
Static Validation of Security Protocols∗

Chiara Bodei1, Mikael Buchholtz2, Pierpaolo Degano1,

Flemming Nielson2, Hanne Riis Nielson2

1 Dipartimento di Informatica, Università di Pisa

Via F. Buonarroti 2, I-56127 Pisa, Italy. – {chiara,degano}@di.unipi.it

2 Informatics and Mathematical Modelling, Technical University of Denmark

Richard Petersens Plads bldg 321, DK-2800 Kongens Lyngby, Denmark

– {mib,nielson,riis}@imm.dtu.dk

Draft of March 8, 2004
Please do not distribute

Abstract

We perform a systematic expansion of protocol narrations into terms
of a process algebra in order to make precise some of the detailed checks
that need to be made in a protocol. We then apply static analysis technol-
ogy to develop an automatic validation procedure for protocols. Finally,
we demonstrate that these techniques suffice for identifying a number of
authentication flaws in symmetric and asymmetric key protocols such as
Needham-Schroeder symmetric key, Otway-Rees, Yahalom, Andrew Se-
cure RPC, Needham-Schroeder asymmetric key, and Beller-Chang-Yacobi
MSR.

1 Introduction

Motivation. Security is a growing concern in the development of software
utilising the internet and supporting mobility. An important aspect is to ensure
the security of the protocols used for communication: that they do guarantee
the necessary amount of confidentiality, authenticity, message integrity, and
availability.

Protocol analysis is a hard problem for several reasons. One is that often it is
difficult to make precise what are the properties one expects from the protocols;
indeed there are examples of protocols that were considered to be secure for
many years and then had their security compromised by a slight change in the
expectations and a brilliant idea for how to exploit it. Another reason is that

∗Supported in part by the Information Society Technologies programme of the European
Commission, Future and Emerging Technologies, under the IST-2001-32072 project DEGAS
and IST-1999-29075 project SecSafe; the Danish SNF-projects SecSaf and LoST; and the
Italian MIUR-project MEFISTO. Parts of this paper appeared in [11].

1

protocols are often described somewhat informally using protocol narrations
that are imprecise about some of the finer details concerning the deployment of
the protocol. A third reason is that one should guard against all possible kinds
of misuse, and it is not easy to give a finitary account of the infinitely many
environments in which the protocol will be used.

In practice the problem is even worse. While an implementation of a flawed
protocol is likely to lead to an insecure system one should not take it for granted
that the implementation of a correct protocol will lead to a secure system. There
are far too many potential errors that a programmer can make, as a result of a
lack of understanding of the ingredients that actually make the protocol secure,
and as a result of sloppy programming; the infamous buffer overflow is a good
example of the latter. While our techniques show promise of dealing also with
these issues we shall not consider them any further in this paper.

Overview of contribution. We base ourselves on standard protocol narra-
tions and extend them (in Section 2) with annotations that make it clear how
to deal with some of the tests that need to be performed and how to express the
authentication intentions of the protocol. We then systematically translate an-
notated protocol narrations into terms of the process algebra LySa (introduced
in Section 3). This is done in such a way that the precision of the extended
protocol narration is left unchanged and the intentions can be enforced by a
reference monitor that aborts undesired executions. To keep the presentation
simple, we consider first a symmetric encryption schema and we then incremen-
tally extend the calculus with asymmetric keys [33].

Next we develop (in Section 4) a static analysis for tracking the set of en-
crypted messages that are successfully being decrypted at each relevant point.
We show the semantic correctness of the analysis and demonstrate that best
solutions (in the manner of principal types for type systems) always exist. In
view of the approximative nature of static analysis the detailed formulation of
semantic correctness makes it clear that the analysis might describe a too large
set of messages but that no successfully decrypted messages are ever left out.

This allows us (in Section 5) to deal with the general problem of how to give
a finite account of an infinity of hostile environments. We adapt the classical
approach of Dolev and Yao [34] to model the ability of attackers to send and
receive messages and to perform encryptions as well as decryptions. We formally
show that the approach realises the notion of “hardest attackers” [55] developed
for firewall security in Mobile Ambients.

We then address authenticity, and we see it as a definition/use problem
in a world that implicitly includes the Dolev-Yao attacker, as sketched above.
Indeed, we statically verify whether a message encrypted by principal A and
intended for principal B does indeed come from A and reaches B only. So the
two share a secret and authenticate each other. This suffices for dealing with
authenticity problems in the protocols mentioned above, in particular with our
running example, the Wide Mouthed Frog protocol. Because of the approxima-
tive nature of static analysis mentioned above, we may well fail to authenticate

2

a protocol that is in fact correct but we shall never authenticate a protocol that
is in fact flawed.

Our analysis is fully automatic and always terminating; we briefly outline
(in Section 6) our implementation that runs in polynomial-time in the size of
the LySa formulation of the protocol. We follow the approach taken in [56],
based on tree grammars, for translating the problem from an infinite universe
to a tree grammar problem over a finite universe. Actual implementations are
supported by the Succinct Solver [57]; while the specification of the analysis
is compositional the actual solving procedure requires the entire program (and
clauses for Dolev-Yao) to be present before computing the solution.

We extend (in Section 8) LySa with asymmetric keys, and we show that
only small incremental additions are needed to analyse protocols that use this
encryption schema. Our approach proves then to be rather flexible; as a matter
of fact, our analysis can be further extended with other features typically used
in protocol design, see [17].

We demonstrate (in Section 7) that our technique is strong enough to report
the known problems in symmetric key protocols such as Needham-Schroeder
[52, 53], Otway-Rees [60], Yahalom [18] and Andrew Secure RPC [67]. Also,
we analyse asymmetric key protocols, and we discuss the outcome on Needham-
Schroeder (public key)[52, 45] and the Beller-Chang-Yacobi MSR [8]. The latter
uses a combination of asymmetric and symmetric key cryptography and here
our technique proved powerful enough to discover a flaw that, to the best of our
knowledge, has not previously been reported in the literature. Furthermore,
our technique is also strong enough that it does not report flaws in suitably
amended versions of these protocols.

We conclude with a discussion on related work (in Section 9) and with an
assessment of our approach and its ability to deal with related security notions
(in Section 10).

The Appendix A summarises the protocol narrations considered, and the
Appendix B compares LySa with the Spi-calculus. Proofs of theorems and
lemmata presented throughout the paper are collected in Appendix C.

2 Expanding Protocol Narrations

In the literature, security protocols are usually described using an informal
notation that leaves implicit some assumptions and does not completely state
the actions internal to the principals, as discussed in [2].

Parties in a security protocol interact with an uncertain environment, where
some of the participants are not fully trusted or maybe hostile. Consequently,
even though carefully designed, protocols may have flaws, allowing malicious
agents or attackers to violate security. An attacker – according to the classi-
cal Dolev and Yao model [34] – gaining some control over the communication
network, is able to intercept or forge or invent messages to convince agents to
reveal sensitive information or to believe it is one of the legitimate agents in the
session.

3

Consider the following version [5] of the Wide Mouthed Frog protocol [18]
(abbreviated hereafter WMF) aiming at establishing a secret (symmetric) session
key K between the two principals A and B sharing master keys KA andKB ,
respectively with a trusted serverS:

1. A→ S : A, {B,K}KA

2. S → B : {A,K}KB

3. A→ B : {m1, ...,mk}K

Usually protocols narrations come along with additional assumptions. For the
WMF, one has to say that in the first message A sends to S its name, and then
a fresh key K and the name of the intended receiver B, encrypted under the
key KA. In the second one, S forwards the key and the initiator name A to B,
encrypted under the key KB . Finally, A sends B a long sequence of messages
m1, ...,mk encrypted under the session key K.1

Bridging the gap between informal and formal specification is the first and
crucial step in programming protocols. As seen above, protocol narrations only
list the messages to be exchanged, leaving it unspecified which are the actions
to be performed in receiving these messages (inputs, decryptions and possible
checks on them), e.g. B should use the content of the second message to decrypt
the third message. Furthermore, security goals are left implicit.

As a first step, we unfold the protocol narration in the following extended
narration, where we distinguish between outputs and the corresponding inputs,
and between encryptions and the corresponding decryptions. Also, we are ex-
plicit on which keys are fresh and on which checks are to be performed on
received values.

Furthermore, messages are enriched with source address as well as destina-
tion address (i.e. the intended ones in an honest exchange), as in IP versions 4
and 6. They are passed in clear and are therefore forgeable. Thus, the general
form will be: source, destination,message1 , · · · ,messagek followed by assump-
tions or checks in square brackets:

1. A→ : A,S,A, {B,K}KA
[assuming K is a new key]

1′. → S : xA, xS , x
′
A, x [check xS = S, xA = x′A]

1′′. S : decrypt x as {xB , xK}KxA

2. S → : S, xB , {xA, xK}KxB

2′. → B : yS , yB , y [check yB = B]
2′′. B : decrypt y as {yA, yK}KB

3. A→ : A,B, {m1, · · · ,mk}K

3′. → B : zA, zB , z [check zB = B, zA = yA]
3′′. B : decrypt z as {z1, · · · , zk}yK

The first line describes the actions of the sender of the message, together
with the assumption of K being a new key while the next two lines describe

1When analysing protocols, we set k to be a large constant to reduce the likelihood of
flaws due to spurious interactions between the key and the message exchange phases of the
protocol.

4

the actions of the recipient. After each input we check whether or not the
input was actually meant for the recipient (the first checks in lines 1′, 2′ and
3′). Additionally, line 1′ checks the internal consistency of the message and line
3′ checks that the identity of the sender corresponds to the one found in the
second message. Note that the checks are local to the recipient and do not make
the assumption that a recipient has a priori knowledge about the sender of the
message such as checking that xA = A in line 1′.

As a second step, we look for a way of including the specification of the
security goals to be verified. This implies a further refinement of our narra-
tions in terms of assertions for specifying properties. Here, we are interested
in authentication properties that rely on the fact that sensible information is
sent and received by the principals intended by the protocols. That is, a princi-
pal would like to ascertain the origin of a message being received, and also the
destination of a message being sent. Consequently, we refine the narration by
specifying origin and destination of encrypted messages. Back to our example,
we will write, e.g., {B,K}KA

[dest S] to say that in line 1 the encrypted value
is intended for S only. Correspondingly, the decrypt action of S in line 1′′ will
be annotated with [orig xA].

For the WMF protocol above we obtain the following extended narration:

1. A→ : A,S,A, {B,K}KA
[dest S] [assuming K is a new key]

1′. → S : xA, xS , x
′
A, x [check xS = S, xA = x′A]

1′′. S : decrypt x as {xB , xK}KxA
[orig xA]

2. S → : S, xB , {xA, xK}KxB
[dest xB]

2′. → B : yS , yB , y [check yB = B]
2′′. B : decrypt y as {yA, yK}KB

[orig S]

3. A→ : A,B, {m1, · · · ,mk}K [dest B]
3′. → B : zA, zB , z [check zB = B, zA = yA]
3′′. B : decrypt z as {z1, · · · , zk}yK

[orig zA]

Assertions are meant to be added for verification purposes by someone with a
global view of the intentions of the protocol and are therefore not restricted
to only use local information (e.g. we can have the assertion [orig S] in line
2′′). Other properties, e.g. confidentiality or freshness of various data, can be
addressed in the same style (see the Conclusion and [17]).

Note that the two steps leading to an extended protocol narration are system-
atic. This approach is similar to the one taken by Casper [46], CAPSL [31, 24],
CVS [35], and AVISS [7]; see Section 9 for a comparison.

3 The LySa-calculus

The considerations of Section 2 motivate defining a new process algebra, LySa.
It is based on the π-calculus, but it differs from this and from the Spi-calculus
essentially in two aspects. One difference is the absence of channels: LySa as-
sumes to have one global communication medium to which all processes have
access. In our view encodings of protocol narrations should not use channels

5

because the privacy offered by channel based communication may give a degree
of security not matched by e.g. ethernet based implementations, where any one
can eavesdrop or act as an active attacker; indeed, private channels are often
used explicitly as if they were cryptographic keys. Of course, private channels
are relevant when modelling intranets: extending LySa with channels only re-
quires minor adjustments to our treatment as demonstrated, e.g. in [17]. The
second difference of LySa is that the tests associated with input and decryption
are naturally expressed using pattern matching. A more detailed comparison
with the Spi-calculus can be found in Appendix B.

Syntax. LySa consists of terms and processes; values then correspond to
closed terms, i.e. terms without free variables. Values are used to code keys,
nonces, messages etc. The syntax of terms E is as follows:

E ::= terms
n name (n ∈ N)
x variable (x ∈ X)
{E1, · · · , Ek}E0

symmetric encryption (k ≥ 0)

Here N and X denote sets of names and variables, respectively. Encryptions
are tuples of terms E1, · · · , Ek encrypted under a term E0 representing a shared
key. We adopt an assumption of perfect cryptography.

The syntax of processes P is mostly familiar to the polyadic Spi-calculus [5]:

P ::= processes
0 nil
〈E1, · · · , Ek〉. P output
(E1, · · · , Ej ; xj+1, · · · , xk). P input (with matching)
P1 | P2 parallel composition
(ν n)P restriction
!P replication
decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0

in P
symmetric decryption (with matching)

The set of free variables, resp. free names, of a term or a process is written fv(·),
resp. fn(·), and is defined in the standard way. As usual we omit the trailing 0

of processes.
For ease of presentation here we restrict ourselves to a very simple form of

patterns on the form (E1, · · · , Ej ;xj+1, · · · , xk), to be matched against a k-tuple
of values (E′

1, · · · , E
′
k). The intuition is that the matching succeeds when the

first 1 ≤ i ≤ j values E′
i pairwise correspond to the values Ei, and the effect is to

bind the remaining k−j values to the variables xj+1, · · · , xk. Syntactically, this
is indicated by using a semi-colon to separate the components where matching
is performed from those where only binding takes place. A more flexible choice
is explored in [17].

In our calculus we do not have other data constructors than encryption. We
could easily add numbers and operations on these as well as other constructors

6

and destructors but we do not really need to do so in order to model protocol nar-
rations: we can obtain the same effect using encryption and decryption. Taking
pairs as an example, and ignoring the annotations, a pair (E,E ′) can be rendered
as {E,E′}PAIR, and a selection mechanism such as split E as (x1, x2) in P can
the be rendered as decrypt E as {; x1, x2}PAIR in P assuming of course that PAIR

is a name used only for this purpose. We can also deal with history-dependent
encryption in the style of [13].

Assertions for origin and destination To describe in LySa the intentions
of protocols, we decorate their text with labels, called crypto-points, and with
assertions specifying the origin and destination of encrypted messages. Crypto-
points ` are from some enumerable set C (disjoint from N and X) and are
mechanically attached to program points where encryption and decryption oc-
cur. Syntactically, when we make an encryption, we have a LySa term on the
form:

{E1, · · · , Ek}
`
E0

[dest L]

where the assertion [dest L] specifies the intended crypto-points L ⊆ C for de-
cryption of the encrypted value.

Similarly, an encryption occurring in a decrypting process is on the form:

decrypt E as {E′
1, · · · , E

′
j ; xj+1, · · · , xk}

`

E′

0
[orig L] in P

where [orig L], specifies the encryption points L ⊆ C at which E is allowed to
have been encrypted.

Notational conventions. We often write [dest `] and [orig `] instead of the
more cumbersome [dest {`}] and [orig {`}].

We shall write bb · cc for a term with all annotations removed; in particular

bb{E1, · · · , Ek}
`

E0
[dest L]cc = {bbE1cc, · · · , bbEkcc}bbE0cc

.
To simplify the definition of the control flow analysis in Section 4, we dis-

cipline the α-renaming of bound names. We stipulate that for each name n
there is a canonical representative bnc, and we demand that two names are
α-convertible only when they have the same canonical name. A similar assump-
tion applies to variables. The function b·c is then extended homomorphically
to terms: bEc is the term where all names and variables are replaced by their
canonical versions. Not to further overload our notation, we simply write E for
bEc when unambiguous. Finally, we assume that the bound names of a process
are renamed apart and that they do not clash with the free names; much in the
same way variables are assumed to be all distinct.

Semantics. Following the tradition of the π-calculus, we shall give LySa a
reduction semantics. We use the standard notion of substitution, P [E/x], and
we slightly modify the usual structural congruence to take care of our disciplined
treatment of α-conversion.

More precisely, structural congruence, ≡, is defined on processes to be the
least congruence satisfying the following conditions.

7

(Com)

∧j
i=1 bbEicc = bbE′

icc

〈E1, · · · , Ek〉. P | (E′
1, · · · , E

′
j ; xj+1, · · · , xk). Q→R P | Q[Ej+1/xj+1, · · · , Ek/xk]

(Decr)

∧j
i=0 bbEicc = bbE′

icc ∧ R(`,L′, `′,L)

decrypt {E1, · · · , Ek}
`

E0
[dest L] as {E′

1, · · · , E
′
j ; xj+1, · · · , xk}

`′

E′

0
[orig L′] in P

→R P [Ej+1/xj+1, · · · , Ek/xk]

(Par)
P →R P ′

P | Q→R P ′ | Q

(Res)
P →R P ′

(ν n)P →R (ν n)P ′

(Congr)
P ≡ Q ∧ Q→R Q′ ∧ Q′ ≡ P ′

P →R P ′

Table 1: Operational semantics, P →R P ′, parameterised on R.

• P ≡ Q if P and Q are disciplined α-equivalent;

• (P/≡, |, 0) is a commutative monoid;

• (ν n)0 ≡ 0,
(ν n)(ν n′)P ≡ (ν n′)(ν n)P , and
(ν n)(P | Q) ≡ P | (ν n)Q if n 6∈ fn(P);

• !P ≡ P | !P

The reduction relation →R is the least relation on closed processes, i.e.
processes with no free variables, that satisfies the rules in Table 1, where we
assume to apply our disciplined α-conversion whenever needed.

As far as the semantics is concerned, we consider two variants. One takes
advantage of annotations, the other one discards them:

• the reference monitor semantics, written P →RM Q, takes RM(`,L′, `′,L) =
(` ∈ L′ ∧ `′ ∈ L); thus, decryptions may only occur at crypto-points des-
ignated when the corresponding encryptions were made, and vice-versa,
otherwise the execution is stopped;

• the standard semantics, written P → Q, takes, by construction, R to be
universally true.

The rule (Com) expresses that an output 〈E1, · · · , Ej , Ej+1, · · · , Ek〉. P is
matched by an input (E′

1, · · · , E
′
j ; xj+1, · · · , xk).Q in case the first j elements are

pairwise the same. More precisely, we need to compare Ei with all annotations
removed with E′

i with all its annotations removed and to express this we use
the operation bb · cc. When the matchings are successful each Ei is bound to each
xi.

Similarly, the inference rule (Decr) expresses the result of matching the term

{E1, · · · , Ej , Ej+1, · · · , Ek}
`

E0
[dest L], resulting from an encryption, against the

8

pattern in decrypt E as {E′
1, · · · , E

′
j ;xj+1, · · · , xk}

`′

E′

0

[orig L′] in P , i.e. the

pattern occurring in the corresponding decryption. As it was the case for com-
munication the bbEicc must equal the corresponding bbE ′

icc for the first j compo-
nents and additionally the keys must be the same, i.e. bbE0cc = bbE′

0cc — this
models perfect symmetric cryptography. When successful, each Ei is bound to
each xi. In the reference monitor semantics we ensure that the crypto-point of
the encrypted value is acceptable at the decryption (i.e. ` ∈ L′) and that the
crypto-point of the decryption is acceptable for the encryption (i.e. `′ ∈ L). In
the standard semantics the condition R(`,L′, `′,L) is universally true and thus
can be ignored. The rules (Par), (Res) and (Congr) are standard.

As noted above, both semantics can be easily extended to deal with more
general or different annotations; we shall add the relevant rules to treat public
key cryptography in Section 8.

The LySa specification. We are now ready to systematically translate the
annotated protocol narrations from Section 2 into LySa.

Protocol narrations usually focus on roles, i.e. initiator (A), responder (B),
server (S). Actually, each principal may play many different roles. In the LySa

specification we shall be explicit about using the protocol in a more general
setting where many principals may use the protocol at the same time. We shall
assume the existence of n+2 principals named Ii (i ∈ {-1, 0, 1, · · · , n}); the name
Ii can be thought of as the IP-address of the principal. Each of the principals
I1, · · · , In may serve in the initiator role of A as well as in the responder role
of B; the principal Ii will present itself as (Ii, A) when serving as the initiator
and as (Ii, B) when serving as the responder. We assume that there is a single
server, which is modelled in the same way: its name is I-1 and it will serve in
the role of server S. Each principle can participate in an unlimited number of
concurrent runs.

In the LySa specification we only explicitly describe the legitimate part of
the system. Any principals outside the legitimate part (i.e. potential attackers)
are given the canonical name I0 and may take on any role.

9

The LySa specification of the WMF protocol is:

0. (νn
i=1K

A
i)(νn

j=1K
B
j)

1. |ni=1 |n
j = 1
j 6= i

! (ν Kij)

〈Ii, A, I−1, S, Ii, A, {Ij , B,Kij}
Ai

KA
i

[dest S]〉.

3. (ν m1ij) · · · (ν mkij)

〈Ii, A, Ij , B, {m1ij , · · · ,mkij}
Ai

Kij
[dest Bj]〉

2′. | |nj=1 ! (I−1, S, Ij , B; yj).

2′′. |ni=-1 decrypt yj as {Ii, A; yK
ij }

Bj

KB
j

[orig S] in

3′. (Ii, A, Ij , B; zij).

3′′. decrypt zij as {; zm1

ij , · · · , zmk
ij }

Bj

yK
ij

[orig Ai] in 0

1′. | |ni=0 ! (Ii, A, I−1, S, Ii, A; xi).

1′′. |nj=0 decrypt xi as {Ij , B; xK
ij}

S

KA
i

[orig Ai] in

2. 〈I−1, S, Ij , B, {Ii, A, x
K
ij}

S

KB
j

[dest Bj]〉

Here the checks of the extended narration above are performed by matching on
inputs and decryptions.2 It may be regarded as the main design goal of LySa,
and of the translation of protocol narrations, that we separate the different
branches of the matching to cater for a simple and efficient analysis.

The first line of the LySa specification ensures that the master keys between
the legitimate principals and the server are unknown to outsiders; we assume
that different keys KA

i and KB
i are used for the two roles of the principals. The

same happens in line 1 for session keys, thereby taking care of the annotation
[assuming K is a new key] put in the extended notation.

The next three lines model the principals Ii in their initiator roles. We let i
range from 1 to n since we only model the legitimate part of the system. Each
initiator wants to engage in a communication with any of the other legitimate
principals Ij in their responder roles so we let j range from 1 to n as well.3An
encrypted message sent from the principal Ii in the initiator role is labelled with
the crypto-point Ai and annotated with the intended crypto-point for decryption
such as S in line 1 above (strictly speaking the singleton set {S}); also, for the
sake of readability we are overloading the symbol S to denote both the name of
the server and a crypto-point, while we should instead use a different symbol
for the second, e.g. `S . Correspondingly, the principal Ii in the responder role
uses the crypto-point Bi, while the server uses the crypto-point S.

The next four lines model the legitimate principals Ij in their responder
roles. The match of the first decryption (line 2′′) reveals the identity of the
sender and here we are prepared to receive input from any agent i.e. we let
j range from -1 to n. This follows the general scheme that whenever we do
an input or a decryption we never restrict our attention to the legitimate part

2For simplicity, LySa only allows matching on prefixes of tuples. Consequently, we may
occasionally have to rearrange the order of the elements of tuples though this has not been
necessary for the WMF protocol.

3A principal does not want to authenticate itself; hence j 6= i. If needed, e.g. for checking
confidentiality as in [44], we can remove this condition.

10

of the system; semantically our encoding is indistinguishable from writing one
input, which matches the name of any principal.

The last three lines model the server. It is ready to handle requests from
principles inside as well as outside the legitimate part of the system, and so
0 ≤ i, j ≤ n; however, it does not accept messages from itself. Note that also
agents outside the legitimate part of the system share master keys KA

0 and KB
0

with the server.

4 Control Flow Analysis

The aim of the analysis is to safely approximate when the reference monitor may
abort the computation of a process P . The approximation is represented by a
triple (ρ, κ, ψ) (resp. a pair (ρ, ϑ) when analysing a term E), called estimate for
P (resp. for E), that satisfies the judgements defined by the axioms and rules
of Table 2.

Terms. For each term E, the analysis will determine a superset of the possible
canonical values that it may evaluate to. For this we keep track of the potential
values of variables and to this end we introduce a global abstract environment :

• ρ : bXc → ℘(V) maps the canonical variables to the sets of canonical
values that they may be bound to.

Here we write V for the set of canonical terms with no free variables. The
judgement for expressions takes the form

ρ |= E : ϑ

and expresses that ϑ ⊆ V is an acceptable estimate of the set of values that
E may evaluate to in the abstract environment ρ. The judgement is defined
by the axioms and rules in the upper part of Table 2. Note that we use the
operation b·c to get hold of the canonical names and variables. Basically, the
rules amount to demanding that ϑ contains all the canonical values associated
with the components of a term; indeed, when fv(E) = ∅ we have ρ |= E : {bEc}.
In the sequel we shall use two kinds of membership tests: the usual V ∈ ϑ that
simply tests whether V is in the set ϑ and the faithful test V E ϑ that holds
if there is a value V ′ in ϑ that equals V when the annotations are ignored,
formally:

V E ϑ iff ∃V ′ ∈ ϑ : bbV cc = bbV ′cc

Processes. In the analysis of processes we focus on which values can flow on
the network:

• κ ⊆ ℘(V∗): the abstract network environment that includes all the message
sequences that may flow on the network.

11

bnc ∈ ϑ

ρ |= n : ϑ

ρ(bxc) ⊆ ϑ

ρ |= x : ϑ

∧k
i=0 ρ |= Ei : ϑi ∧

∀V0, V1, · · · , Vk : ∧k
i=0 Vi ∈ ϑi ⇒ {V1, · · · , Vk}

`

V0
[dest L] ∈ ϑ

ρ |= {E1, · · · , Ek}
`

E0
[dest L] : ϑ

(ρ, κ) |=RM 0 : ψ
(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM (ν n)P : ψ

∧k
i=1 ρ |= Ei : ϑi ∧

∀V1, · · · , Vk : ∧k
i=1 Vi ∈ ϑi ⇒ 〈V1, · · · , Vk〉 ∈ κ ∧

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM 〈E1, · · · , Ek〉. P : ψ

∧j
i=1 ρ |= Ei : ϑi ∧

∀〈V1, · · · , Vk〉 ∈ κ : ∧j
i=1 Vi E ϑi ⇒ ∧k

i=j+1 Vi ∈ ρ(bxic) ∧

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM (E1, · · · , Ej ; xj+1, · · · , xk). P : ψ

(ρ, κ) |=RM P1 : ψ ∧ (ρ, κ) |=RM P2 : ψ

(ρ, κ) |=RM P1|P2 : ψ

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM !P : ψ

ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

∀ {V1, · · · , Vk}
`

V0
[dest L] ∈ ϑ : ∧j

i=0 Vi E ϑi ⇒ ∧k
i=j+1 Vi ∈ ρ(bxic) ∧

(¬RM(`,L′, `′,L) ⇒ (`, `′) ∈ ψ) ∧

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}
`′

E0
[orig L′] in P : ψ

Table 2: Analysis of terms, ρ |= E : ϑ, and analysis of processes,
(ρ, κ) |=RM P : ψ.

12

To obtain this information we shall make use of the abstract environment ρ, as
done for terms. The judgement for processes takes the form

(ρ, κ) |=RM P : ψ

where ψ will be a possibly empty set of “error messages” of the form (`, `′)
indicating that something encrypted at ` was unexpectedly decrypted at `′;
we prove in Theorem 7 that when ψ = ∅ we may dispense with the reference
monitor.

The judgement is defined by the axioms and rules in the lower part of Table
2 and is explained below.

Remember that the first three rules in Table 2 describe the analysis of terms
and, thus, give the set of values ϑ that a term may evaluate to. This set is used
e.g. in the rule for k-ary output that (i) finds the sets ϑi for each term Ei, (ii)
requires that all k-tuples of values 〈V1, · · · , Vk〉 taken from ϑ1 × · · · × ϑk can
flow on the network, i.e that they are in the κ-component, and (iii) requires that
(ρ, κ, ψ) are also valid analysis estimates of process P .

In the rule for input the terms E1, · · · , Ej are used for matching values
sent on the network. Thus, this rule (i) checks whether these first j terms
have acceptable estimates ϑi and (ii) checks whether the first j values of any
message 〈V1, · · · , Vj , Vj+1, . . . , Vk〉 in κ (i.e. in any message predicted to flow
on the network) are pointwise included in ϑi. The check is actually expressed
using the faithful membership predicate, i.e. as Vi E ϑi, because annotations
are ignored for matching just as in the semantics. If the check is successful
then (iii) the values Vj+1, . . . , Vk are included in the estimates for the variables
xj+1, · · · , xk, respectively.

The rule for decryption handles the matching similarly to the rule for input:
besides (i) establishing the validity of all the components of a decryption (i.e. the

sets ϑ and ϑi) it (ii) checks for each encrypted value {V1, · · · , Vk}
`′

V0
[dest L′] ∈ ϑ

whether the values V0,Vj are pointwise included in the values in ϑi (including
the key). Again we use the faithful membership tests for matching since the
semantics ignores the annotations. If the check is successful then the values
predicted for the variables xi should pointwise contain the values Vi. Finally,
(iii) the ψ-component of the analysis must contain (`, `′) if the destination or
origin assertions might be violated, i.e. if (` /∈ L′) or (`′ /∈ L).

Both in the case of input and decryption we make sure only to analyse
the continuation process P in those cases where the input or decryption could
indeed succeed. This is essential for obtaining the necessary precision so that
the analysis only rarely reports errors on correct protocols.

The rules for the inactive process, parallel composition, restriction and repli-
cation are straightforward.

Semantic properties. We prove below that our analysis respects the oper-
ational semantics of LySa. More precisely, we prove a subject reduction result
for both the standard and the reference monitor semantics: if (ρ, κ) |=RM P : ψ,
then the same triple (ρ, κ, ψ) is a valid estimate for all the states passed through

13

in a computation of P , i.e. for all the derivatives of P . Additionally, we show
that when the ψ component is empty the reference monitor is useless; this is
the basis to establish authentication.

It is convenient to prove the following lemmata. The first states that esti-
mates are resistant to substitution of closed terms for variables, and it holds
for both terms and processes. The second lemma says that an estimate for a
process P is a valid estimate for every process congruent to P , as well.

Lemma 1 (Substitution)

• ρ |= E : ϑ and bE′c ∈ ρ(bxc) imply ρ |= E[E′/x] : ϑ.

• (ρ, κ) |=RM P : ψ and bE′c ∈ ρ(bxc) imply (ρ, κ) |=RM P [E′/x] : ψ.

Lemma 2 (Congruence) If P ≡ Q then (ρ, κ) |=RM P : ψ iff (ρ, κ) |=RM Q : ψ.

We are now ready to state the subject reduction result. It expresses that
our analysis is semantically correct regardless of the way the semantics is pa-
rameterised.

Theorem 1 (Subject reduction)
If P →R Q and (ρ, κ) |=RM P : ψ then also (ρ, κ) |=RM Q : ψ.

The next result shows that our analysis correctly predicts when we can safely
dispense with the reference monitor. We shall say that the reference monitor RM

cannot abort a process P whenever there exist no Q, Q′ such that P →∗ Q→ Q′

and P →∗
RM Q /→RM. As usual, ∗ stands for the transitive and reflexive closure

of the relation in question, and Q /→RM stands for ¬∃Q′ : Q →RM Q′. We then
have:

Theorem 2 (Static check for reference monitor)
If (ρ, κ) |=RM P : ∅ then RM cannot abort P .

Analysis of WMF. For the LySa specification of the WMF protocol given
in Section 3 the minimal estimate (ρ, κ, ψ) satisfying

(ρ, κ) |=RM WMF : ψ

is given by ψ = ∅ and will have the following non-empty entries (for 1 ≤ i, j ≤ n,
i 6= j, and 1 ≤ l ≤ k) for ρ

ρ : xi 7→ {{Ij , B,Kij}
Ai

KA
i

[dest S]}

xK
ij 7→ {Kij}

yj 7→ {{Ij , A,Kij}
S

KB
i

[dest Bj]}

yK
ij 7→ {Kij}

zij 7→ {{m1ij , · · · ,mkij}
Ai

Kij
[dest Bj]}

z
ml
ij 7→ {mlij}

14

whereas κ is

κ : {〈Ii, A, I−1, S, Ii, A, {Ij , B,Kij}
Ai

KA
i

[dest S]〉}

∪{〈I−1, S, Ij , B, {Ii, A,Kij}
S

KB
j

[dest Bj]〉}

∪{〈Ii, A, Ij , B, {m1ij , · · · ,mkij}
Ai

Kij
[dest Bj]〉}

Observe that yK
ij is bound to the session key Kij and that zml

ij is bound to mlij

indicating the communication of mlij from principal Ii to principal Ij .

5 Modelling the Attacker

Protocols are executed in an environment where there may be malicious attack-
ers. Writing Psys for the implementation of the protocol, the actual environment
may take the form of an arbitrary process having a placeholder for Psys as fur-
ther elaborated in [17]; for most process algebras the characteristic contexts take
the form Psys | Q for some process Q representing the environment and this is
the scenario we consider as well.

Hardest attackers and Dolev-Yao. We aim at finding a formula FDY
RM char-

acterising all attackers; this means that whenever an estimate (ρ, κ, ψ) satisfies
FDY

RM then (ρ, κ) |=RM Q : ψ for all attackersQ. There are at least two approaches
to finding such a formula. One is to define a formula inspired by the pioneering
studies of Dolev and Yao [34] and then to prove its correctness. The other is to
find a “hardest attacker” and to prove that it is as strong as any other attacker
as was done for firewall security in [55]. We base our presentation on the first
approach and then show the close connection between the two approaches in
Theorem 9.

To characterise all attackers we need to make a few assumptions that benefit
the control flow analysis but that have no semantic consequences. We shall say
that a process P is of type (Nf ,Aκ,AEnc) whenever: (1) it is closed (i.e. has no
free variables), (2) its free names are in Nf , (3) all the arities used for sending or
receiving are in Aκ and (4) all the arities used for encryption or decryption are
in AEnc. Clearly we can inspect Psys to find minimal Nf , Aκ, AEnc such that Psys

is of type (Nf ,Aκ,AEnc) and then Psys is also of type (N ′
f ,A

′
κ,A

′
Enc) provided

that Nf ⊆ N ′
f , Aκ ⊆ A′

κ and AEnc ⊆ A′
Enc. To avoid having to deal with too

many special cases we shall assume that Aκ and AEnc contain the number 1.
Given AEnc we write kEnc for the minimal positive integer that dominates

all elements of AEnc, i.e. kEnc = min{k > 0 | ∀k′ ∈ AEnc : k′ ≤ k}, and then
we write A+

Enc = AEnc ∪ {kEnc + 1} for AEnc enlarged with the arity kEnc + 1
of permitted encryptions. We claim that when studying a system Psys of type
(Nf ,Aκ,AEnc) there is no loss of generality in assuming that attackers Q have
type (Nf ,Aκ,A

+

Enc); in particular we claim that the ability of the attacker to
use:

• additional free names may be masked by restricting the names so as to
become local within Q,

15

(1) ∧k∈Aκ ∀〈V1, · · · , Vk〉 ∈ κ : ∧k
i=1 Vi ∈ ρ(z•)

(2) ∧
k∈A

+

Enc

∀{V1, · · · , Vk}
`

V0
[dest L] ∈ ρ(z•) :

V0 E ρ(z•) ⇒ (∧k
i=1 Vi ∈ ρ(z•) ∧ (¬RM(`, C, `•,L) ⇒ (`, `•) ∈ ψ))

(3) ∧
k∈A

+

Enc

∀V0, · · · , Vk : ∧k
i=0 Vi ∈ ρ(z•) ⇒ {V1, · · · , Vk}

`•
V0

[dest C] ∈ ρ(z•)

(4) ∧k∈Aκ ∀V1, · · · , Vk : ∧k
i=1 Vi∈ρ(z•) ⇒ 〈V1, · · · , Vk〉∈κ

(5) {n•} ∪ bNfc ⊆ ρ(z•)

Table 3: Dolev-Yao condition.

• a “private channel” based on k-ary communication for k /∈ Aκ does not
increase its computational power, and

• a “private channel” based on k-ary encryptions and decryptions for k /∈
AEnc may be coded using the ability to perform nested kEnc + 1-ary en-
cryptions and decryptions.

The actual definition of kEnc + 1 is not so important; what is important is that
it is a number k such that k > 1 and k /∈ AEnc.

One difficulty concerning attackers is that we have no control over the canon-
ical names and variables used. This motivates inspecting Psys to find the finite
set Nc of all canonical names used and the finite set Xc of all canonical variables
used. We then postulate a new canonical name n• not in Nc and a new canon-
ical variable z• not in Xc. Given a process Q of type (Nf ,Aκ,A

+

Enc) we then

construct the semantically equivalent process Q
′
as follows: (a) all restrictions

(ν n)P are α-converted (in the classical sense) into restrictions (ν n′)P ′ where n′

has the canonical representative n•, (b) all occurrences of variables xi in inputs
(E1, · · · , Ej ; xj+1, · · · , xk). P and in decryptions

decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}
`

E0
[orig L] in P are α-converted (in the

classical sense) to use variables x′i with canonical representative z•. Thus, Q
′

only uses finitely many canonical names and variables.
Another aspect concerning attackers is the presence of annotations. In our

view the attacker really should not have annotations at encryption and decryp-
tion points since the annotations are intended for expressing the intentions of
the protocol and the attacker cannot be part of this. However, the syntax
forces us to place annotations everywhere and we therefore take the semanti-
cally equivalent approach of ensuring that all annotations are the trivial ones,
[dest C] and [orig C], and that all crypto-points are replaced by the crypto-point
`• not occurring in Psys . We write Q for the resulting process.

We now have sufficient control over the capabilities of the attacker that we
can characterise the potential effect of all attackers Q of type (Nf ,Aκ,A

+

Enc).
We do so by defining the formula FDY

RM of type (Nf ,Aκ,A
+

Enc) for expressing
the Dolev-Yao condition for LySa; it is defined as the conjunction of the five
components in Table 3 (actually, three more components are added later on in
Table 9 to cope with public key encryption).

16

The formula in Table 3 makes it clear that the attacker initially has some
knowledge (5), that it may learn more by eavesdropping (1) or by decrypting
messages with keys already known (2), that it may construct new encryptions
using the keys known (3) and that it may actively forge new communications
(4).

We can now establish the correctness of the Dolev-Yao condition for LySa.
We first show that the estimates satisfying FDY

RM are valid for all attackers, thus
proving a sort of “soundness” of the Dolev-Yao condition.

Theorem 3 (Soundness of Dolev-Yao condition)
If (ρ, κ, ψ) satisfies FDY

RM of type (Nf ,Aκ,A
+

Enc) then (ρ, κ) |=RM Q : ψ for all
attackers Q of type (Nf ,Aκ,A

+

Enc).

We can now show the close connection between the Dolev-Yao condition and
the notion of “hardest attackers” [55]. This result also shows the “completeness”
of the Dolev-Yao condition: we have not needlessly added capabilities that
cannot be possessed by real attackers.

Theorem 4 (Existence of “Hardest Attacker”)
There exists an attacker Qhard of type (Nf ,Aκ,A

+

Enc) such that the formula
(ρ, κ) |=RM Qhard : ψ is equivalent to the formula FDY

RM of type (Nf ,Aκ,A
+

Enc).

Crypto-based authenticity. The annotations of LySa were designed to fa-
cilitate studying the properties of origin authentication and of destination au-
thentication. The first property amounts to making sure that an encrypted
message that principal Bj expects from principal Ai (that we write on the form

decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}
`

E0
[orig Ai] in P) was indeed encrypted

only by Ai. The second property is symmetric: a message that Ai intends for
Bj (written {E1, · · · , Ek}

`

E0
[dest Bj]) is successfully decrypted only by Bj .

More formally, for the dynamic property we say that Psys guarantees dy-
namic authentication with respect to the annotations in Psys if the reference
monitor RM cannot abort Psys | Q regardless of the choice of the attacker Q.

Similarly, for the static property we say that Psys guarantees static au-
thentication with respect to the annotations in Psys if there exists ρ and κ
such that (ρ, κ) |=RM Psys : ∅ and (ρ, κ, ∅) satisfies FDY

RM. As will become clear
in Section 6, the actual test that we have implemented considers the minimal
type (Nf ,Aκ,AEnc) of Psys and computes the minimal solution (ρ, κ, ψ) such
that(ρ, κ) |=RM Psys : ψ and (ρ, κ, ψ) satisfies FDY

RM of type (Nf ,Aκ,A
+

Enc) and
finally tests whether or not ψ = ∅.

Theorem 5 (Authentication) If Psys guarantees static authentication then
Psys guarantees dynamic authentication.

17

A → S : A, {B, K}KA

S → MB : A, {K}KB

MS → B : A′, {K}KB

A → B : {m1 · · ·mk}K

Attack 1

M → S : M, {B, K}KM

S → MB : M, {K}KB

MS → B : A′, {K}KB

M → B : {m1 · · ·mk}K

Attack 2

A → MS : A, B, {K}KA

MA → S : A, B′, {K}KA

S → B′ : {A, K}KB′

A → MB : {m1 · · ·mk}K

MA → B′ : {m1 · · ·mk}K

Attack 3

A → MS : A, B, {K}KA

MS → S : A, M, {K}KA

S → M : {A, K}KM

A → MB : {m1 · · ·mk}K

Attack 4

A → MS : A, B, {K}KA

MS → S : A, M, {K}KA

S → M : {A, K}KM

MA → S : A, B, {K}KA

S → B : {A, K}KB

M → B : {m1 · · ·mk}K

Attack 5

Table 4: Attacks on WMF variations.

Validation of WMF. We analyse the WMF protocol of Section 2 and restrict
our attention to the solutions that satisfy the formula FDY

RM thereby taking care of
the Dolev-Yao attacker. The least solution has an empty ψ-component reflecting
that the analysis guarantees static as well as dynamic authentication.

We now consider two variants of the protocol: one where the initiator’s
name is not encrypted and one where the responder’s name is not encrypted
(see Appendix A). In the first case the ψ-component is

{(Ai, Bj) | i 6= j, 1 ≤ i, j ≤ n} ∪ {(`•, Bj) | 1 ≤ j ≤ n}

showing that static authentication fails. The pair (Ai, Bj) shows that a value
encrypted at Ai has wrongfully been decrypted at Bj ; similarly, the pair (`•, Bj)
shows that a value created by the attacker has been decrypted at Bj . Actually
also dynamic authentication fails: the two contributions to ψ correspond to the
first two attack sequences of Table 4; here we write MX to denote the attacker
(called M) pretending to be X. Both sequences will result in B believing that
he is communicating with A′ although he is communicating with A and M ,
respectively.

In the case where the responder’s name is not encrypted (see Appendix A)
the ψ component becomes

{(Ai, Bj) | 1 ≤ i, j ≤ n} ∪
{(Ai, `•) | 1 ≤ i ≤ n} ∪ {(`•, Bj) | 1 ≤ j ≤ n}

so again the analysis shows that static authentication fails. Also dynamic au-
thentication fails: the attacks corresponding to the three contributions to ψ are
shown in the last three columns of Table 4.

6 The Implementation

One can show that for any given P there always is a least choice of ρ, κ, and ψ
such that (ρ, κ) |=RM P : ψ and (ρ, κ, ψ) satisfies FDY

RM (and accordingly a least

18

choice of each ϑ whenever ρ |= E : ϑ is required by the analysis of P). The aim
of our implementation is to compute such a least (ρ, κ, ψ) for any given LySa

process P . However, the analysis components ρ, κ, and ϑ are interpreted over
the infinite universe of terms and this poses the main challenge in obtaining
a terminating implementation. As detailed below, we handle this challenge by
encoding sets of terms as generating tree grammars; essentially representing an
infinite set by a finite number of grammar rules.

Our implementation follows the standard strategy for implementing con-
straint based program analysis [54]: it encodes the analysis into a suitable
constraint language and use a standard constraint solver to compute the least
solution to these constraints. To obtain an efficient implementation we use the
Succinct Solver [57] as our constraint solver. It computes the least interpreta-
tion of predicate symbols within “constraints” written in Alternation-free Least
Fixed Point logic (ALFP). This is an expressive fragment of first order predicate
logic that is interpreted over a finite universe, which fits well with our encodings
of infinite sets as finite tree grammars. The encoding of the analysis into ALFP
proceeds in a number of steps as follows.

Firstly, the specification of the analysis in Table 2 is succinct [59]; this
means that ψ and ϑ are local in the judgements in which they occur. Using
the techniques of [58] the analysis is transformed into a verbose specification
[59]; this means that ψ and ϑ become global components. This is obtained by
adding further labels to the syntax and making every analysis component global
by using the new labels to link the values of the components to specific places
in the syntax.

Secondly, by applying techniques from [56], sets of terms are conceived as
languages generated by tree grammars. A first step is to transform the analysis
so that ρ and κ both contain labels of terms rather that the terms themselves
and leave ϑ to be the only component that contains sets of terms. The second
step is to represent the sets in ϑ as (regular, normalised) tree grammars [27] over
signatures where k-ary encryptions are represented by k + 1-ary constructors
and the canonical names are represented as constants (i.e. 0-ary constructors).
The tree grammars will use the labels as non-terminals and have rules where
the left-hand side is a label while the right-hand side is a constructor applied to
labels. As an example consider the LySa process (where labels are written as
superscripts and ignoring for the moment the annotations of crypto-points):

P = 〈nl1〉. 0 | ! (; x). 〈{xl2}l4
kl3

〉. 0

The process sends the terms n, {n}k, {{n}k}k, {{{n}k}k}k, . . . over the network
and in doing so it binds the variable x to each of these values. The analysis
with sets of terms are encoded as tree grammars in ϑ will then specify that

κ ⊇ {l1, l4}
ρ(x) ⊇ {l1, l4}

ϑ : l1 → bnc l3 → bkc
l2 → bnc l4 → {l2}l3

l2 → {l2}l3

That is, all the terms that can be generated from label l1 and label l4 may be sent
on the network as described by κ and may also be bound to x as described by ρ.

19

The term that may be generated from these labels can be found by inspecting
the grammar rules in ϑ. For example, the language generated by starting at
l1 is {bnc} while the grammar for the language generated from l2 contains a
circularity producing the infinite set {bnc, {bnc}bkc, {{bnc}bkc}bkc, . . .}. These
are of course precisely the values that x may be bound to during the execution
of P .

Thirdly, the encoding proceeds by transforming the analysis into ALFP.
This involves a number of straightforward encodings such as representing sets
as predicates and encoding the finite sequences used in communication and
encryption into predicates of a fixed arity.

Finally, the analysis is turned into a generation function, G, such that G(P)
is an ALFP formula that represents the analysis of P . In addition to satisfying
the G(P), the analysis estimates also need to satisfy FDY

RM for the attacker. To
obtain this, we take advantage of the attacker process Qhard (which is a “hard-
est attacker” as described in the proof of Theorem 9 in Appendix C) and the
conjunction of G(P) and G(Qhard) is passed on to the Succinct Solver. In turn,
this calculates an encoding of the estimate (ρ, κ, ψ) for P in combination with
the attacker. A more detailed description of the implementation together with
proofs of soundness may be found in [16]. Here soundness means that the least
solution to the encoding of the analysis also provides a (not necessarily least)
solution to the original analysis.

The time complexity of solving a formula in the Succinct Solver is polynomial
in the size of the universe, over which the formula is interpreted. For our
implementation the universe is linear in the size of the process and a simple
worst-case estimate of the degree of the complexity polynomial is given as one
plus the maximal nesting depth of quantifiers in the formula [57]. For our
current implementation the nesting depth is governed by the maximal length of
the sequences used in communication and encryption though techniques from
[56] might have been be applied to yield a cubic worst-case upper bound; we
have refrained from doing so because in practice the implementation runs in
sub-cubic time.

7 Validation of Protocols

In this section we summarise the analysis results we have obtained for a num-
ber of variations of the following symmetric key protocols: Wide Mouthed Frog
(as studied in Section 2) [5, 18], Needham-Schroeder [52], Amended Needham-
Schroeder [53], Otway-Rees [60], Yahalom [18] and Andrew Secure RPC [67].
The protocol narrations are summarised in Appendix A. In the actual experi-
ments we have taken the number of principals, n, to be 3.

Robustness of protocol narrations. In our formalisation of protocol nar-
rations in LySa in Section 2 we decided to focus on: (i) separating identities
(e.g. Ii) from roles (e.g. A and B), and (ii) using distinct master keys (e.g. KA

i

and KB
i) for distinct roles. Decisions like these are crucial for the properties

20

protocol A 6=B A=B A 6=B A=B
1 ≤ i, j ≤ n, i 6= j ∧n

i=0
KA

i 6=KB
i ∧n

i=0
KA

i 6=KB
i ∧n

i=0
KA

i =KB
i ∧n

i=0
KA

i =KB
i

Wide Mouthed Frog ∅ ∅ ∅ (Ai, Bi), (S, S)
with nonces ∅ ∅ ∅ ∅

Needham-Schroeder (Ai, Ai) (Ai, Ai) (Ai, Ai) (Ai, Ai)
with type flaw corrected ∅ ∅ ∅ ∅

Amended Needham-
Schroeder

(Ai, Ai) (Ai, Ai) (Ai, Ai) (Ai, Ai)

with type flaw corrected ∅ ∅ ∅ ∅

Otway-Rees ∅ ∅ (Bi, S), (S, Bi) (Bi, S), (S, Bi)

Yahalom ∅ ∅ ∅ ∅
with BAN optimisation ∅ ∅ ∅ (Ai, Bi),

(S, Ai), (S, Bi)
Paulson’s amendment ∅ ∅ ∅ ∅

Andrew Secure RPC (A3
i , B1

j),

(B2
i , A4

j)

(A3
i , B1

j),

(B2
i , A4

j)

(A3
i , B1

j),

(B2
i , A4

j)

(A3
i , B1

j),

(B2
i , A4

j)

with BAN correction
and type flaw corrected

∅ ∅ ∅ ∅

Table 5: Overview of results: robustness of protocol narrations.

of the protocol and our first experiment will show not only that some of the
protocols are more robust than others but also that our approach is able to
pinpoint the amount of safeguarding needed for a protocol to be trustworthy
(see Table 5).

As shown in the first column of Table 5, when roles as well as master keys
are kept distinct we observe a non-empty value for ψ in the case of Needham-
Schroeder. This reflects a potential problem due to a type flaw so that the
attacker sends the incremented nonce (in step 5 of Appendix A) instead of the
nonce (in step 4). A simple correction is to insert unique tags in the encrypted
messages produced in the protocol; with these corrections our analysis result
reports that the problem has disappeared. Similar type flaws and corrections
are observed for Amended Needham-Schroeder and Andrew Secure RPC.

The next three columns of Table 5 show what happens when we omit some of
the safeguards. For the Wide Mouthed Frog, ψ is non-empty when master keys
and roles are the same. This corresponds to a parallel session attack (reported
in e.g. [35]) where the first message from one session gets mixed up with the
second message from another. The attack cannot take place when we keep roles
or master keys apart, which is confirmed by the analysis result.

For Otway-Rees there is an attack when master keys are not kept distinct.
This corresponds to an attack reported in [61], which exploits that encrypted
messages from a principal acting both as initiator and responder may be con-
fused.

In [18] an optimised version of the Yahalom protocol is suggested and an
attack is reported in [70]; from Table 5 we see that the attack only succeeds
when not distinguishing between roles and when using the same master key for
distinct roles. Paulson [62] suggests an amendment whose correctness we can

21

protocol Kold
12 is leaked

Wide Mouthed Frog (`•, B2)

with nonces ∅

Needham-Schroeder
with type flaw corrected

(B2, `•), (`•, B2)

Amended Needham-Schroeder
with type flaw corrected

∅

Otway-Rees ∅

Yahalom (`•, B2)

with BAN optimisation ∅
Paulson’s amendment ∅

Andrew Secure RPC
with type flaw corrected

(A1, `•)

with BAN correction ∅

Table 6: Overview of results: leaking of old session keys.

confirm.
Our findings suggest that many classical problems such as parallel session,

type flaw, and reflection attacks occur precisely because a number of crucial
distinctions are not made sufficiently clear in the protocol narrations; it is en-
couraging to observe that our approach can pinpoint this.

Leaking an old session key. Many protocols become insecure when old
session keys are compromised. Our second experiment shows that our approach
is able to detect also these vulnerabilities. To be specific we add an old session
key Kold

12 and the corresponding tickets issued by the server to the knowledge
of the attacker in formula (5) in the definition of the formula FDY

RM in Section 5.
We perform our experiments using full safeguards: roles and identities are kept
distinct and distinct master keys are used for distinct roles (see Table 6).

Our results confirm that the WMF protocol as presented in [5] is problematic
when old session keys are leaked. The original presentation in [18] used time
stamps, but since we do not model time, we present a correction with nonces
(see Appendix A); our analysis result then guarantees static as well as dynamic
authentication even in the presence of leaked old session keys.

We also confirm that the Needham-Schroeder protocol is vulnerable to the
leaking of old session keys; the corresponding attack is that of Denning-Sacco
[32]. Furthermore, our analysis results guarantee static and dynamic authenti-
cation for the Amended Needham-Schroeder protocol (with the type flaw cor-
rected) and the Otway-Rees protocol in the presence of leaked old session keys.

For the Yahalom protocol our analysis result shows that there may be an
authentication problem in case of leaked old session keys. This is a false alarm
which is due to the independent attribute nature of our analysis. It is interesting
to observe that, although the authenticity of the protocol has been proved by

22

Paulson in [62], he mentions that the proof is considerable more complex than
that for the BAN optimised version and that he had to introduce a relation
keeping track of associated pairs of session keys and responder nonces; in our
terminology this would correspond to introducing a relational component in the
analysis [54]. For the BAN optimised version (and the amendment suggested
by Paulson) our analysis guarantees static as well as dynamic authentication in
the presence of leaked old session keys.

For the Andrew Secure RPC protocol we observe the problem with leaks
of old keys as reported in [18]; our analysis confirms that the amended version
suggested in [18] indeed solves the problem.

8 Asymmetric Cryptography

Our framework can be easily adapted to deal with perfect asymmetric cryptog-
raphy [33]. In this scheme, keys are no longer shared between principals. Each
party P is associated instead with some key pair (m+,m−). Usually, the keym+

is called public and it is made available to everybody, while the private key m−

is assumed to be known to P , only. Any principal willing to send some ciphered
message to P can encrypt it by using m+; only P can then decrypt it using
m−. Some public key algorithms, such as RSA [65], allows for a complementary
use of the key pair: the owner of m− digitally signs a message by encrypting
it with his private key, and the receiver checks the signature by decrypting the
message with the corresponding public key m+. Below, we only give the needed
extensions to LySa and its analysis in order to treat this kind of cryptography;
a treatment of digital signatures more in agreement with current practice may
be found in [17].

8.1 Extensions to the Calculus

The syntax is enriched as follows. First, we add to the set of names enough
pairs of asymmetric keys m+,m−:

N ::= n | m+ | m−

Terms now include these new names and a construct for asymmetric encryptions,
quite similar to that for symmetric encryption, that carries the same decorations.
The only difference is that the key may turn out to be public or private, so
accounting for both encryption and signature.

E ::= terms
.
m+,m− public and private keys
{|E1, · · · , Ek|}`

E0
[dest L] asymmetric encryption (k ≥ 0)

The syntax of processes P has the following two additional constructs, one
for creating a new pair of public/private keys and the other for asymmetric

23

decryption or signature validation, with the usual labels and annotations.

P ::= processes
.
(ν±m)P key pair creation

decrypt E as {|E1, · · · , Ej ; xj+1, · · · , xk|}
`

E0
[orig L] in P asymmetric

decryption (k ≥ 0)

Notational conventions and assumptions on canonical values are the same. In
particular, bmc,bm+c,bm−c are pairwise distinct. Note that fn(N) = N .

The rules for substitution are extended by the following:

• [n/m]N =

{

n if N = m
N otherwise

• [n+, n−/m+,m−]N =







n+ if N = m+

n− if N = m−

N otherwise

We need some further congruence rules and two new clauses for defining the
semantics of the just introduced processes. The additional rules for congruence
are:

• (ν±m)0 ≡ 0;

• (ν± n)(ν±m)P ≡ (ν±m)(ν± n)P ;

• (ν n)(ν±m)P ≡ (ν±m)(ν n)P ;

• (ν±m)(P | Q) ≡ P | (ν±m)Q, if m+,m− 6∈ fn(P).

The new reduction rules are in Table 7. The rule (A-Res) is quite standard. As
it was the case for symmetric decryption in rule (Decr), the process decryptE
as{|E′

1, · · · , E
′
j ;xj+1, · · · , xk|}`′

E′

0

[orig L′] inP attempts to decrypt E, provided

that E = {|E1, · · · , Ek|}
`

E0
[dest L] such that (E0, E

′
0) is a pair consisting of

a public key and its private counterpart (it is irrelevant which is which, so
catering for both asymmetric encryption and for digital signature validation à
la RSA[65]), and that bbEicc = bbE′

icc for all 1 ≤ i ≤ j. If the conditions hold
then the process behaves as P [Ej+1/xj+1, . . . , Ek/xk].

8.2 Extensions to the Control Flow Analysis

The additional rules for the control flow analysis are in Table 8 and are very
similar to the corresponding rules (2), (3) and (5) in Table 2. The only differ-
ences occur in the rule for asymmetric decryption: the values V0, V

′
0 are actually

a pair of public/private keys, required by the condition {V0, V
′
0} = {m+,m−},

and the consequent check for 1 ≤ i ≤ j, that the values Vi are pointwise included
in the values in ϑi.

24

(A-Res)
P →R P ′

(ν± m)P →R (ν± m)P ′

(A-Decr)

∧j
i=1

bbEicc = bbE′
icc ∧ {E0, E′

0} = {m+, m−} ∧ R(`,L′, `′,L)

decrypt {|E1, · · · , Ek|}
`
E0

[dest L] as {|E′
1, · · · , E′

j ; xj+1, · · · , xk|}
`′

E′

0
[orig L′] in P

→R P [Ej+1/xj+1, · · · , Ek/xk]

Table 7: Semantic rules for asymmetric cryptography.

bm+c ∈ ϑ

ρ |= m+ : ϑ

bm−c ∈ ϑ

ρ |= m− : ϑ

∧k
i=0 ρ |= Ei : ϑi ∧

∀V0, V1, · · · , Vk : ∧k
i=0 Vi ∈ ϑi ⇒ {|V1, · · · , Vk|}

`

V0
[dest L] ∈ ϑ

ρ |= {|E1, · · · , Ek|}
`

E0
[dest L] : ϑ

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM (ν±m)P : ψ

ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

∀(m+,m−) : ∀ {|V1, · · · , Vk|}
`

V0
[dest L] ∈ ϑ : ∀V ′

0 E ϑ0 : {V0, V
′
0} = {m+,m−}∧

∧j
i=1Vi E ϑi ⇒ ∧k

i=j+1 Vi ∈ ρ(bxic) ∧

(¬RM(`,L′, `′,L) ⇒ (`, `′) ∈ ψ) ∧

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM decrypt E as {|E1, · · · , Ej ; xj+1, · · · , xk|}
`′

E0
[orig L′] in P : ψ

Table 8: Analysis of new constructs for asymmetric cryptography.

(6) ∀(m+,m−) : ∧
k∈A

+

Enc

∀{|V1, · · · , Vk|}
`

V0
[dest L] ∈ ρ(z•) :

∀V ′
0 E ρ(z•) : {V0, V

′
0} = {m+,m−} ⇒ (∧k

i=1 Vi ∈ ρ(z•) ∧
(¬RM(`, C, `•,L) ⇒ (`, `•) ∈ ψ))

(7) ∧
k∈A

+

Enc

∀V0, V1, · · · , Vk : ∧k
i=0 Vi ∈ ρ(z•) ⇒ {|V1, · · · , Vk|}

`•
V0

[dest C] ∈ ρ(z•)

(8) {m+
• ,m

−
• } ⊆ ρ(z•)

Table 9: Additional Dolev-Yao conditions for asymmetric cryptography.

25

Finally, we extend the Dolev-Yao conditions for the asymmetric case, as
shown by Table 9. Again, there are very little differences with the symmetric
case; note that we postulate a new pair of canonical names m+

• ,m
−
• , and that

the rule (5) in Table 3 already considers the symmetric keys and the special
canonical name n•.

All the results given in Section 4 and 5 hold also for the asymmetric case.
More in detail, both the substitution and the congruence lemmata, both the
theorems on subject reduction and on the static check for the reference monitor,
and both the theorems on soundness of the Dolev-Yao condition and on the
existence of a “hardest attacker” hold. Their statements and proofs in this
general case are given in Appendix C.

The annotations added for asymmetric key cryptography are rather similar
to those used for symmetric key cryptography although there are differences.
This is because keys are intended to be kept secret in a symmetric key setting
while one of the keys in a key pair is intended to be public in the asymmetric
setting. Hence we need to reconsider the methodology described in Section 2
for which set of labels to use when annotating protocol narrations and LySa

processes.
When encrypting a message with a public key, an annotation [dest `] is

added to the encrypted term to describe the unique place where the message
is intended to be decrypted. This is completely analogous to the symmetric
case. When decrypting a message that has been encrypted using a public key,
a corresponding annotation, such as [orig `, · · ·], should be added. Clearly we
should include the label indicating the place where the encryption is intended
to have been made, but it may be necessary also to add labels for other places
(including those within the attacker) where the public key may have been used
for encryption. Since LySa combines decryption and pattern matching, it is
often the case that a specific decryption (and the embedded pattern matching)
should only succeed for a subset of messages that might have been encrypted
with the public key. In many well-behaved protocols the intention is that it is
not possible to confuse any two messages for one another, i.e. that the origina-
tion point in the protocol should be unique. This argument hardly extends to
the completely uncontrolled behaviour of the attacker. Hence for well-behaved
protocols is is often safe to use annotations of the form [orig {`, `•}] which state
that the encryption is intended to have been performed at a unique point within
the protocol (as indicated by `) or within the attacker (as indicated by `•). This
is indeed the scheme we have used for our experiments.

In the case of signature validation, the situation is reversed, since messages
encrypted with a private key may be decrypted by anyone knowing the public
key and, in particular, by the attacker. As far as the attacker is concerned we
continue our strategy of assuming that there are no annotations in the attacker;
this is already reflected in Table 9.

Our experimental validation of protocols using asymmetric key cryptography
is reported in Table 10. First, we consider two versions of the classical Needham
Schroeder Public Key protocol [52] as given by the narrations in Appendix A.
The first version is the full 7 messages protocol as given in [52] that relies on

26

a server for delegation of public keys while the other is a 3 message version
[45] that has no key server and instead uses the scope of (ν±m)P to model key
delegation. As shown in Table 10 both versions of the protocol exhibit a flaw
where Ai wrongfully accepts a message encrypted by some Bj though Ai was
actually trying to authenticate with the attacker. This message is part of the
attack reported by Lowe [45] and we should note that the attack only occurs if
we allow Ai to initiate a session with the attacker as in Lowe’s attack. In both
versions of the protocol the amendment suggested by Lowe in [45] results in
an empty ψ, thereby, validating the correctness of the amendment. Since both
versions behave in a similar manner we furthermore conclude that the delegation
of public keys may equally well be modelled by the scope of (ν±m)P as by the
use of a key server.

Wireless information networks and portable communication technology offer
us another interesting scenario to test our technique. We analyse the protocol
by Beller, Chang, and Yacobi [8], called MSR (for Modular Square Root). In
this setting, communication between portable devices A’s and ports (or base
stations) B’s is wireless and each port serves more than one portable at the
same time. A certification authority U is requested to sign certificates, using
its private key K−

U . In the protocol, the portable A wants to be authenticated
by the base station B. More precisely, on receiving from B its public key KB ,
the portable A uses it to encrypt the new session key K and send it to B.
Afterwards, to authenticate the new session key to B, A sends also its identity
and a secret certificate encrypted (symmetric cryptography) with K. The secret
certificate, {|A|}K

−

U
must be signed by a certification authority U .

The encoding of this protocol slightly diverges from our standard encoding
presented in Section 3, since portables and base stations are clearly distinct
entities and cannot play the roles of one another. Hence, the protocol is encoded
in a framework where the portables have identities Ii while the base stations
have distinct identities Jj .

The MSR protocol is only meant to authenticate portables to base stations
and not vice versa. As pointed out by Carlsen [22] this is not achieved by
the protocol because the attacker may masquerade as a base station. This
attack turns up as the pairs (Ai, `•) and (`•, Bj) in ψ in Table 10. Additionally,
we found an undocumented family of attacks on this protocol. Essentially, the
attacker forces a portable to wrongly authenticate with an arbitrary port within
the reach of the attacker, as reported by the pair (Ai, Bj). Strictly speaking,
this attack does not compromise the one-way authentication intended by the
MSR protocol. The Improved MSR (IMSR) protocol [8], on the other hand,
is meant to provide mutual authentication by including an extra certificate for
the base station B in the first message ({|B|}K

−

U
). Once the certificate has been

sent in clear it may, however, be replayed as reported by Carlsen [22]. As a
consequence all the attacks on MSR still work on the IMSR and this includes
our new parallel session attack where unintended use of the new certificate shows
up as pairs (Bj , Ai) in ψ.

To be explicit we may construct the parallel session attack as follows. First

27

protocol ψ for 1 < i, j < n

Needham-Schroeder Public Key (Bj , Ai)
Lowe’s amendment ∅

Needham-Schroeder Public Key – no server (Bj , Ai)
Lowe’s amendment ∅

Modular Square Root (Ai, Bj), (Ai, `•), (`•, Bj)

Improved Modular Square Root (Ai, Bj), (Ai, `•), (`•, Bj),
(Bj , Ai)

Table 10: Experiments with protocols using asymmetric cryptography.

B1 and B2 both start sessions with A:

2.1 B2 →MA : B2,K
+

B2

1.1 B1 →MA : B1,K
+

B1

1.1′ MB1
→ A : B1,K

+

B2

1.2 A→MB1
: {|K11|}K

+

B2

1.3 A→MB1
: {A, {|A|}K

−

U
}K11

2.2′ MA → B2 : {|K11|}K
+

B2

2.3′ MA → B2 : {A, {|A|}K
−

U
}K11

At the end A thinks it is talking to B1 but really A is talking to B2.

9 Related Work

Many papers have considered process algebras such as CSP, CCS, π- and Spi-
calculus as a suitable medium for expressing protocols in a more precise manner
than the usual protocol narrations yet in a considerably more abstract and
succinct manner than in real programming languages. A number of strong
techniques based on logical theories have successfully been developed for con-
fidentiality (e.g. formalisations of Dolev and Yao [14, 34, 61]) and authenticity
[18] issues; many have been investigated with the help of proof assistants or au-
tomatic theorem provers, although the computational overhead is rather high,
and with the help of constraint solvers. Also the use of type (and effect) sys-
tems have become popular as a technique for analysing such systems — as a
companion to logical methods based on inference systems or semantic methods
based on testing equivalence or bisimulations. Static analysis based on control
flow analysis has shown promise of analysing such systems, and here we have
been able to demonstrate its ability to find flaws in protocols. Further, non
exhaustive details of these developments are provided below.

The modal logic of beliefs BAN [18] plays a central role in the logical ap-
proach to protocol analysis. The discovery of many known and unknown proto-
col flaws witnesses its great success and many extensions have been proposed in

28

the literature (see e.g. [40, 6, 71]). Indeed, BAN logic is particularly expressive,
although it essentially focuses on authentication; additionally, it is very easy to
write protocol specifications and to reason about them. However, these spec-
ifications are not mechanised and sometimes the resulting formulae loose the
operational flavour of protocols. This may make it hard to establish soundness
with an operational semantics — completeness does not generally hold. Partic-
ularly relevant is also the role of initial beliefs: unrealistic or wrong assumptions
may lead to unexpected results.

Quite successful in analysing known protocols is another approach based
on general purpose logics and (time consuming) theorem provers. Bolignano
[14] models the intended behaviour of the honest principals separately from the
Dolev-Yao attacker, specified as a set of inductive formulae. Authentication
properties refer to suitable temporal relations between the events (i.e. occur-
rences of the steps) of the protocol. Also Paulson [61] inductively defines the
attacker, while the formalisation of a protocol consists of the set of all possible
traces of events. The properties are proved by induction on traces, and accord-
ing to Paulson, the proofs may happen to be quite long. Still in the logical
approach, there is the systematic derivation of security protocols proposed in
[29] based on the process algebra CORDS [36], equipped with a logic for rea-
soning about properties of specifications. We also mention the method for rapid
prototyping and analysis of protocols developed in Maude [30].

More oriented to an operational approach, there is the model checking ap-
proach; see e.g. Millen’s Interrogator [49], Mitchell’s murφ [51] and Clarke’s
Brutus [25]. The method relies on the construction of the model, a finite state
automaton that represents the behaviour of the protocol. In most cases the
automata are sequential, but also causality is exploited, see e.g. the Athena
checker [69], based on strand spaces [72]. The proofs then consist of an exhaus-
tive search of the automaton and of the verification that each reachable state
enjoys the desired property, expressed as a formula in a modal temporal logic.
The model checkers are very fast, but to have a finite, small search space, some
simplifying assumptions are needed.

The CAPSL project [48, 31] is based on a detailed high level language for
expressing protocols, seen as a list of messages sent (but without any prescrip-
tion for their recipients). Besides this, a user declares the objects involved, and
writes assumptions and assertions about their intended use, e.g. secrecy, au-
thentication, freshness, and may also specify the operating environment. The
resulting programs are given a semantics by a translation into a Horn fragment of
linear logic. The proofs of security properties, essentially trace invariants, are
then carried out on this intermediate representation, exploiting various tools
(e.g. inductive verifiers, model checkers, an efficient PROLOG based constraint
solver [50], further improved by [28]). Set constrains with equality are also used
in [26] to decide (in double exponential time) secrecy properties.

The AVISS project [7] provides a protocol verification framework that is
very similar to CAPSL though their back-end validation tools rely on ideas from
finite state model checking, only. These techniques may efficiently find flaws in
protocols but, in contrast to our approach, they have no general guarantee of

29

termination in case the protocol is correct. To ensure termination they adopt a
notion of bounded validation of protocols (saying that no flaws have been found
within a certain bounded subset of all executions).

The NRL protocol analyser by Meadows [47] is perhaps the first automatic
tool for verifying security properties. It combines the features of theorem provers
with those of constraint solvers, and it has been used to successfully analyse
several protocols. Recently the analyser has been extended to cope with explicit
cryptographic primitives, through suitable unification algorithms, and then used
in [23] to verify the Internet Key Exchange protocol that involves the Diffie-
Hellman key exchange schema.

Lowe [45] specifies protocols in CSP and exploits its operational semantics
to construct their (finite) models that are then checked using FDR [66]. This
approach lead to the discovery of the man-in-the-middle attack in the public
key Needham-Schroeder protocol that was so far considered secure. In the same
vein, see also [68].

After the seminal paper by Lowe, many different process algebras have been
used to formalise and verify protocols in an operational setting. Gorrieri and
Focardi [38] used CCS and formalised the non-interference security property as
a bisimulation property. Also they verified a large number of protocols auto-
matically. In a subsequent paper [39], authentication à la Woo-Lam [73] has
been shown to be a special case of non-interference.

Abadi and Gordon proposed the Spi-calculus [5] and used a testing equiva-
lence to guarantee security properties. Checking this equivalence is problematic
for infinite-state processes, and some symbolic techniques have been proposed
in these cases [15, 37]. Abadi used type systems for secrecy in [1]; since then,
many papers follow this research line, using both the Spi- [3, 4], the distributed
π- [63, 64], and the ambient-calculus [20, 21, 19]. More recently, Gordon and
Jeffrey [41, 42, 43] defined type (and effects) systems that statically guarantee
authentication of protocols specified in a Spi-calculus enriched with assertions à
la Woo-Lam. They report on a number of flawed and correct protocols checked
by their technique. Blanchet [9] also uses such assertions on a similar calculus
and provides a tool that may be seen as an implementation of type inference cf.
[4]. His tool has, in general, no guarantee of termination, which is the major dif-
ference from our polynomial-time implementation. Each of the above proposals
address a single property at a time, and any new property requires a different
type system. Although the following point is seldom discussed, these systems
seem to lack principal types, so only efficient type checkers seem to be available,
while type inference is computationally intractable.

In [12] we proposed a control flow analysis for the π-calculus; we then ex-
tended it to the Spi-calculus in [13]. The analysis results have been used to show
that some protocols obey some security policies, including confidentiality and
variations of Bell and LaPadula’s Mandatory Access Control [12] and of non-
interference [10]. The format of our analysis is robust: only little additions are
needed, e.g., to pass from the π- to the Spi-calculus and to deal with terms. The
flexibility of our technique has been demonstrated on the ambient calculus in
[55]. These papers focus on establishing the validity of firewalls, and introduce

30

the notion of “hardest attacker” used in Section 5.
The main points we see in favour of the static analysis approach taken here

are the following: (i) that solutions do always exist and are computed in low
polynomial time; (ii) that the analysis is correct w.r.t. a formal operational se-
mantics (in the form of a subject reduction theorem, just as for type systems);
and (iii) that a single analysis suffices for a variety of properties: different in-
spections of a solution permit to check different security properties of a protocol,
with no need of re-analysing it several times.

10 Conclusion

We have shown that protocol narrations may be formalised as LySa-processes
such that a static analysis can pinpoint a wide variety of errors in communication
protocols, both documented and undocumented.

The calculus. The design of LySa was patterned after the Spi-calculus but
LySa has been adapted so as to facilitate that useful information may be ob-
tained from a relatively unsophisticated static analysis. Extensions of the anal-
ysis may be able to deal directly with a more permissive calculus.

We have taken a perfect view of cryptography, both symmetric and asym-
metric. We only considered attacks or phenomena that can be expressed in
LySa. Since time is not present in LySa we cannot deal with the duration of
time stamps, i.e. when they do not merely serve as nonces. Because we only al-
low structured data we do not deal with bit strings and type flaw attacks based
on a concatenation of two bit strings being viewed as a single bit string; in
our view a diligent use of Abstract Syntax Notation One (ASN.1) will provide
the necessary safe guards. Following the development of [17], we can deal with
a more direct treatment of hash functions, message authentication codes, and
digital signatures and certificates.

The security properties. We have focused on authentication properties
based on origin authentication and destination authentication. This notion of
authentication has the advantage that it can directly be captured by the oper-
ational semantics and therefore also by a static analysis. In our view we cap-
ture many of the authenticity problems normally studied using a session-based
approach, i.e. where certain end-of-transactions need to match with the right
begin-of-transactions. Including the specification of security goals in our narra-
tions, is somewhat reminiscent of the Woo and Lam’s ideas of correspondence
assertions [73] or the annotations added in the idealised protocol narrations in
BAN logic [18].

Our techniques are also able to deal with a number of other security prop-
erties, e.g. secrecy can be checked in the manner of [12]. In the present de-
velopment this amounts to inspect the contents of ρ(z•) in order to determine
whether or not “secrets” may end up in the attacker. Partitioning values in se-
cret and public then suffices: if ρ(z•) only contains public values confidentiality

31

is guaranteed. Alternatively one may extend LySa with explicit confidentiality
annotations: whenever a new name is introduced we add the set X ′ ⊆ X of
canonical variables to which the name may be bound, e.g. (ν N [withinX ′]), and
at each binding occurrence we add the set of canonical names N ′ ⊆ N that may
be bound to the variable, e.g. (· · ·; xi[from N ′], · · ·).

Moving further in the direction of annotations we may add beliefs in the
style of BAN logic. For example, we may decide to change the syntax of
LySa to add annotations to the creation of new nonces about its intended use,
e.g. (ν N [A→ B]) might denote the creation of a nonce intended to establish
an authentic connection from A to B. The main challenge will be to modify the
reference monitor; there may well be BAN-like annotations where it is unclear
how to enforce them by means of a reference monitor.

The static analysis. We have made an effort in choosing a static analysis that
is informative, that has good performance and that is not overly complicated
to explain. We would like to extend the analysis to deal with the multiplicities
of messages in order deal with replay attacks also from the same round and
with more general correspondence properties than the non-injective agreement
considered here. Also we would like to add additional information to the analysis
that would facilitate constructing the finite counterexamples that constitute the
real proof of the existence of protocol flaws (as in Table 6). Finally, we would like
to extend the analysis to be transition-oriented in order to deal more directly
with session-based authentication properties in the manner of Woo and Lam
[73].

Acknowledgements. We wish to thank Colin Boyd for kind discussion on
MSR flaws.

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 5(46):18–
36, 1999.

[2] M. Abadi. Security protocols and specifications. In Proc. of FoSSaCS’99, LNCS
1578, pages 1–13. Springer, 1999.

[3] M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. In
Proc. of FoSSaCS’01, LNCS 2030, pages 25–41. Springer, 2001.

[4] M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and
logic programs. In Proc. of POPL’02, pages 33–44. ACM Press, 2002.

[5] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols - The Spi
calculus. Information and Computation 148, 1:1–70, 1999.

[6] M. Abadi and M. R. Tuttle. A semantics for a logic of authentication. In Proc. of
the 10th Annual ACM Symposium on Principles of Distributed Computing, pages
201–216. ACM Press, 1991.

32

[7] A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna,
S. Mödersheim, M. Rusinowitch, M. Turuani, L. Viganò, and L. Vigneron. The
AVISS security protocol analysis tool. In CAV’02, LNCS 2404, pages 349–353.
Springer, 2002.

[8] M. J. Beller, L.-F. Chang, and Y. Yacobi. Privacy and authentication on a
portable communications system. IEEE Journal of Selected Areas in Communi-
cations, 11(6):821–829, 1993.

[9] B. Blanchet. From secrecy to authenticity in security protocols. In Proc. of
SAS’02, LNCS 2477, pages 342–359. Springer, 2002.

[10] C. Bodei. Security Issues in Process Calculi. PhD thesis, Dipartimento di Infor-
matica, Università di Pisa. TD-2/00, March, 2000.

[11] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic
validation of protocol narration. In Proc. of CSFW’03, pages 126–140. IEEE,
2003.

[12] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static analysis for the π-
calculus with applications to security. Information and Computation, 168:68–92,
2001.

[13] C. Bodei, P. Degano, H. Riis Nielson, and F. Nielson. Flow logic for Dolev-
Yao secrecy in cryptographic processes. Future Generation Computer Systems,
18(6):747–756, 2002.

[14] D. Bolignano. An approach to the formal verification of cryptographic protocols.
In Proc. of 3rd ACM Conf. on Computer and Communications Security, pages
106–118. ACM Press, 1996.

[15] M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proc. of
ICALP’01, LNCS 2305, pages 667–681. Springer, 2001.

[16] M. Buchholtz. Implementing control flow analysis for security proto-
cols. Technical report, Informatics and Mathematical Modelling, Techni-
cal University of Denmark, To appear. Preliminary version available at
http://www.imm.dtu.dk/∼mib/lysa/toALFP.pdf.

[17] M. Buchholtz, F. Nielson, and H. Riis Nielson. A calculus for control flow analysis
of security protocols. International Journal of Information Security, To appear.

[18] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM
Transactions on Computer Systems, pages 18–36, 1990.

[19] L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups and mobility types. In
Proc. of International IFIP Conference TCS 2000, LNCS 1872, pages 333–347.
Springer, 2000.

[20] L. Cardelli and A.D. Gordon. Mobile ambients. In Proc. of FoSSaCS’98, LNCS
1378, pages 140–155. Springer, 1998.

[21] L. Cardelli and A.D. Gordon. Types for mobile ambients. In Proc. of POPL’99,
pages 79–92. ACM Press, 1999.

[22] U. Carlsen. Optimal Privacy and Authentication on a Portable Communications
System. Operating Systems Review, 28(3):16–23, 1994.

[23] I. Cervesato, N.A. Durgin, P.D. Lincoln, J.C. Mitchell, and A. Scedrov. Analysis
of the internet key exchange protocol using the NRL protocol analyser. In Proc.
of Symposium on Security and Privacy, pages 216–231. IEEE, 1999.

33

[24] I. Cervesato, N.A. Durgin, P.D. Lincoln, J.C. Mitchell, and A. Scedrov. A meta-
notation for protocol analysis. In Proc. of CSFW’99. IEEE, 1999.

[25] E.M. Clarke, S. Jha, and W. Marrero. Verifying security protocols with Brutus.
ACM Trans. on S/W Engineering and Methodology, 9(4):443–487, 2000.

[26] H. Comon, V. Cortier, and J. Mitchell. Tree automata with memory, set con-
straints and ping pong protocols. In Proc. of ICALP’01, LNCS 2305. Springer.,
2001.

[27] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications.
http://www.grappa.univ-lille3.fr/tata/, 27th September 2002.

[28] R. Corin and S. Etalle. An improved constraint-based system for the verification
of security protocols. In Proc. of SAS’02, LNCS 2477. Springer., 2002.

[29] A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. A derivation system for security
protocols and its logical formalization. In Proc. of CSFW’03, pages 109–125.
IEEE, 2003.

[30] G. Denker, J. Meseguer, and C. Talcott. Protocol specification and analysis in
Maude. In Proc. of Workshop on Formal Methods and Security Protocols, 1998.

[31] G. Denker and J. Millen. CAPSL integrated protocol environment. In DARPA In-
formation Survivability Conference (DISCEX 2000), pages 207–221. IEEE, 2000.

[32] D. E. Denning and G. M. Sacco. Timestamps in key distribution systems. CACM,
24(8):533–536, 1981.

[33] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976.

[34] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transac-
tions on Information Theory, IT-29(12):198–208, 1983.

[35] A. Durante, R. Focardi, and R. Gorrieri. A compiler for analysing cryptographic
protocols using non-interference. ACM Transactions on Software Engineering and
Methodology, 9(4):488–528, 2000.

[36] N. Durgin, J. Mitchell, and D. Pavlovic. A compositional logic for protocol cor-
rectness. In Proc. of CSFW’01, pages 241–255. IEEE, 2001.

[37] M. Fiore and M. Abadi. Computing symbolic models for verifying cryptographic
protocols. In Proc. of CSFW’01, pages 160–173. IEEE, 2001.

[38] R. Focardi and R. Gorrieri. A classification of security properties. Journal of
Computer Security, 3(1), 1995.

[39] R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis of
cryptographic protocols. In Proc. of ICALP’00, LNCS 1853. Springer, 2000.

[40] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic
protocols. In Proc. of Symposium on Research in Security and Privacy, pages
234–248. IEEE, 1990.

[41] A. D. Gordon and A. Jeffrey. Authenticity by Typing for Security Protocols. In
Proc. of CSFW’01. IEEE, 2001.

[42] A. D. Gordon and A. Jeffrey. Typing Correspondence Assertions for Communica-
tion Protocols. In Proc. of Mathematical Foundations of Programming Semantics,
2001.

34

[43] A. D. Gordon and A. Jeffrey. Types and Effects for Asymmetric Cryptographic
Protocols. In Proc. of CSFW’02, pages 77 –91, 2002.

[44] J. Heather and S. Schneider. Towards automatic verification of authentication
protocols on an unbounded network. In Proc. of CSFW’00, pages 132 – 143.
IEEE, 2000.

[45] G. Lowe. An attack on the Needham-Schroeder public-key authentication proto-
col. Information Processing Letters, 56(3):131–133, 1995.

[46] G. Lowe. Casper: A compiler for the analysis of security protocols. In Proc. of
CSFW ’97, pages 18–30. IEEE, 1997.

[47] C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Pro-
gramming, 26(2):113–131, 1996.

[48] J. Millen. CAPSL web site. http://www.csl.sri.com/users/millen/capsl/.

[49] J. Millen. The Interrogator: A tool for cryptographic protocol security. In Proc.
of Symposium on Security and Privacy, pages 134–141. IEEE, 1984.

[50] J. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-
graphic protocol analysis. In 8th ACM Conference on Computer and Communi-
cation Security, pages 166–175. ACM SIGSAC, 2001.

[51] J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using murφ. In Proc. of Conference on Security and Privacy, pages
141–153. IEEE, 1997.

[52] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993–999, 1978.

[53] R. M. Needham and M. D. Schroeder. Authentication revisited. ACM Operating
Systems Review, 21(1):7–7, 1987.

[54] F. Nielson, H. Riis Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

[55] F. Nielson, H. Riis Nielson, and R. R. Hansen. Validating firewalls using flow
logics. Theoretical Computer Science, 283(2):381–418, 2002.

[56] F. Nielson, H. Riis Nielson, and H. Seidl. Cryptographic analysis in cubic time.
Electronic Notes of Theoretical Computer Science, 62, 2002.

[57] F. Nielson, H. Riis Nielson, and H. Seidl. A succinct solver for ALFP. Nordic
Journal of Computing, 9:335–372, 2002.

[58] H. Riis Nielson and F. Nielson. Flow logics for constraint based analysis. In Proc.
of CC’98, LNCS 1383, pages 109–127. Springer, 1998.

[59] H. Riis Nielson and F. Nielson. Flow Logic: a multi-paradigmatic approach to
static analysis. In The Essence of Computation: Complexity, Analysis, Transfor-
mation, LNCS 2566, pages 223–244. Springer, 2002.

[60] D. Otway and O. Rees. Efficient and timely mutual authentication. ACM Oper-
ating Systems Review, 21(1):8–10, 1987.

[61] L. C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6:85–128, 1998.

[62] L. C. Paulson. Relations between secrets: Two formal analyses of the Yahalom
protocol. Technical report, Cambridge University, England, 1998.

35

[63] J. Riely and M. Hennessy. A typed language for distributed mobile processes. In
Proc. of POPL’98, pages 378–390. ACM Press, 1998.

[64] J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile
agents. In Proc. of POPL’99, pages 93–104. ACM Press, 1999.

[65] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public key cryptosytems. Communications of the ACM, 21(2):120–126,
1978.

[66] B. Roscoe and P. Gardiner. Security Modelling in CSP and FDR: Final Report.
Technical report, Formal Systems Europe, 1995.

[67] M. Satyanarayanan. Integrating security in a large distributed system. ACM
ToCS, 7(3):247–280, 1989.

[68] S. Schneider. Security properties and CSP. In Proc. of Symposium on Research
in Security and Privacy, pages 174–187. IEEE, 1996.

[69] D.X. Song. Athena: a new efficient automatic checker for security protocol anal-
ysis. In Proc. of CSFW’99, pages 192–202. IEEE, 1999.

[70] P. Syverson. A taxonomy of replay attacks. In Proc. of CSFW’94, pages 187–191.
IEEE, 1994.

[71] P. Syverson and P. van Oorschot. A unified cryptographic protocol logic. Technical
report, NRL Publication 5540-227. Naval Research Lab, 1996.

[72] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security
protocol correct? In Proc. of Conference on Security and Privacy, pages 160–171,
Los Alamitos, 1998. IEEE.

[73] T.Y.C. Woo and S.S. Lam. A semantic model for authentication protocols. In
Proc. of Symposium on Security and Privacy, pages 178–194. IEEE, 1993.

A Protocol Narrations

The analysis results reported in the paper are based on the following versions
of the protocols. The corresponding LySa specifications are obtained following
the guidelines of Section 2.

Wide Mouthed Frog. [5]

1. A→ S : A, {B,K}KA

2. S → B : {A,K}KB

3. A→ B : {m1, · · · ,mk}K

The initiator’s name is not encrypted:
2. S → B : A, {K}KB

The responder’s name is not encrypted:
1. A→ S : A,B, {K}KA

A version with nonces:
1. A→ B : A,NA

2. B → S : {A,B, (NA,K)}KB

3. S → A : {B, (NA,K)}KA

4. A→ B : {m1, · · · ,mk}K

The pair operation is modelled by an encryption with the key pair as ex-
plained in Section 3.

36

Needham-Schroeder (symmetric key). [52]

1. A→ S : A,B,NA

2. S → A : {NA, B,K, {K,A}KB
}KA

3. A→ B : {K,A}KB

4. B → A : {NB}K

5. A→ B : {NB+1}K

6. A→ B : {m1, · · · ,mk}K

Correcting the type flaw:
4. B → A : {u1, NB}K

5. A→ B : {u2, NB+1}K

The successor operation is modelled by an encryption with the key succ

that is known to the attacker. The type flaw is corrected by inserting extra
components (u1, u2, · · ·) in the encrypted messages.

Amended Needham-Schroeder. [53]

1. A→ B : A
2. B → A : {A,N ′

B}KB

3. A→ S : A,B,NA, {A,N
′
B}KB

4. S → A : {NA, B,K, {K,N
′
B , A}KB

}KA

5. A→ B : {K,N ′
B , A}KB

6. B → A : {NB}K

7. A→ B : {NB+1}K

8. A→ B : {m1, · · · ,mk}K

Correcting the type flaw:
6. B → A : {u1, NB}K

7. A→ B : {u2, NB+1}K

Otway-Rees. [60]

1. A→ B : N, {NA, N,A,B}KA

2. B → S : N, {NA, N,A,B}KA
, {NB , N,A,B}KB

3. S → B : N, {NA,K}KA
, {NB ,K}KB

4. B → A : N, {NA,K}KA

5. A→ B : {m1, · · · ,mk}K

Yahalom. [18]

1. A→ B : A,NA

2. B → S : B, {A,NA, NB}KB

3. S → A : {B,K,NA, NB}KA
, {A,K}KB

4. A→ B : {A,K}KB
, {NB}K

5. A→ B : {m1, · · · ,mk}K

BAN optimised version:
1. A→ B : A,NA

2. B → S : B,NB , {A,NA}KB

3. S → A : NB , {B,K,NA}KA
, {A,K,NB}KB

4. A→ B : {A,K,NB}KB
, {NB}K

5. A→ B : {m1, · · · ,mk}K

37

Paulson’s amendment [62]:
3. S → A : NB , {B,K,NA}KA

, {A,B,K,NB}KB

4. A→ B : {A,B,K,NB}KB
, {NB}K

Andrew Secure RPC. [67]

1. A→ B : A, {NA}K

2. B → A : {NA+1, NB}K

3. A→ B : {NB+1}K

4. B → A : {K ′, N ′
B}K

5. A→ B : {m1, · · · ,mk}K′

Correcting the type flaw:
1. A→ B : A, {u1, NA}K

2. B → A : {u2, NA+1, NB}K

3. A→ B : {u3, NB+1}K

4. B → A : {u4,K
′, N ′

B}K

BAN corrections:
4. B → A : {u4,K

′, N ′
B , NA}K

For this protocol we use unique crypto-points in the LySa specification in
order to get a more precise account of the errors reported by the analysis.

Needham-Schroeder Public Key. [52]

1. A→ S : A,B
2. S → A : {|B,K+

B |}K
−

S

3. A→ B : {|A,NA|}K
+

B

4. B → S : B,A
5. S → B : {|A,K+

A |}K
−

S

6. B → A : {|NA, NB |}K
+

A

7. A→ B : {|NB |}K
+

B

Lowe’s amendment [45]:
6. B → A : {|B,NA, NB |}K

+

A

No server:
3. A→ B : {|A,NA|}K

+

B

6. B → A : {|NA, NB |}K
+

A

7. A→ B : {|NB |}K
+

B

Lowe’s amendment [45]:
6. B → A : {|B,NA, NB |}K

+

A

MSR [8]

1. B → A : B,K+

B

2. A→ B : {|K|}K
+

B

3. A→ B : {A, {|A|}K
−

U
}K

Improved MSR [8]

1. B → A : B, {|B|}K
−

U
,K+

B

2. A→ B : {|K|}K
+

B

3. A→ B : {A, {|A|}K
−

U
}K

B Comparison to the Spi-calculus

Ignoring the annotations, the encryption construct of the Spi-calculus [5] corre-
sponds to that of LySa and the standard decryption operation decryptE as {x1,
· · · , xk}E0

inP corresponds to decrypt E as {; x1, · · · , xk}E0
in P . In the other

38

direction our notion of decryption can be modelled in the Spi-calculus by a de-
cryption followed by a number of explicit matchings. In more detail, the LySa

process
decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0

in P

behaves as the Spi-process:

decrypt E as {x1, · · · , xj , xj+1, · · · , xk}E0

in [x1 = E1] · · · [xj = Ej]P.

We need to extend LySa in order to precisely code input and output of the
Spi-calculus. Indeed, coding the monadic output c〈v〉.P of the Spi-calculus as
〈c, v〉. P and the corresponding input c(x).P as (c; x). P only works if syntactic
means are used to ensure that all processes match at least one component in
each input.

LySa may further be extended with a concept of channels as discussed in
[17]. Finally, in LySa we do not seem to have a need for the matching construct
[E = E′]P of the Spi-calculus; in an extended calculus it can be coded as
(νc)(c〈E〉. 0 | c(E′;). P).

C Proofs

In this appendix restates the lemmata and theorems presented earlier in the pa-
per and gives the proofs of their correctness. The statements in this appendix
should be interpreted over the full calculus including the constructs for asym-
metric cryptography in Section 8 and, thus, the proofs are given for this general
case. Note, however, that the statements are formulated in precisely the same
way as for the restricted calculus in Section 4 and Section 5 and of course also
hold in the more restricted setting.

Lemma 3 (Substitution)

• ρ |= E : ϑ and bE′c ∈ ρ(bxc) imply ρ |= E[E′/x] : ϑ.

• (ρ, κ) |=RM P : ψ and bE′c ∈ ρ(bxc) imply (ρ, κ) |=RM P [E′/x] : ψ.

Proof. Both proofs are by a straightforward structural induction. 2

Lemma 4 (Congruence) If P ≡ Q then (ρ, κ) |=RM P : ψ iff (ρ, κ) |=RM Q : ψ.

Proof. It suffices to inspect the rules for ≡ and to recall that the analysis
only involves canonical names; that it ignores restrictions; that associativity
and commutativity of ∧ reflects the same properties of | and that any triple is
a valid estimate for 0. 2

Theorem 6 (Subject reduction)
If P →R Q and (ρ, κ) |=RM P : ψ then also (ρ, κ) |=RM Q : ψ.

39

Proof. We prove the more general result

• (ρ, κ) |=RM P : ψ and P →R Q imply (ρ, κ) |=RM Q : ψ; furthermore, if
ψ = ∅ then P →RM Q.

by induction on the inference P →R Q (as given in Table 1 and Table 7).
In case (Com) we assume

(ρ, κ) |= 〈E1, · · · , Ek〉. P | (E′
1, · · · , E

′
j ; xj+1, · · · , xk). Q : ψ which amounts to:

∧k
i=1 ρ |= Ei : ϑi (1)

∀V1, · · · , Vk : ∧k
i=1 Vi ∈ ϑi ⇒ 〈V1, · · · , Vk〉 ∈ κ (2)

(ρ, κ) |=RM P : ψ (3)

∧j
i=1 ρ |= E′

i : ϑ′i (4)

∀〈V1, · · · , Vk〉 ∈ κ : ∧j
i=1 Vi E ϑ′i (5)

⇒ ∧k
i=j+1 Vi ∈ ρ(bxic) ∧ (ρ, κ) |=RM Q : ψ

Furthermore we assume that ∧j
i=1 bbEicc = bbE′

icc and we have to prove (ρ, κ) |=
P | Q[Ej+1/xj+1, · · · , Ek/xk]. From (1) we get ∧k

i=1 bEic ∈ ϑi since ∧k
i=1 fv(Ei) =

∅ and then (2) gives 〈bE1c, · · · , bEkc〉 ∈ κ. From (4) and the assumption
∧j

i=1 bbEicc = bbE′
icc we get ∧j

i=1 bEic E ϑ′i. Now (6) gives ∧k
i=j+1 bEic ∈

ρ(bxic) and (ρ, κ) |=RM Q : ψ. The substitution result (Lemma 3) then gives
(ρ, κ) |=RM Q[Ej+1/xj+1, · · · , Ek/xk] : ψ and together with (3) this gives the
required result. The second part of the result holds trivially.

In case (Decr) we assume (ρ, κ) |= decrypt ({E1, · · · , Ek}
`
E0

[dest L]) as

{E′
1, · · · , E

′
j ; xj+1, · · · , xk}

`′

E′

0
[orig L′] in P : ψ which amounts to:

∧k
i=0 ρ |= Ei : ϑi (6)

∀V0, V1, · · · , Vk : ∧k
i=0 Vi ∈ ϑi (7)

⇒ {V1, · · · , Vk}
`

V0
[dest L] ∈ ϑ

∧j
i=0 ρ |= E′

i : ϑ′i (8)

∀{V1, · · · , Vk}
`
V0

[dest L] ∈ ϑ : ∧j
i=0 Vi E ϑ′i (9)

⇒ ∧k
i=j+1 Vi ∈ ρ(bxic) ∧

(¬RM(`,L′, `′,L) ⇒ (`, `′) ∈ ψ) ∧
(ρ, κ) |=RM P : ψ

Additionally, we assume ∧j
i=0 bbEicc = bbE′

icc and we have to prove (ρ, κ) |=
P [Ej+1/xj+1, · · · , Ek/xk]. From (6) and ∧k

i=0 fv(Ei) = ∅ we get ∧k
i=0 bEic ∈ ϑi

and then (7) gives {bE1c, · · · , bEkc}
`
V0

[dest L] ∈ ϑ. From ∧j
i=0 bbEicc = bbE′

icc

and (8) we get ∧j
i=0 bEic E ϑ′i and then (9) gives ∧k

i=j+1 bEic ∈ ρ(bxic) and
(ρ, κ) |=RM P : ψ. Using the substitution Lemma 3 we get the required result.
For the second part of the result we observe that ¬RM(`,L′, `′,L) ⇒ (`, `′) ∈ ψ
follows from (9) and since ψ = ∅ it must be the case that RM(`,L′, `′,L). Thus
the conditions of the rule (Decr) are fulfilled for →RM.

40

In case (A-Decr), recall that the terms E0 and E′
0 actually are the pair of

keys m+,m−. Then, we proceed as for the case above, changing the additional
assumption as follows: ∧j

i=1 bbEicc = bbE′
icc ∧ {E0, E

′
0} = {m+,m−}.

The cases (Par) and (Res) follow directly from the induction hypothesis.
The case (Congr) also uses Lemma 4 about the congruence. 2

Theorem 7 (Static check for reference monitor)
If (ρ, κ) |=RM P : ∅ then RM cannot abort P .

Proof. We show that there exist no Q,Q′ such that P →∗ Q → Q′ and
P →∗

RM Q /→RM. Suppose per absurdum that such Q and Q′ exist. Theorem 6
about subject reduction applied to P →∗ Q gives (ρ, κ) |=RM Q : ∅. The gener-
alised subject reduction result applied to Q → Q′ gives Q →RM Q′ which is a
contradiction. 2

Theorem 8 (Soundness of Dolev-Yao condition)
If (ρ, κ, ψ) satisfies FDY

RM of type (Nf ,Aκ,A
+

Enc) then (ρ, κ) |=RM Q : ψ for all
attackers Q of type (Nf ,Aκ,A

+

Enc).

Proof. A process Q has extended type ({z•},Nf ∪ {n•,m
+
• ,m

−
• },Aκ,A

+

Enc)
whenever the canonical variables are in {z•}, the canonical names are in bNfc∪
{n•,m

+
• ,m

−
• }, all the arities used for sending or receiving are in Aκ and all the

arities used for both symmetric and asymmetric encryption or decryption are
in A+

Enc. By structural induction on Q we prove:

• If (ρ, κ, ψ) satisfies FDY
RM of type (Nf ,Aκ,A

+

Enc) then (ρ, κ) |=RM Q : ψ for
all attackers Q of extended type ({z•},Nf ∪ {n•,m

+
• ,m

−
• },Aκ,A

+

Enc).

The most interesting case is when the considered attacker Q is the process
decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}

`•

E0
[orig C] in P and here we need to find

ϑ and ϑ0, · · · , ϑj and show

(a) ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi

and (b) for all {V1, · · · , Vk}
`
V0

[dest L] ∈ ϑ with ∧j
i=0Vi E ϑi that:

(b1) ∧k
i=j+1 Vi ∈ ρ(bxic)

(b2) ¬RM(`, C, `•,L) ⇒ (`, `•) ∈ ψ

(b3) (ρ, κ) |=RM P : ψ

We choose ϑ as the least set such that ρ |= E : ϑ and prove that ϑ ⊆ ρ(z•);
intuitively, if E has free variables z1, · · · , zm then ϑ consists of all those values
bE[V1/z1, · · · , Vm/zm]c where Vi ∈ ρ(z•). We perform a similar development

for ϑ0, · · · , ϑj and this takes care of (a). Next consider {V1, · · · , Vk}
`

V0
[dest L] ∈

ϑ and assume that (c1) V0 E ϑ0. Since ϑ0 ⊆ ρ(z•), as above, we have (c2)
V0 E ρ(z•) and by FDY

RM we get Vi ∈ ρ(z•) and ¬RM(`, C, `•,L) ⇒ (`, `•) ∈ ψ.

41

Since bxic = z• this takes care of (b1) and (b2); furthermore P has extended type
({z•},Nf∪{n•,m

+
• ,m

−
• },Aκ,A

+

Enc) and the induction hypothesis then takes care
of (b3).

For the case of public key decryption one follows the same argument but
with Q on the form decrypt E as {|E1, · · · , Ej ; xj+1, · · · , xk|}

`•

E0
[orig C] in P .

However, one must change (b) to become “for all {|V1, · · · , Vk|}
`
V0

[dest L] ∈ ϑ

such that ∀(m+,m−) : ∀V ′
E ϑ0 : {V0, V

′
0} = {m+,m−} and ∧j

i=1Vi E ϑi”. Simi-
larly, the assumption (c1) must be changed accordingly (to become “V ′

0 E ϑ0 and
{V0, V

′
0} = {m+,m−} for somem+,m−”) as must (c2) (to become “V ′

0 E ρ(z•)”).
The remaining cases are similar. 2

We can now show the close connection between the Dolev-Yao condition and
the notion of “hardest attackers” [55]. This result also shows the “completeness”
of the Dolev-Yao condition: we have not needlessly added capabilities that
cannot be possessed by real attackers:

Theorem 9 (Existence of “Hardest Attacker”)
There exists an attacker Qhard of type (Nf ,Aκ,A

+

Enc) such that the formula
(ρ, κ) |=RM Qhard : ψ is equivalent to the formula FDY

RM of type (Nf ,Aκ,A
+

Enc).

Proof. Qhard is !(|k∈Aκ
Qk

1 | |k∈A+

Enc
Qk

2 | |k∈A+

Enc
Qk

3 | |k∈Aκ
Qk

4 | Q5 |

|k∈A+

Enc
Qk

6 | |k∈A+

Enc
Qk

7 | Q8) where Qk
i is obtained from the ith component of FDY

RM

in Table 3 for 1 ≤ i ≤ 5 and in Table 9 for 6 ≤ i ≤ 8. We assume that there
are variables z, z0, z1, · · · having canonical representative z• and that 1 ∈ Aκ

(as discussed in Section 5). For Nf = {n1, · · · , nm} ∪ {m+
1 ,m

−
1 · · · ,m+

p ,m
−
p }

we then take:
Qk

1 = (; z1, · · · , zk). 0

Qk
2 = (; z). (; z0). decrypt z as {; z1, · · · , zk}

`•
z0

[orig C] in 0

Qk
3 = (; z0). · · · (; zk). 〈{z1, · · · , zk}

`•
z0

[dest C]〉. 0 | (; z). 0

Qk
4 = (; z1). · · · (; zk). 〈z1, · · · , zk〉. 0

Qk
5 = 〈n•〉. 0 | 〈n1〉. 0 | · · · | 〈nm〉. 0 | 〈m+

1 〉. 0 | 〈m−
1 〉. 0 | · · · |

〈m+
p 〉. 0 | 〈m−

p 〉. 0 | (; z). 0

Qk
6 = (; z). (; z0). decrypt z as {|; z1, · · · , zk|}

`•
z0

[orig C] in 0

Qk
7 = (; z0). · · · (; zk). 〈{|z1, · · · , zk|}

`•
z0

[dest C]〉. 0 | (; z). 0

Qk
8 = 〈m+

• 〉. 0 | 〈m−
• 〉. 0 | (; z). 0 2

Theorem 10 (Authentication) If Psys guarantees static authentication then
Psys guarantees dynamic authentication.

Proof. If (ρ, κ) |=RM Psys : ∅ and (ρ, κ, ∅) satisfies FDY
RM then, by Theorems 7

and 8, RM does not abort Psys | Q regardless of the choice of attacker Q. 2

42

