders. Equivalently, static graphs at odd (2nþ 1) PN

orders are factorizable.

Proof: This statement can be proven by showing that any

prime static graph must have an even number of ϕ fields

attached to the particles.

For the Newtonian graph, it is trivially true by construc-

tion. Graphs generated by PN corrections, OðG2
NÞ, neces-

sarily contain bulk vertices ϕϕσk (with k ≥ 1), coming from

the expansions of the graviton self-interaction terms. For

these diagrams, two cases may occur: (1) each internal ϕ

propagator is contracted on the one side with a matter-ϕ

vertex, and, on the other side,with aϕϕσk vertex; therefore it

contributes with one power ofmi to the mass dimensions of

the graph. (2) Aϕ propagator, not coupled with matter, must

necessarily connect two ϕϕσk vertices; therefore it does not

contribute to the mass dimensions of the graph. Since the

bulk vertices between ϕ and σ fields (ϕϕσ;ϕϕσσ;…) are

quadratic in ϕ, and because prime graphs are characterized

by either (1) or (2), we can conclude that the total number of

ϕ fields that depart from the bulk vertices and couple to

matter (either m1 or m2) is an even number.

This implies that, being ni, the number of ϕ fields

coupled to the mattermi (i ¼ 1, 2), the total masslike power

of static prime graphs is m
n1
1
m

n2
2
, with n1 þ n2 ¼ 2n and

n ∈ Nþ. On the other side, they correspond to static

classical contributions; therefore, they must consequently

scale as G
ð2n−1Þ
N m

n1
1
m

n2
2
=rð2n−1Þ (classical diagrams do not

contain loops in the dynamical fields), finally implying that

they belong to an even-PN order. ▪

Due to the factorization theorem, the general structure of

the contribution to the potential of a given nPN factorizable

diagram, in terms of the product of lower PN-order graphs,

reads

Vfactorizable
n ¼ ðVL;n1

× VR;n2
Þ ×K × C; ð10Þ

where (1) the PN orders, n1 of the left graph VL and n2 of
the right graph VR, are such that n1 þ n2 þ 1 ¼ n,

(2) K accounts for the new matter-ϕk vertex of Vn

(emerging from the sewing) out of the ones included in

the lower order contributions, VL;n1
and VR;n2

, and

(3) C ¼ Cfactorizable
n =ðCL;n1

× CR;n2
Þ where the Cs are the

combinatoric factors associated with each graph.

Gravity and field theory diagrams.—In a quantum field

theory approach, any EFT-gravity graph can be interpreted

as four-particle scattering amplitude [24]. The contribution

of each amplitude to the two-body potential V can be

obtained by taking its Fourier transform,

ð11Þ

where,
R

p ≡
R

ddp=ð2πÞd, the box diagram stands for a

generic EFT-gravity diagram, and p is the momentum

transfer of the source (assuming momentum conservation

p1 þ p2 ¼ p3 þ p4, then p ¼ p3 − p2 ¼ p1 − p4). Since

the sources, represented by black lines, are static and do not

propagate, any EFT-gravity amplitude at order Gl

N can be

mapped into an (l − 1) loop two-point function with

massless internal lines and external momentum p

(p2 ≠ 0) [24]. This observation was crucial to perform

the 4PN static calculation by employing computational

techniques developed for the evaluation of multiloop

Feynman integrals in high-energy particle physics.

Moreover, in the current Letter, we observe that the

integration on p can be seen as an additional loop

integration; hence it can be represented by an l-loop

vacuum diagram, obtained by joining the external legs

into a propagatorlike line (indicated by an inner black

line), as

ð12Þ

In the last step, we introduce a suggestive diagrammatic

representation of the Fourier integral as an l-loop vacuum

graph by pinching the internal black line. The presence of

the dot “•” indicates the residual r dependence of the

contribution (not to be confused by fully massless, hence

scaleless vacuum diagrams that vanish in dimensional

regularization).

In the case of factorizable EFT-diagrams, the pinching

generates the product of factorized vacuum diagrams. For

example, the contribution to the 5PN potential of the

diagram in Fig. 1 (right) becomes

ð13Þ

FIG. 1. Examples of a prime 4PN graph (left) and of a

factorizable 5PN graph (right): the latter can be obtained by

sewing the former and the Newton potential diagram.
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directly representing the product of the Newton potential

and of a 4PN term, respectively, represented by a one-loop

and a five-loop vacuum diagram.

Results.—We verified that the static potential at 1PN and

3PN [40] can be derived by applying the factorization

theorem to the relevant diagrams.

We now apply the factorization theorem to the 5PN case,

computed for the first time in thepresentLetter. There are 154

diagrams to evaluate and it is convenient to divide them in

four classes, according to their factorization patterns. For

ease of notation, we arrange the 5PN static graphs in four

subsets, displaying the lower-PN corrections they stem out

from, and give the factors K and C as understood. (1) There

are 11 diagrams composed of six Newtonian factors,

combined in differentways, and schematically represented as

ð14Þ

The contribution to the 5PNpotential coming from this set of

diagrams is

VN6 ¼ 1

720

G6
Nm

6

1
m2

r6
þ 1

3

G6
Nm

5

1
m2

2

r6

þ 3
G6

Nm
4

1
m3

2

r6
þ ðm1 ↔ m2Þ: ð15Þ

(2) One can build static factorizable diagrams as prod-

ucts of three Newtonian graphs, and either of the 2PN

prime graphs, schematically represented as:

ð16Þ

This set contains 49 diagrams, 9 of which are vanishing,

because one of the 2PN factors is indeed zero. The

combined contribution of the remaining diagrams is

VN3×2PN ¼ 1

18

G6
Nm

6

1
m2

r6
þ 16

3

G6
Nm

5

1
m2

2

r6

þ 229

6

G6

Nm
4

1
m3

2

r6
þ ðm1 ↔ m2Þ: ð17Þ

(3) In this class, we consider 5PN diagrams schemati-

cally represented by the product of one Newtonian graph

with each of the 25 static prime 4PN diagrams studied in

Ref. [24] (the cardinal number attached to each graph is the

same as in Ref. [24], for ease of comparison)

ð18Þ

This set contains 79 diagrams, 16 of which are vanishing

(due to vanishing 4PN factors). The remaining 63 diagrams

give

VN×4PN ¼ 1

5

G6

Nm
6

1
m2

r6
þ 23

3

G6

Nm
5

1
m2

2

r6

þ 166

3

G6
Nm

4

1
m3

2

r6
þ ðm1 ↔ m2Þ: ð19Þ

Interestingly, let us observe that although this set contains

contributions that are individually divergent in the d → 3

limit, as well as factors of π2, within their sum all poles and

irrational factors cancel, and the result is indeed finite and

rational.

(4) Finally, we consider static 5PN diagram formed

by the product of two 2PN graphs, schematically repre-

sented as

ð20Þ

This term contains 15 5PN graphs, 5 of which are

manifestly vanishing, while the contribution of the remain-

ing 10 diagrams reads:

Vð2PNÞ2 ¼
1

18

G6
Nm

6

1
m2

r6
þ 11

6

G6
Nm

5

1
m2

2

r6

þ 37

3

G6

Nm
4

1
m3

2

r6
þ ðm1 ↔ m2Þ: ð21Þ

Total 5PN static potential: by combining all the previous

results, the expression for the static sector of the 5PN

potential finally reads

V
ð5PNÞ
static ¼ VN6 þ VN3×2PN þ VN×4PN þ Vð2PNÞ2

¼ 5

16

G6

Nm
6

1
m2

r6
þ 91

6

G6

Nm
5

1
m2

2

r6

þ 653

6

G6
Nm

4

1
m3

2

r6
þ ðm1 ↔ m2Þ: ð22Þ

This expression contains the genuine G6
N contribution

coming from graphs, without contributions generated from

lower-GN terms when using the equations of motion to

eliminate terms that, at least, have a quadratic dependence

on the acceleration. Together with the factorization theo-

rem, the above expressions constitute the second important

result of this Letter [46].

Check of test particle limit: it is possible to verify that the

coefficient of the term m6

1
m2 agrees with what can be

expected from the extreme mass ratio limit m2 ≪ m1. In

this limit, where only the graphs displayed in Fig. 2

contribute, it is possible to consider the body with mass

m2 as a test particle in the Schwarzschild metric generated

by the body with mass m1.

The action describing the dynamics of the test body has

still the form Spp described in Eq. (2), but with gμν given by
the Schwarzschild metric in harmonic coordinates (which is
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obtained from the traditional form by the simple

radial coordinate shift r → rþGNm1) instead of the

Minkowski one.

In the static limit, v2 ¼ 0, only the term g00 survives, and
the effective Lagrangian reads

L
m2≪m1

static ¼ −m2

ffiffiffiffiffiffiffiffiffiffi

−g00
p ¼ −m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
GNm1

r

1þ GNm1

r

s

: ð23Þ

By expanding this expression in GNm1=r, one obtains the

sequence ð1;− 1

2
; 1
2
;− 3

8
; 3
8
;− 5

16
; 5

16
;− 35

128
; 35

128
;− 63

256
;…Þ of

all the coefficients of the nPN static terms Gn
Nm

n
1
m2=r

n,

including the − 5

16
of the 5PN term reported in Eq. (22)

(where the potential is correctly reported with opposite sign

with respect to the Lagrangian term).

Conclusion.—We studied the two-body conservative

dynamics at fifth post-Newtonian order (5PN) in the

static limit within the EFT approach to general relativity.

We determined an essential contribution of the complete

5PN potential at OðG6

NÞ, coming from 154 Feynman

diagrams. We proved a factorization property of the

static diagrams at odd-PN order, and exploited it

to show that their contribution can be determined recur-

sively, from lower PN orders. The result of the static

potential at order G6
N is found to be finite and rational—a

property clearly inherited from the static G5
N sector—and

exhibits the expected Schwarzschild-like behavior in

the extreme mass ratio limit. The factorization theorem

can be applied as well to even-PN orders, where it

simplifies the evaluation of a large subset of the con-

tributing diagrams, therefore becoming a powerful tool to

systematize and to ease the computations at high-PN

orders.
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