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Static, vibration and buckling behavior of laminated composite and sandwich skew plates is studied using an 
efficient C0 FE model developed based on refined higher order zigzag theory. The C0 FE model satisfies the inter-
laminar shear stress continuity at the interfaces and zero transverse shear stress conditions at plate top and 
bottom. In this model, the first derivatives of transverse displacement have been treated as independent variables 
to overcome the problem of C1 continuity associated with the plate theory. The C0 continuity of the present 
element is compensated in the stiffness matrix formulation by adding a suitable term. In order to avoid stress 
oscillations observed in the displacement based finite element, the stress field derived from temperature is made 
consistent with the total strain field by using field consistent approach. Numerical results are presented for 
different static, vibration and buckling problems by applying the FE model under thermo mechanical loading, 
where a nine noded C0 continuous isoparametric element is used. It is observed that there are very few results 
available in the literature on laminated composite and sandwich skew plates based on refined theories. As such 
many new results are also generated for future reference. 
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1. Introduction 
 
 Composite materials are widely used in many engineering applications due to their high 
stiffness/strength to weight ratio. Laminated composite structures are weak in shear due to their low shear 
modulus compared to extensional rigidity. Considerable research (Reddy and Palaninathan, 1995; Jaunky et 
al. 1995; Wang, 1997; Babu and Kant, 1999) has been published on buckling response of skew composite 
laminates. In these investigations, numerical methods such as the finite element method, the Rayleigh-Ritz 
method, etc. are used. Reddy and Palaninathan (1995) used an triangular finite element based on the classical 
laminated plate theory. Jaunky et al. (1995) and Wang (1997) employed the Rayleigh-Ritz method 
incorporating first-order shear deformation effects. Babu and Kant (1999) presented two C0 shear deformable 
finite element formulations for the buckling analysis of skew laminated composite and sandwich panels. A 
16-node bi-cubic Lagrange element is used in all the formulations. Haldar (2002) and Sheikh et al. (2002) 
used a high precision triangular element based on the first order shear deformation theory for both cross ply 
and angle ply skew laminate. In all these investigations skew laminates subjected to only mechanical loads 
are considered. In the case of skew laminated composite and sandwich plates subjected to thermal loads, 
there are few studies (Prabhu and Durvasula, 1974a; 1974b; 1976) available on thermal buckling of isotropic 
skew plates. Kant and Babu (2000) employed higher order shear deformation theory based on finite element 
models for the thermal buckling analysis of skew laminated composite and sandwich plates subjected to 
thermal loading. Prakash et al. (2008) investigated thermal postbuckling behavior of functionally graded 
material of skew plates. Vosoughi et al. (2011) analyzed postbuckling behavior of laminated composite skew 
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plates subjected to thermal loading. There are virtually no papers available in the open literature for the skew 
laminated composite and sandwich plates based on the refined higher order shear deformation theory. 
Keeping all the aspects in view an attempt has been made to analyze skew composite and sandwich plates by 
using a nine noded C0 finite element model based on the refined higher order shear deformation theory. 
 
2. Formulation 
 
 The in-plane displacement fields for the refined higher order zigzag theory are taken as below 
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where 0u�  denotes the in-plane displacement of any point on the mid surface, nu and nl  represent the number 

of upper and lower layers, respectively ,k kS T� � , are the slopes of k-th layer corresponding to upper and 
lower layers, respectively, ,� �	 
  are the higher order unknown terms, � � � �,k kH Z Z Z� �� are unit step 
functions and the subscript � represents the co-ordinate directions [�=1, 2 i.e., x, y in this case], respectively 
and 
 
  � �, .3u w x y�        (2.2) 
 
 Also, we have the stress strain relationship of a lamina, say kth lamina, which may be expressed in 
the structural axes system (x-y) as 
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.kQ� �� � �� �    (2.3) 

 
 Now by utilizing the transverse shear stress free condition at the top and bottom of the plate 

| /3 z h 2 0� �� ��  the components �	 and �
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 Similarly, by imposing the transverse shear stress continuity conditions at the layer interfaces the 
following expressions for S� and T�  are obtained as below 
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where , , ,k k k ka b c d�� �� �� ��  are constants depending on material and geometric properties of individual layers, 

,w �  is the derivatives of transverse displacement while � = 1, 2 and 0S� �� �  is the rotation of normal at the 
mid surface about co-ordinate directions [� =1, 2, i.e., x, y in this case].  
 By using Eqs (2.2)-(2.6) the strain vector can be evaluated by 
 
  � 
 � �� 
.H� � �   (2.8) 
 
� 
� is the strain field vector ( 5 1 ) and � 
�  is the strain vector (17×1) at the reference plane (i.e., at the mid 
plane) where the ��� is the matrix (5×17) consists of terms containing z and some term related to material 
properties 
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 The strain displacement relation may be written as below 
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where���� is the strain-displacement matrix and � 
$  is the element nodal displacement vector.  
 Thermal strain due to temperature change is given by  
 

  � 
 ,

x

x

xyth

T
T
T

0
0

�� �
# #�# ## #�� � � �
# #
#
#�

%

�

%

#
#

%  (2.12)   

 
in which �� is the change of temperature with respect to reference temperature, , ,x y xy� � �  are the thermal 
expansion coefficients in the structural axis (x-y-z) system therefore, the net strain may be written as 
 
  � 
 � 
 � 
,n th� � � � �   (2.13) 
 
in which � 
n�  is the total strain and � 
th� is the thermal strain, respectively. 
 For the present study, a nine nodedisoparametric element with seven unknowns has been usedin the 
proposed finite element model  
 
  � 
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where 	
� is the nodal force, ��� is the shape functions matrix and q is the intensity of transverse load 
respectively.  
 Thermal loading may be obtained as below 
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here i ,j =1, 2, 6 and � 
th� is the thermal strain components.  
 It can be observed that the total strain field is always interpolated to a lower order when compared to 
the thermal strain fields. Hence thermal strain fields should be consistently reconstituted to the order of in-
plane normal strain field to get accurate strains and stresses over the element domain. Therefore, this is 
accordingly taken care to make them field consistent (Naganarayana et al., 1997). 
 The following thermal case has been considered:  
uniform temperature across the depth 
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where , ,1 2 12� � �  are thermal expansion coefficients in the material axis system and cos ,c � * sins � *  and 
� is the angle between the principal material axis and structural axis.  
 In this case, ,T T% �  therefore, the thermal force 
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where, uT = temperature at top surface, LT  = temperature at bottom surface. 
 By applying the virtual work method, we get  
 
  � �� 
 � 
k P$ �   (2.20) 
 
where [k] is the element stiffness matrix and {P} is the element nodal load vector as written below. 
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 The element mass matrix may be written as 
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where i�  is the mass density of the k-th layer and [C] is the shape function matrix the geometric stiffness 

matrix gk� �� �  of an element may be written as 
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where � �kS is the in-plane stress components of the k-th layer.  
 For the linear thermal buckling problems, the stability equation can be expressed as 
 
  � � � �� �� 
 ,GK K 0� + ! �                                                                      (2.23) 
 
in which � �K  and gK� �� �  are the global elastic and geometric stiffness matrix and +  is the critical 

temperature parameter respectively. 
 In the first step, a static problem is solved to calculate thermal stresses at the Gauss points of 
different elements for the assumed temperature rise. These thermal stresses are then used to form the matrix 

kS� �
� �  of the geometric stiffness matrix and the linear thermal buckling problem is solved to calculate the 

critical buckling temperature. Finally, the  thermal vibration problem is solved an eigen value problem by 
taking different temperatures just below the calculated critical buckling temperature. 
 The equation of thermal vibration may be written as 
 
  � � � �� �{ }2K M 0, �- ! �    (2.24)  

 
where   � �K , = � � � �GK K� + , 
 
in which � �K ,  is the reduced stiffness matrix, � �M  is mass matrix, + is a fraction of critical buckling 
temperature and -  is the frequency of thermal vibration, respectively. 
 A computer program has been written as per the above formulation. The boundary conditions used in 
different cases are as follows: 
1. Simply supported boundary conditions on all sides (SSSS) 
 
  1 2 1 1u u w w 0� � � " � �              at            x =0, a, 
 
  1 2 2 2u u w w 0� � � " � �             at            y= 0, b. 
 
2. Clamped boundary conditions on all sides (CCCC) 
 
  u1=u2 =w =�1= �2 = w1= w2 = 0             at           x =0, a           and        y= 0, b. 
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3. Numerical results and discussion 
 
 Various numerical examples of skew isotropic and laminated composite plates (Fig.1) having 
different features are solved by the proposed C0 finite element and the results obtained are presented with 
some published results for necessary comparison. The whole plate (Fig.1) is modeled with different mesh 
arrangements shown in different tables. As the sides BC and AD (Fig.1) are inclined to the global axis 
system (x-y), the degrees of freedom of the nodes on these two sides are transformed in the local axis system 
( x’-y’) for incorporation of boundary conditions for edges other than clamped. Since very few results are 
available in the open literature for skew plates under thermo- mechanical loading conditions, a number of 
numerical problems of skew plate have been solved considering different boundary conditions, ply 
orientations, thickness ratio and aspect ratio. The results obtained by using the proposed finite element 
method is first validated with the published results and many new results are generated for future reference 
as there is no result available in the literature based on the refined theories for skew plates according to the 
author’s best knowledge. 
 

 
 

Fig.1. Skew plate. 
 
3.1. Simply supported skew laminate (00/900/00) under uniform loading 
 
 The present problem of simply supported square cross-ply (00/900/00) skew laminate under uniform 
loading has been analyzed for different skew angles for the thickness ratio (a/h) 100 and 10. The non-

dimensional central deflection 
3 3
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� � . The material properties of individual layers are given by: E1/E2 =25, G12 = G13 = 0.5 E2, G23 = 

0.2 E2, �12 =�13 = 0.25. 
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 The present results obtained using the proposed model based on the refined theory are presented in 
Tab.1 for different skew angles. The obtained results are compared with the results of Halder (2002) and 
Kabir (1995), respectively. The present results are in well agreement with the results of Halder (2002) and 
Kabir (1995), respectively. 
 
Table 1.  Non dimensional central deflection and in-plane normal stresses of a simply supported skew 

laminate (00/900/00) subjected to uniformly distributed load.  
 

Thickness ratio 
(a/h) 

Skew angle References w 1� 2�  

100 300 Present (8×8) 0.5446 0.6618 0.2898 
Present (12×12) 0.5436 0.6579 0.2799 
Present (16×16) 0.5436 0.6579 0.2798 
Chakrabbarti
(2003)

0.5452 0.6444 0.2629 

Haldar (2002) 0.5458 0.6348 - 
450 Present (8×8) 0.3577 0.4491 0.3279 

Present (12×12) 0.3599 0.4458 0.3181 
Present (16×16) 0.3599 0.4458 0.3181 
Chakrabbarti 
(2003)

0.3631  0.3007 

Haldar (2002) 0.3621  - 
600 Present (8×8) 0.1380 0.1971 0.2663 

Present (12×12) 0.1432 0.1984 0.2673 
Present (16×16) 0.1432 0.1989 0.2673 
Chakrabbarti 
(2003)

0.1455  0.2572 

Haldar (2002) 0.1455  - 
Kabir (1995) 0.1520  - 

10 300 Present (8×8) 0.8752 0.7057 0.4064 
Present (12×12) 0.8774 0.7043 0.4073 
Present (16×16) 0.8774 0.7040 0.4078 
Chakrabbarti 
(2003)

0.8621 0.6617 0.3709 

Haldar (2002) 0.8193 0.6005 - 
450 Present (8×8) 0.5625 0.4794 0.4141 

Present (12×12) 0.5667 0.4795 0.4167 
Present (16×16) 0.5667 0.4795 0.4167 
Chakrabbarti 
(2003)

0.5707 0.4543 0.3786 

Haldar (2002) 0.5507 0.4056 - 
600 Present (8×8) 0.2343 0.2089 0.2663 

Present (12×12) 0.2384 0.2104 0.2683 
Present (16×16) 0.2384 0.2104 0.2682 
Chakrabbarti 
(2003)

0.2505 0.2058 0.3023 

Haldar (2002) 0.2455 0.1758 - 
Kabir (1995) 0.2600 0.0852 - 
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3.2. Clamped isotropic skew plates  
 
 In this example, clamped isotropic skew plates with the thickness ratio (a/h =100) have been 
analyzed for different skew angles subjected to a uniform temperature rise throughout the thickness. The 
material properties for the isotropic plate are given by  
 
 E1 = E2 =E3 =1GPa, �12= �21 =0.3, G12 = G13= G23 = 0.3846GPa, �1 =�2 = 10-6/0C. 
 
 The normalized critical buckling temperature is defined as follows: �cr = �0 T where T is the critical 
temperature, �0 is the normalization factor which is taken as = 10-6. The critical temperature (�cr) obtained for 
the thickness ratio (a/h =100) by using the proposed FE model is shown in Tab.2. It is observed that the 
present results are close to the results of Prakash (2008) and Prabhu and Durvasula (1974). 
 
Table 2. Normalized critical buckling temperature � � cr 0T+ � �  for a clamped isotropic skew plate  

(a/h =100). 
 

Skew 
angle 

Present Prakash 
(2008)

Prabhu 
(1974) 

00 3.7509 3.7374 3.7100
150 3.9895 3.9782 3.9500
300 4.9080 4.8417 4.800
450 7.3124 7.0110 6.9200

 
3.3. Symmetric square cross-ply (00/900/900/00) skew laminate 
 
3.3.1.  
 
 The present problem of a symmetric cross-ply (00/900/900/00) skew laminate for different skew 
angles subjected to a uniform temperature rise throughout the thickness is considered. The material 
properties are as follows E1/E2=15,G12 =G13 = 0.5 E2, G23 =0.3356E2, �12 = 0.3, �23 = 0.49, �1/�0 = 0.015, 
�2/�0 = 1.0. 
 The critical buckling temperature � �2

cr 010 T,+ �  �  obtained for the thickness ratio (a/h =100) by 

using the proposed FE model is shown in Tab.3. It is found that the results obtained using the present FE 
model are quite close to Kant et al. (2000) and Vosoughi et al. (2011), respectively. 
 
Table 3. Normalized critical buckling temperature � �2

cr 010 T,+ �  �  for a skew laminate (00/900/900/00)  

(a/h =100). 
 

Boundary 
Conditions 

References Skew 
angle

   

00 150 300 450 
SSSS Present 0.0998 0.1019 0.1123 0.1443 

Kant (2000) 0.0996 0.1017 0.1116 0.1427 
Vosoughi (2011) - 0.1018 0.1118 0.1427 

CCCC Present 0.3385 0.3464 0.3592 0.4206 
Kant (2000) 0.3348 0.3441 0.3572 0.4169 
Vosoughi (2011)  0.3446 0.3578 0.4179 
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3.3.2.  
 
 In this example, a symmetric cross-ply (00/900/900/00) skew laminate for different skew angles 
subjected to uniform temperature rise throughout the thickness is considered. The material properties are  
same as in section 3.3.1. The critical buckling temperature � �2

cr 010 T,+ �  �  obtained for the thickness ratio 

(a/h =10) by using the proposed FE model is shown in Tab.4. It is observed that the results obtained using 
the present FE model are quite close to Kant et al. (2000) and Vosoughi et al. (2011), respectively. 
 
Table 4.  Normalized critical buckling temperature � �cr 0T+ � �  for a cross-ply (00/900/900/00) skew laminate 

(a/h =10). 
 

Boundary 
Conditions  

References Skew angle
00 150 300 450 

SSSS Present 0.0756 0.0770 0.0829 0.0983 
Kant (2000) 0.0757 0.0767 0.0821 0.0985 
Vosoughi 
(2011) 

- 0.0794 0.0860 0.1041 

CCCC Present 0.1638 0.1654 0.1725 0.1939 
Kant (2000) 0.1601 0.1618 0.1690 0.1893 
Vosoughi 
(2011) 

- 0.1712 0.1799 0.2060 

 
4. Conclusions 
 
 An analysis of skew laminated composite and sandwich skew plates is mode using an efficient C0 FE 
model developed on the basis of the refined higher order zigzag theory. The C0 FE model satisfies the inter-
laminar shear stress continuity at the interfaces and zero transverse shear stress conditions at the plate top 
and bottom. In this model, the first derivatives of transverse displacement have been treated as independent 
variables to overcome the problem of C1 continuity associated with the plate theory. The C0 continuity of the 
present element is compensated in the stiffness matrix formulation by adding a suitable term. It has been 
established through various numerical examples that the present higher order zigzag theory can accurately 
predict the deflection vibration and buckling of general laminated composite and sandwich plates.  
 
Nomenclature 
 
 a – dimension of the plate along x - axis 
 � �B  – strain displacement matrix 
 [B] – strain-displacement matrix (derivative of shape functions) 
 b – dimension of the plate along y - axis 
 [D] – rigidity matrix 
 E1 – Young’s modulus in the major principal material direction of the lamina 
 E2 – Young’s modulus in the transverse  material direction of the lamina 
 E3 – Young’s modulus in the transverse material direction (Per. to plane) of the lamina 
 G12 – in-plane shear modulus 
 G13, G23 – out of plane shear moduli 
H(z-zi), H(-z+zj) – heavy side unit step functions 
 h – overall thickness of the structure 
  hc – total thickness of the core in a sandwich structure 
 hf – total thickness of face sheets in a sandwich structure 
 [K] – global stiffness matrix 
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 � �K ,  – reduced stiffness matrix 
 [KG] – global geometric stiffness matrix 
 ek� �

� �  – element stiffness matrix 

 gk� �� �  – element geometric stiffness matrix 
 [M] – global mass matrix 
 em� �

� �  – element mass matrix 

 � �N  – shape function matrix 
 nl – number of layers below the mid plane of the laminated structure 
 nu – number of layers above the mid plane of the laminated structure 
 {P} – global load vector 
 {Pe} – element load vector 
 � 
p  – element nodal load vector 

 � 
kQ  – rigidity matrix  

 q – intensity of transverse loading 
 q – intensity of transverse load 
 kS� �

� �  – in plane stress components of the k-th layer  

 kS�  – k-th layer corresponding to upper layers 

 0S� �� "  – rotation of normal at the mid surface 
 LT  – temperature at bottom surface 
 UT  – temperature at top surface 

 kT�  – k-th layer corresponding to lower layers 

 0u�  – in-plane displacement of any point on mid surface 
 x, y – Cartesian co-ordinates/plane 
 z – thickness co-ordinate/transverse direction 
 �=1, 2  – x, y direction respectively 
 �0 – normalization factor 
 , ,1 2 12� � �  – thermal expansion coefficients in the material axis system 
 , ,x y xy� � �  – thermal expansion coefficients in the structural axis (x-y-z) system 
 , ,1 2 12. . .  – moisture expansion coefficients in the material axis system 
 , ,x y xy. . .  – moisture expansion coefficients in the structural axis (x-y-z) system 
 T%  – change of temperature 
 � 
$  – nodal displacement vector 
 � 
$  – nodal unknown vector 
 � 
th�  – thermal strain 
 � 
�  – strain field vector 
 � 
n�  – total strain 
 *  – fiber orientation angle with respect to the principal material axis 
 
 – buckling load parameter 
 cr+  – critical buckling temperature 
 ,12 21/ /  – in-plane major and minor Poision’s ratios 
 ,13 31/ /  – out of plane (x-z) major and minor Poisson’s ratios 
 ,� �	 
  – higher order unknowns 
 c�  – mass density of core layer in a sandwich plate 
 f�  – mass density of face layer in a sandwich plate 
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 i�  – mass density of the i-th layer 
 i�  – in-plane normal stresses 
 ,xx yy� �  – in-plane normal stresses 
 ,xy xy� 0  – in-plane shear stress 
 � 
�  – stress vector at any point of the plate 
 ij0  – in-plane shear stress 
 ,xz yz0 0  – transverse shear stresses 
 � 

  – mode shape vector for free vibration 
 � 
"  – mode shape vector for buckling 
 -  – frequency of vibration 
 
Subscript 
 
 i , j – counters 
 k – counter  
 l – lower  
 u – upper 
 x – x- direction 
 y – y- direction 
 12, 21 – plane directions 
 13, 31, 23, 32 – transverse directions 
 
Superscript 
 
 i – layer/interface 
 j – layer/interface 
 
Abbreviations 
 
 GPa – Gega Pascal 
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