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1. Introduction

Traditional slit-based dispersive spectrometers are
ill-suited for the task of diffuse source spectroscopy—
estimating the mean spectral density of a source that
is highly spatially multimodal and therefore large in
both spatial and angular extent. In this paper we
describe a spectrometer design that is optimized for
working with such sources.

Previously, we considered how the constant radi-
ance theorem complicates the characterization of dif-
fuse sources.1 Entropic considerations require that
the modal volume of a source cannot be reduced with-
out a concomitant reduction in power. As such, the
brightness of diffuse sources cannot be increased.

This is particularly unfortunate in the case of spec-
troscopy, as traditional spectrometers utilize narrow-
band spatial filtering to disambiguate between spatial
and spectral modes of the field. Consider the schematic
of a slit-based spectrometer shown in Fig. 1. The dis-
persive element produces a wavelength-dependent
shift of the image of the input slit. Since each spectral
channel must correspond to a unique shift, the spectral
width of a resolution element is directly proportional to

the slit width ��� � �x�. It is this relationship that
provides the challenge to diffuse-source spectroscopy.
Achieving a reasonable spectral resolution requires
that the input slit to the spectrometer be narrow.
However, because the source is diffuse, the radiation
field cannot be focused through the slit. Instead, only
a small fraction of the light can enter the instrument.
If the source is weak as well as diffuse, then often the
instrument is so photon starved that no spectral mea-
surement is possible.

The throughput of an optical instrument, some-
times referred to as the étendue, can be approxi-
mated as the product of the area of the input aperture
and the solid angle from which the instrument will
accept light:

G � A�. (1)

The acceptance solid angle is determined by the in-
ternal optics of an instrument. For a given optical
arrangement, the only way to increase the étendue of
the system is to increase the size of the input aper-
ture. However, as we have seen above, such an ap-
proach reduces the resolution of the spectrometer as
it increases the throughput.

The two main challenges in diffuse-source spectros-
copy are these:

1. Maximizing spectrometer throughput without
sacrificing spectral resolution

2. Maximizing the signal-to-noise-ratio (SNR) of
the estimated spectrum for a given system through-
put and detector noise
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Both problems have been long studied, and a num-
ber of ingenious designs have been proposed to ad-
dress one or both. In the language of the field, a
design that solves the first problem is said to have a
Jacquinot (or large-area or throughput) advantage.2
A design that solves the second problem is said to
have a Fellgett (or multiplex) advantage.3

The earliest approach to solving these problems
was through coded-aperture spectroscopy—the re-
placement of the input slit with a more complicated
pattern of openings. Golay created the first coded-
aperture spectrometer in the early 1950s,4,5 and ad-
vancements followed rapidly over the next several
decades.6 As the mathematical treatments gained
sophistication, the appeal of apertures based on
Hadamard matrices7 became apparent,8,9 and the
majority of coded-aperture spectrometers became
Hadamard-transform (HT) spectrometers.10–14 The
study of HT spectrometers remains active to this
day.15–18 Over most of their development, however,
HT spectrometers had only single-channel detec-
tors or limited arrays of discrete detectors. As a
result, most designs contained at least two coding
apertures—at both the input and the output planes.
Further, the designs usually required motion of one
mask with respect to the other. The majority of the
resulting instruments exhibited only the Jacquinot
advantage or the Fellgett advantage.

Aperture coding is not the only approach to solv-
ing these spectrometer design problems, however.
Interferometric spectrometers, such as the Fourier-
transform (FT) spectrometers,19 also can exhibit the
Jacquinot and Fellgett advantages. The FT spectrom-
eter, in fact, exhibits both. However, the majority of
FT spectrometers contain mechanical scanning ele-
ments.

In this paper we propose a new type of coded-
aperture spectrometer that exhibits both the Jacqui-
not and the Fellgett advantages and that does so with
a completely static design that is simpler, cheaper,
and more robust than the dynamic designs of most
HT and FT spectrometers. Our design concept cen-

ters around modern multichannel detectors. We call
this general design a static, multimodal, multiplex
spectrometer (static MMS).

In the remainder of this paper we derive a mathe-
matical model of a dispersive spectrometer and show
how [along with two-dimensional (2-D) multichannel
detectors] simple aperture codes can result in both
the Jacquinot and the Fellgett advantages. Further,
we derive several different classes of aperture pat-
terns that are of interest to us. Finally, we present
experimental results from one of the many static
MMS designs we have constructed.

2. Mathematical Treatment

A. System Model

We begin by considering the following simplified
model of a dispersive spectrometer:

I�x�, y�� ���� d�dxdy H�x, x�, y, y�; ��T�x, y�

� S�x, y; ��. (2)

Here H�x, x�, y, y�; �� is the kernel describing propa-
gation through the spectrometer, T�x, y� is a trans-
mission function describing the input aperture, and
S�x, y; �� is the input spectral density at position
�x, y�. We use unprimed variables for quantities de-
fined in the input plane, while primed variables are
used for the quantities in the detector plane. A simple
schematic of these coordinates is shown in Fig. 2.

We take H�x, y; �� � ��y � y� ���x � �x� 	 
��
��c��	 as the propagation kernel. This kernel repre-
sents a basic dispersive spectrometer with unity-
magnification optics, a linear dispersion � in the x
direction, and a center wavelength of �c for an aper-
ture at x � 0. Inserting this into Eq. (2) and perform-
ing the � and y integrals yield

I�x�, y�� ��dx T�x, y��S
x, y�;
x � x�



	 �c�. (3)

Fig. 1. Schematic of a traditional slit-based spectrometer. Inter-
nal optical elements form an image of the slit at wavelength-
dependent locations on the detector plane. Spectral resolution
comes from the capability for spatially distinguishing these differ-
ent locations. As such, the width of a spectral channel is propor-
tional to the width of the input slit.

Fig. 2. Definition of the coordinate systems used throughout the
paper.
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A traditional slit spectrometer takes the input ap-
erture as T�x, y� � ��x� so that

I�x�, y�� � S
0, y�; �c �
x�


 �. (4)

Thus the intensity profile in the detector plane is a
direct estimate of the spectral density at the slit lo-
cation.

However, as discussed above, the drawback to such
an approach is that the throughput of the system is
severely curtailed. We wish to consider more compli-
cated aperture patterns so that we can increase the
photon-collection efficiency of the system.

Our fundamental goal is to develop an aperture
code that allows us to estimate the mean spectrum
across an extended aperture, which we define as

Smean��� ��� dxdy S�x, y; ��. (5)

B. Coding Approach

In the more general case, to convert the intensity
profile of Eq. (3) into an estimate of the mean spec-
trum, we multiply it by an analysis function T̃�x�, y��
and integrate over the extent of the patterns in y�:

E�x�, x�� ��
y�min

y�max

dy� T̃�x � , y��I�x�, y��

��
y�min

y�max

dy��dx T̃�x � , y��T�x, y��

� S
x, y�;
x � x�



	 �c�. (6)

We then make the assumption that S�x, y�; �� is
constant, or slowly varying in y�. We can write this as

S�x, y�; �� � I�y��S�x; ��. (7)

Inserting this into Eq. (6), we find

E�x�, x�� ��
y�min

y�max

dy��dx T̃�x�, y��T�x, y��I�y��

� S
x;
x � x�



	 �c�. (8)

If T�x, y�� and T̃�x�, y�� are constructed such that

�
y�min

y�max

dy� T̃�x�, y��T�x, y��I�y�� � ���x � x��, (9)

then our estimate becomes

E�x�, x�� � ��dx ��x � x��S
x;
x � x�



	 �c�

� �S
x � ;
x � �x�



	 �c�. (10)

This result can be interpreted as a 2-D function con-
taining estimates of the input spectrum at different
input locations. A slice through this function at a
constant value of x� corresponds to the input spec-
trum at a particular value of x. In other words, if we
halt our analysis at this point, we have created a
one-dimensional (1-D) imaging spectrometer. We will
discuss the implications of this imaging capability in
a future publication. In this paper we wish to proceed
further and convert E�x�, x�� into an estimate of
Smean���.

Since the spectral estimates of Eq. (10) are
shifted with respect to each other, to calculate the
mean spectrum, we must integrate along the line
x� � �
 	 x�:

Smean��c � �� ��� dx�dx� ��x� � ��
 	 x���E�x�, x��

��dx� S�x � ; �c � ��. (11)

Thus with appropriately designed input apertures
and analysis functions, we can convert an intensity
profile at the detector plane into an estimate of the
input spectrum. But how does one perform this de-
sign subject to the constraint of Eq. (9)?

C. Orthogonal and Independent Column Codes

If we rewrite Eq. (9) in a form where x and x� are not
coordinates but instead parameters

�
y�min

y�max

dy� T̃x��y��Tx�y��I�y�� � ���x � x��, (12)

we arrive at an equation that is identical to the
orthogonality constraint for eigenfunctions in Sturm–
Liouville theory,20 where I�y�� is the weighting func-
tion and � is the norm. Therefore we can meet the
design requirement by basing the input aperture pat-
tern on any family of orthogonal functions.

Using the language of Sturm–Liouville theory, if T
and T̃ are the same set of codes, we say that the
system is self-adjoint. In this case the complete set of
codes in T can be viewed as abstract vectors defining
an orthogonal basis on a Hilbert space, and we refer
to a family of this type as an orthogonal column code.

If T and T̃ are not the same set of codes, the system
is said to be non-self-adjoint. Here the complete set of
codes in T can be viewed as abstract vectors defining
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a nonorthogonal basis on a Hilbert space. We refer to
a family of this type as an independent column code.

In Eq. (12) x and x� can be either continuous or
discrete parameters, depending on the eigenvalue
spectrum of the chosen family of functions. In the
discrete case the Dirac delta function ��x � x�� is
properly replaced with the Kronecker delta �x, x�. Fur-
ther, in this case the input mask and analysis pattern
will be pixelated in the x and x� directions, respec-
tively.

D. Heuristic Treatment

Considerable insight can be gained from a heuristic
view of orthogonal and independent column coding.
From Eq. (3), we see that, for the case of uniform
input intensity, the output intensity distribution is a
convolution of the input aperture and the input spec-
trum:

I�x�, y�� ��dx T�x, y��S
x � x�


 �. (13)

Thus the light falling at a given value of x� in the
detector plane arises from a combination of different
wavelengths passing through different locations on
the input aperture. A well-designed code allows us to
break this ambiguity and determine the spectral con-
tent of the light. By choosing a family of functions as
our transmission mask, we provide a unique code to
each possible x location in the input plane. We can
view the transmission pattern at position x as an
abstract vector |Tx�. The full family of transmission
patterns then forms a basis ��Tx�	. If we consider the
light distribution falling at a given x� location in the
detector plane as the abstract vector |Ix��, the contri-
bution from position x on the input aperture is given
simply by 
Tx�Ix��, the projection of |Ix�� onto the ad-
joint of the corresponding vector |Tx� �
Tx� � �Tx�†�.
Because only light of wavelength �x, x� � �x � x���

	 �c can propagate from x to x�, this inner product
also represents an estimate of S�x, �x, x��. Forming the
set of all inner products of the form 
Tx�Ix��, yields the
2-D spectral estimate function E.

3. Specific Mask Families

In Section 2 we demonstrated the appeal of using
orthogonal or independent column codes as aperture
mask patterns in dispersive spectroscopy. The num-
ber of possible families is, of course, infinite. In
this section we describe certain specific families of
interest.

A. Harmonic Masks

Above we allude to the fact that the intensity profile
I�y� takes the role of the weighting function in
Sturm–Liouville theory and, in conjunction with the
integration limits, controls the nature of the orthog-
onal functions. If we consider a uniform input inten-
sity, symmetric integration limits �ymin � �Y,
ymax � Y�, and a discrete eigenvalue spectrum, we get

the constraint (for the remainder of this section we
use y in place of y�, as there is no chance of confusion)

�
�Y

Y

dy T̃x��y�Tx�y� � ��x, x�, (14)

which is satisfied by the well-known harmonic func-
tions. For example (using �* to represent the non-
negative integers),

Tx, T̃x� ��cos
m y


Y ��, m � �* (15)

is an obviously self-adjoint solution to Eq. (14). How-
ever, there is a problem with this set of functions.
Because we are working with incoherent illumina-
tion, Tx can modulate only the light intensity, not the
field. As a result, we are forced to consider only func-
tions with values in the interval [0, 1].

This has a significant effect on the nature of the
solutions that we may find. It is not possible to find a
self-adjoint set of continuous functions that meets
this requirement. Since negative values are not al-
lowed, the inner product between any two such func-
tions is positive definite. Hence the functions in Tx

cannot also be the functions in T̃x�. We are forced to
consider an independent column code.

One possible independent column code based on
harmonic functions is

Tx ��1
2 �1 	 cos
m y


Y ���, m � �*. (16)

The corresponding analysis codes are then

T̃x� ��2 cos
m y


Y ��, m � �*. (17)

An aperture mask based on this independent column
code with m � 1 � 64 is shown in Fig. 3.

B. Legendre Masks

There is another set of famous orthogonal functions
that satisfies the constraint of Eq. (14)—the Legendre
polynomials

Pn�y� �
1

2n �
m�0

<n�2=

��1�m
nm�
2n � 2m
n � yn�2m, (18)

where


ab��
a!

�a � b� ! b! . (19)

As was the case with the harmonic masks, the func-
tions form a self-adjoint set of codes:
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Tx, T̃x� ��Pm
 y
Y��, m � �*. (20)

However, as above, these codes involve modulation
values that are not physically possible in an incoher-
ent system. Scaling to produce physically realizable
values results in an independent column code. One
possible version is

Tx ��1
2 �1 	 Pm
 y

Y���, m � �*. (21)

The corresponding analysis codes are then

T̃x� ��2Pm
 y
Y��, m � �*. (22)

An aperture mask based on this independent column
code with m � 1 � 64 is shown in Fig. 4.

C. Hadamard Masks

In the previous sections we consider only continuous
functions of y as possible code families. Based on the
heuristic insights of Subsection 2.D, it seems reason-
able to also consider discrete functions of y, particu-
larly the pixelated functions based on Hadamard
matrices.7 We define Hn as an order-n Hadamard
matrix and use the symbols Hn�:, m� and Hn�m, :� to
refer to the mth column and row of Hn, respectively.
Then

Tx, T̃x� � �Hn�:, m�	, m � �*; m � n (23)

is a self-adjoint set of codes. Given that the elements
of a Hadamard matrix are either 1 or �1, this is again
not realizable with incoherent illumination. Shifting
and scaling the code values results in a non-

self-adjoint independent column code

Tx ��1
2 �1 � Hn�:, m���, m � �*; m � n. (24)

With the corresponding analysis code

T̃x� � �2Hn�:, m�	, m � �*; m � n. (25)

This particular choice is known as an S matrix in the
traditional Hadamard literature. An aperture based
on an S-matrix code is shown in Fig. 5.

In all the aperture masks discussed so far, we shift
and scale the code values to achieve a physically re-
alizable modulation. In every case the application of

Fig. 3. Aperture pattern for an independent column code based
on harmonic functions. The codes were chosen such that the trans-
mission has physically realizable values in the interval [0, 1]. Note
that the pattern is continuous vertically but discrete horizontally.

Fig. 4. Aperture pattern for an independent column code based
on Legendre polynomials. The codes were chosen such that the
transmission has physically realizable values in the interval [0, 1].
Note that the pattern is continuous vertically but discrete horizon-
tally.

Fig. 5. Aperture pattern for an independent column code based
on a Hadamard S matrix. The codes were chosen such that the
transmission has physically realizable values in the interval [0, 1].
Note that the pattern is discrete both horizontally and vertically.
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a shift turns an orthogonal column code into an in-
dependent column code. However, if we had a method
for identifying the sign of a code value, then we could
apply the sign in the software (by multiplying the
measured value by �1 where appropriate). By adding
this extra computational step, we could achieve a
physically realizable aperture, avoid the need for a
shift, and have a self-adjoint set of codes.

Unfortunately, any row of the code contains both
positive and negative values. The multiplex nature of
the system then ensures that light from these differ-
ent regions are combined on the detector plane, mak-
ing it impossible to apply the appropriate weighting
in software. However, if we could segregate positive
and negative regions of the code onto separate rows,
then we could apply a weighting to entire rows in the
detector plane and achieve our goal. We refer to codes
that have been modified in this manner as row dou-
bled.

To row double a Hadamard matrix, we replace each
original row Hn�m, :� with two rows:

Hn�m, :� → �1�2 �1 	 Hn�m, :��
1�2 �1 � Hn�m, :���. (26)

If we denote a row-doubled version of Hn as Ĥn, then

Tx, T̃x� � �Ĥn�:, m�	, m � �*; m � n (27)

is a physically realizable orthogonal column code
when it is combined with the now-possible computa-
tional step of weighting the appropriate rows in the
measurement by �1. An aperture based on a row-
doubled Hadamard matrix is shown in Fig. 6.

D. Continuous Versus Discrete Codes

There is an important difference between the contin-
uous mask codes (harmonic and Legendre) and the
discrete codes (S matrix and row-doubled Had-
amard). In the case of the continuous code families,
there is an infinite number of possible codes
�m � �*�. This means that the underlying Hilbert
space is infinite dimensional. Any physical aperture
based on these codes must choose only a subset of the
possible code patterns. As a result, the implemented
basis is not complete, and Parseval’s relation will not
hold. In short, in the presence of noise the total power
associated with the different apertures after process-
ing will not necessarily equal the total power mea-
sured on the detector plane.

For the discrete codes, however, there is only a
finite number of code patterns in any given family
�m � n�. The underlying Hilbert space is then n di-
mensional, and an aperture can be designed that con-
tains all of the codes. In this case Parseval’s relation
will hold, and power is necessarily conserved during
the processing.

4. Implementation Issues

There are a variety of implementation issues in
which the performance of the real-world system must

deviate from the idealizations we consider above. In
this section we address the most important of these
issues.

A. Pixelization of the Detector Plane

In Section 2 we assume that we have access to the
detector-plane intensity distribution I�x�, y��. In real-
ity, we do not. Our measurement of the intensity
profile is downsampled by the pixel size on the detec-
tor array. This has several important implications for
the system. First, for the continuous codes, Eq. (14) is
no longer strictly true. It remains approximately
true, however, as long as we include only codes that
contain spatial frequencies below the Nyquist limit
defined by the pixel size.

Second, for the discrete codes, the aperture must be
designed so that when imaged onto the detector, the
features involve integral numbers of pixels in the y�
direction. This places performance requirements on
the manufacturing accuracy of the aperture and on
the magnification of the imaging optics in the spec-
trometer. Additionally, an aperture involving a dis-
crete code must be aligned with respect to the
detector plane such that the vertical divisions be-
tween features align with divisions between pixels.
This requires subpixel positioning capability on the
input aperture during construction and alignment.

B. Manufacturing Gray-Scale Patterns

Physical realities in Section 3 limit us to coding patterns
with values in the interval [0, 1]. However, the fact that
a given modulation pattern can be physically imprinted

Fig. 6. Aperture pattern for an orthogonal column code (in con-
junction with processing of the measured intensity) based on a
row-doubled Hadamard matrix. The codes were chosen such that
the transmission has physically realizable values in the interval
[0, 1]. Note that the pattern is discrete both horizontally and
vertically.
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on the input intensity has no bearing on the manufac-
turability of the required input aperture.

Arbitrarily patterned, continuous-tone masks with
transmissions ranging from 0% to 100% are indeed
possible. However, given the complexity of most or-
thogonal column code patterns, the cost to manufac-
ture transmission masks to the required precision is
prohibitive. One alternative is to convert the de-
signed continuous-tone mask into a half-toned ver-
sion. A small region of the continuous-tone pattern is
subdivided into an array of even smaller subregions.
Each of these subregions is assigned a transmission
of either 0% or 100%, such that the net transmission
in the region matches the gray-scale value of the
continuous-tone pattern. Provided that the conver-
sion happens on a spatial scale that is smaller than
the pixelization of the detector plane, no significant
difference should be detectable.

There are a variety of half-toning algorithms avail-
able for optimizing the conversion. We have recently
acquired a half-toned version of our harmonic mask
pattern described above and have begun testing.

C. Optical Distortions and Corrections

The internal optics of the spectrometer can have a
significant effect on the performance of the system.
The optical properties of a static MMS deviate from a
traditional instrument in a critical manner. Because
the MMS encodes spectral information across the de-
tector plane in a highly nonlocal way, optical errors
anywhere have a nonlocal effect on the reconstruc-
tion, introducing noise and errors at regions through-
out the spectral range.

What are the primary optical errors we must
worry about? We assume above that the incoher-
ent imaging kernel is given by H�x, x�, y, y�; �� �
��y � y����x � �x� 	 
�� � �c��	. Significant deviation
from this assumption leads to degraded (or errone-
ous) spectral reconstructions. Thus we have three
primary optical requirements:

1. The spectral resolution of the instrument
should be limited by the width of a feature on the
input mask �x. This requires that the size of the
incoherent impulse response be small compared with
�x. Further, the size of the impulse response should
not vary significantly across the input and output
fields.

2. The impulse responses in the x and y directions
should be uncorrelated. This requires that the optical
system have low distortion across the input and out-
put fields.

3. The input intensity profile should be unaffected
by propagation through the system (aside from a
wavelength-dependent shift in the x direction). This
requires that there be no field-dependent intensity
modulations (vignetting) in the system.

There is an additional way that our ideal imaging
kernel can break down. Unfortunately, this issue ex-
ists even for an ideal optical system and must be dealt
with either through special modifications to the hard-

ware or through software corrections of the detector
image prior to spectral reconstruction.

It is well known that imaging an aperture through
a diffraction grating results in an image that is
curved in the direction of the dispersion.21 In terms of
our imaging kernel, this manifests as a �c that is y
dependent. This curvature, which is sometimes re-
ferred to as smile distortion, is the result of the par-
ticular geometry of the wave-normal sphere. For
high-F�# systems, the curvature is minimal and can
be ignored. However, since we are concerned with
maximizing étendue, a static MMS is almost always
constructed at a low F�#. As a result, the curvature is
significant, as can be seen in Fig. 7. This curvature
can be corrected in two possible ways: either the in-
put aperture can be predistorted to compensate for
the applied curvature, or the collected image can be
computationally processed to straighten the patterns
prior to reconstruction. We choose the latter ap-
proach. The smile distortion is a simple quadratic.
During the calibration phase, we fit the leading edge
of an aperture image to a parabola and determine
the required circular shift to apply to each row of the
image to straighten the patterns. The result of the
procedure is shown in Fig. 8.

5. Experimental Results

Over the past eighteen months, we have designed
and constructed more than fifteen different spectrom-
eters based on the ideas and codes described above
(specifically, row-doubled implementations of the
Hadamard masks described in Subsection 3.C). The
different instruments have been used for Raman,
fluorescence, and absorption spectroscopy; have
spanned the spectral range from UV to the near-IR;
have demonstrated both reflective and transmissive
geometries; and have achieved spectral resolutions in
the range �� � 0.1�3 nm. The performance of the
instruments has invariably been excellent, signifi-

Fig. 7. Raw intensity image captured at the focal plane. The smile
distortion is clearly visible. The spectral source has only sharp
spectral lines, so the image contains only a few, crisp images of the
mask pattern.
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cantly outperforming traditional spectrometers on
diffuse sources.

This section presents a series of experimental re-
sults collected on one of the static MMS systems. The
primary goal is to clearly demonstrate the existence
of the Jacquinot and Fellgett advantages and to show
that the performance scales as expected.

In all the experiments below, the spectral source
for the experiments was a xenon discharge lamp op-
erated in conjunction with a diffuser. The light from
the diffuser was allowed to fall directly on the mask
aperture—no relay optics of any kind were used. Un-
less otherwise noted, the CCD integration time was
160 ms. The particular spectrometer has a spectral
range of �� � 775–900 nm. The spectral resolution
depends on the mask, and for the majority of the
masks used, it was �� � 0.65 nm. The masks con-
sisted of chrome deposited on a quartz substrate. The
smallest mask feature was 36 �m, corresponding to 4
pixels on the CCD.

Figure 9 compares the spectrum reconstructed by
using the mask generated from Ĥ40 and from a slit
with a width �36 �m� equal to the feature size of the
mask. Clearly, the coded aperture collects significantly
more light without sacrificing spectral resolution.

We tested row-doubled Hadamard masks, Ĥn, of a
variety of orders �n � 40, 32, 24, 16, 12�. In Fig. 10
we plot the results from the different masks. The
signal strength increases as the mask order in-
creases, as we would expect. However, determining
the throughput advantage is complicated by the fact
that as the mask order increases, there is an increase
not only in the number of openings on a given row of
the mask but also in the number of mask rows. To
check the throughput scaling, we normalize the total
counts collected for a given mask by dividing by the
total counts collected with a slit that occupies an
equal number of rows on the CCD. In a row-doubled
Hadamard mask, there are N�2 openings on any row.
As such, we would expect the normalized counts to

also scale by this amount. The results are plotted in
Fig. 11.

We see that the observed scaling is approximately
N�4, rather than the expected N�2. We believe the
discrepancy can be attributed to the optical system in
the spectrometer. Because the reduction in light col-
lection is a constant factor of �2 regardless of mask
size, we can rule out vignetting as the cause. Rather,
we believe the effect arises from the modulation
transfer function (MTF) of the optics. In the horizon-
tal (x) direction, the Hadamard masks and the slit
have the same range of spatial frequencies. In the
vertical (y) direction, however, the slit contains only a
dc component, while the masks contain high spatial
frequencies from the row doubling. Experimentally,

Fig. 8. Corrected intensity image after smile distortion was re-
moved via software processing. The leftmost edge of the sharp
mask image in Fig. 7 was fit to a parabola to determine the amount
of shift to be applied to each row of the image.

Fig. 9. Comparison between the reconstructed spectrum from a
mask based on Ĥ40 and one based on a slit aperture. The mask
aperture clearly captures significantly more light, while maintain-
ing an equivalent spectral resolution.

Fig. 10. Comparison of reconstructed spectra from row-doubled
Hadamard masks of various orders (n � 40, 32, 24, 16, 12). The
system throughput increases as the mask order increases, as ex-
pected. The codes increase the system throughput without affect-
ing spectral resolution.
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when we compare the counts on a single row of the
CCD between the mask and the slit, we observe a
ratio of approximately N�4 as measured for the entire
pattern. If we instead compare the counts on a row
between the mask and a square pinhole, we observe
a ratio of approximately N�2 as theory would predict.
Thus we conclude that the discrepancy is related to
the MTF of the optical system.

Finally, we attempt to quantify the improvement
in the SNR that accompanies the increase in through-
put. Figure 12 shows a region of the xenon spectrum
containing a very small peak (so weak that it is not
visible at the scales of the previous figures). The top
graph of Fig. 12 shows the peak as reconstructed by
the row-doubled, order-40 Hadamard mask. The bot-

tom plot is the peak as measured by the slit aperture.
If we define the SNR of the peak to be its height
divided by the RMS value of the region near the peak,
we find that the SNR for the mask aperture is �23.7,
while the SNR for the slit is �7.0. This is a SNR gain
of 23.7�7.0 � 3.4. From Fig. 11, we see that the mask
provided a throughput advantage of �10.3. For a
shot-noise process, we would expect this throughput
gain to result in an SNR gain of �10.3 � 3.2, which is
indeed close to the observed value.

The capability to dramatically increase the
throughput of the system clearly demonstrates the
Jacquinot advantage of the system. The presence of
the Fellgett advantage is also easily deduced. By hav-
ing multiple openings on a row of the input mask, any
detector pixel sees a combination of spectral chan-
nels. As such, the signal level on the pixel is increased
over what it would be in the absence of multiplexing.
Since the additive detector noise remains constant,
the SNR on the pixel must increase. Thus our system
also exhibits the Fellgett advantage.

6. Summary

In this paper we have described a new class of coded-
aperture spectrometer, which we refer to as a static
MMS. A static MMS is optimized for working with
diffuse sources and achieves both the Jacquinot and
the Fellgett advantages in a single shot. Experimen-
tal results support these claims. The result is an
inexpensive, mechanically robust, high-performance
spectrometer.

The required aperture patterns for a static MMS
are based on orthogonal function theory and can be
generated for a variety of schemes. We have pre-
sented several specific families of particular interest.

In future publications we will discuss the special
imaging properties of spectrometers based on these
apertures, as well as the application of static MMS to
chemometric studies of biological systems.

This research was supported by a grant from the
National Institutes of Health and the National Insti-
tute on Alcohol Abuse and Alcoholism.
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