
 Abdul Rahman et al. / Malaysian Journal of Fundamental and Applied Sciences
Special Issue on Natural Sciences and Mathematics (2018) 457-462

457

Static Watson-Crick regular grammar

Aqilahfarhana Abdul Rahman a, *, Wan Heng Fong a, Nor Haniza Sarmin a, Sherzod Turaev b, Nurul
Liyana Mohamad Zulkufli b

a Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
b Department of Computer Science, Faculty of Information and Communication Technology, International Islamic University Malaysia, 53100 Kuala

Lumpur, Malaysia

* Corresponding author: aqilahfarhana_13@yahoo.com

Article history
Received 3 May 2018
Revised 25 August 2018
Accepted 11 September 2018
Published Online 25 October 2018

Graphical abstract

Abstract

DNA computing, or more generally, molecular computing, is a recent development at the interface of
computer science and molecular biology. In DNA computing, many computational models have been
proposed in the framework of formal language theory and automata such as Watson-Crick grammars
and sticker systems. A Watson-Crick grammar is a grammar model that generates double stranded
strings, whereas a sticker system is a DNA computing model of the ligation and annealing operations
over DNA strands using the Watson-Crick complementarity to form a complete double stranded DNA
sequence. Most of the proposed DNA computing models make use of this concept, including the
Watson-Crick grammars and sticker systems. Watson-Crick grammars and their variants can be
explored using formal language theory which allows the development of new concepts of Watson-Crick
grammars. In this research, a new variant of Watson-Crick grammar called a static Watson-Crick
regular grammar is introduced as an analytical counterpart of sticker systems. The computation of a
sticker system starts from a given set of incomplete double stranded sequence to form a complete
double stranded sequence. Here, a static Watson-Crick regular grammar differs from a dynamic
Watson-Crick regular grammar in generating double stranded strings: the latter grammar produces
each strand string “independently” and only check for the Watson-Crick complementarity of a
generated complete double stranded string at the end, while the former grammar generates both
strand strings “dependently”, i.e., checking for the Watson-Crick complementarity for each complete
substring. In this paper, computational properties of static Watson-Crick regular grammars are
investigated to correlate with the Chomsky hierarchy and hierarchy of the families of dynamic Watson-
Crick regular languages. The relationship between families of languages generated by static Watson-
Crick regular grammars with several variants of sticker systems, Watson-Crick regular grammars and
Chomsky grammars are presented by showing the hierarchy.

Keywords: Sticker system, Watson-Crick grammar, regular grammar, computational power, Chomsky
hierarchy

© 2018 Penerbit UTM Press. All rights reserved

INTRODUCTION

Deoxyribonucleic acid (DNA) computing appears to be a challenge

in designing new types of computers which differ from their classical

counterparts in a fundamental way, which is to solve a wide spectrum

of computationally intractable problems. DNA molecules are double

stranded structures composed of four nucleotides; 𝐴 (adenine), 𝐶

(cytosine), 𝐺 (guanine), and 𝑇 (thymine), paired as 𝐴 − 𝑇 and 𝐶 − 𝐺

according to the so-called Watson-Crick complementarity. Another

feature of DNA molecules is the massive parallelism of DNA strands

which allows the construction of many copies of DNA strands and

carries out operations on encoded information simultaneously. The use

of these two fundamental features of DNA molecules has illustrated

that DNA-based computers can solve many computationally intractable

problems such as Hamiltonian path problem [1], the satisfiability

problems ([2],[3],[4]), the maximal clique problem [5], NP-complete

graph based problems [6] and others.

DNA molecular operations motivate the introduction of different

formal language tools such as recognition devices (automata) and

generative devices (splicing systems, sticker systems, grammars and

others), and the investigation of structures and properties of biological

sequences. In 1987, Head [7] introduced the first formal tool

(theoretical model) for DNA-based computation that uses the splicing

operation, known as splicing systems. Following that, in 1998 Kari et

al. [8] introduced another model of DNA computation which is the

sticker system, a language generating device based on the sticker

operation. The sticker operation was first used and performed in

Adleman's experiment in 1994 to show how biological experiments are

used to solve the Hamiltonian path problem for a simple graph [1]. The

operation starts from a set of incomplete double stranded sequences

(axioms) and two sets of single stranded complementary sequences.

When compared to the splicing operation in a splicing system, the

sticker operation is more advanced because it uses no enzymes and

requires no strands extensions [9].

On the other hand, Freund et al. [10] proposed the Watson-Crick

automata (WKA) which is one of the mathematical models used in

DNA computation. WKA is an extension of finite automata with the

addition of two reading heads on double stranded sequences. The

symbols at the corresponding positions from the two strands of input

are related complementarily, similar with the Watson-Crick

complementarity of DNA nucleotides. The development of the Watson-

Crick automata in the grammatical area starts in 2012 when

Subramanian et al. [11] introduced the Watson-Crick (WK) regular

grammar and it has been modified in [12]. The research is motivated by

 𝐒𝐑𝐄𝐆 𝐖𝐊𝐑𝐄𝐆

 𝑹𝑬𝑮 = 𝑹𝑺𝑳 𝒏 = 𝑶𝑺𝑳(𝒏)

RESEARCH ARTICLE

Abdul Rahman et al. / Malaysian Journal of Fundamental and Applied Sciences
Special Issue on Natural Sciences and Mathematics (2018) 457-462

458

the synthesis processes in DNA replication which can be simulated by

derivations in the WK grammars. Although these WK grammars use

different restriction of production rules, they all generate double-

stranded strings dynamically: the WK complementarity can only be

checked after generating both the strands of a complete double-stranded

string. In other words, the WK grammars produce each stranded string

“independently” and only check for the WK complementarity of a

complete generated double stranded string at the end. On the other

hand, they cannot fully describe the replication and synthesis behavior

of DNA molecules. Motivated by the WK regular grammar, a static WK

(sWK) regular grammar is proposed as an analytical counterpart of the

sticker system and uses rules as in a regular grammar. This new

theoretical model generates both stranded strings “dependently”, i.e.,

checking for WK complementarity of each complete substring and fully

illustrate the replication of DNA in DNA molecules.

This paper is organized as follows: Section 1 introduces the

background of the research. In Section 2, some preliminary concepts

including the basic terms, theorem and definitions of formal language

theory, sticker systems and automata are presented. Next, the definition

of sWK grammars and the language generated by these grammars

together with some examples are discussed and shown in Section 3. In

Section 4, the computational power of sWK regular grammars is

investigated and presented.

In the next section, some preliminaries which are used in this paper

are discussed.

PRELIMINARIES

This section includes some preliminary concepts which involve the

basic terms, theorem and definitions that are used in this paper. The

reader may refer to ([13],[14],[15]) for detailed information regarding

the basic concepts of formal language theory, sticker systems and

automata. In this paper, the symbol ⊆ denotes the inclusion while ⊂
denotes the strict (proper) inclusion. The membership of an element to

a set is denoted by ∈ and the empty set is denoted by the symbol ∅. The

power set of 𝑋 is denoted by 2𝑋.

Let 𝑇 be a finite alphabet. Then, 𝑇∗ is the set of all finite strings

(words) over 𝑇. A string with no symbols, or we called it as empty

string is denoted by 𝜆. The set 𝑇∗ always contains 𝜆 and to exclude the

empty string, the symbol 𝑇+ is defined as the set of all nonempty finite

strings over 𝑇 where 𝑇+ = 𝑇∗ − {𝜆}.
A Chomsky grammar (sometimes simply called a grammar) is a set

of rule formation for rewriting strings. Therefore, a grammar acts as a

mechanism to describe languages mathematically; in other words,

acting as a language generator. A Chomsky grammar is defined as a

quadruple

𝐺 = 𝑁, 𝑇, 𝑆, 𝑃

where the alphabet 𝑁 is defined as the nonterminal alphabet, 𝑇 is the

terminal alphabet, 𝑆 ∈ 𝑁 is the axiom or start alphabet, and 𝑃 ⊆
 𝑁 ∪ 𝑇 ∗𝑁 𝑁 ∪ 𝑇 ∗ × 𝑁 ∪ 𝑇 ∗ is the set of production rules of 𝐺. The

rule 𝑥, 𝑦 ∈ 𝑃 is written in the form of 𝑥 → 𝑦 where 𝑥 ∈ 𝑁 ∪ 𝑇 + and

𝑦 ∈ 𝑁 ∪ 𝑇 ∗.
We say that 𝑢 directly derives 𝑣 or 𝑣 is derived from 𝑢 with respect

to 𝐺 which is written as 𝑢 ⇒ 𝑣 if and only if

𝑢 = 𝑢1𝑥𝑢2, 𝑣 = 𝑢1𝑦𝑢2,

for some 𝑢1𝑢2 ∈ 𝑁 ∪ 𝑇 ∗ and 𝑥 → 𝑦 ∈ 𝑃.

A grammar normally generates many strings by applying the rules

in different orders. Here, the set of all terminal strings is the language

generated by the grammar which is defined by

𝐿 𝐺 = {𝑤 ∈ 𝑇∗: 𝑆 ⇒∗ 𝑤}.

The Chomsky grammar is classified depending on their respective

form of production rules. A grammar 𝐺 = 𝑁, 𝑇, 𝑆, 𝑃 is called [14]:

(i) context-sensitive, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 = 𝑢1𝐴𝑢2,
𝑣 = 𝑢1𝑥𝑢2, for 𝑢1, 𝑢2 ∈ 𝑁 ∪ 𝑇 ∗, 𝐴 ∈ 𝑁 and 𝑥 ∈ 𝑁 ∪ 𝑇 +.

(ii) context-free, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 ∈ 𝑁.

(iii) linear, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 ∈ 𝑁 and 𝑣 ∈ 𝑇∗ ∪
𝑇∗𝑁𝑇∗.

(iv) right-linear, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 ∈ 𝑁 and 𝑣 ∈ 𝑇∗ ∪
𝑇∗𝑁.

(v) left-linear, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 ∈ 𝑁 and 𝑣 ∈ 𝑇∗ ∪
𝑁𝑇∗.

(vi) regular, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 ∈ 𝑁 and 𝑣 ∈ 𝑇 ∪ 𝑇𝑁 ∪
{𝜆}.

The family of languages generated by regular grammars is equal to

the family of languages generated by right- or left-linear grammars. All

those families of languages generated by context-sensitive grammars,

context-free grammars, linear grammars and regular grammars are

denoted as CS, CF, LIN and REG respectively. Other than that, RE

and FIN represent the family of recursive enumerable language and

finite language. Hence, the following strict inclusion holds for Chomsky

hierarchy.

Theorem 1. [14]

𝐅𝐈𝐍 ⊂ 𝐑𝐄𝐆 ⊂ 𝐋𝐈𝐍 ⊂ 𝐂𝐅 ⊂ 𝐂𝐒 ⊂ 𝐑𝐄.

As mentioned before, Watson-Crick automata (WKA) or Watson-

Crick finite automata (WKFA) is an extension of finite automata. A

finite automata (FA) can be defined as a quintuple

𝑀 = 𝑄, 𝑉, 𝑞0, 𝐹, 𝛿 ,

where 𝑄 is a finite set of states, 𝑉 is a finite set of symbols called the

input alphabet, 𝑞0 ∈ 𝑄 is the initial state, 𝐹 ⊆ 𝑄 is the set of final states

and 𝛿: 𝑄 × 𝑉 → 2𝑄 is called a transition function. The family of

languages accepted by finite automata is denoted as FA.

On the other hand, WKFA is defined as a 6-tuple

𝑀 = 𝑄, 𝑉, 𝑞0, 𝐹, 𝛿, 𝜌 ,

where 𝑄, 𝑉, 𝑞0, 𝐹 are defined as for a finite automata, 𝜌 ⊆ 𝑉 × 𝑉 is the

complementarity relation and 𝛿: 𝑄 × 〈𝑉∗ × 𝑉∗〉 → 2𝑄 is called a

transition function such that 𝛿 (𝑞, (
𝑢
𝑣
)) ≠ ∅ only for finitely many

triples 𝑞, 𝑢, 𝑣 ∈ 𝑄 × 𝑉∗ × 𝑉∗. The language accepted by WKFA 𝑀 is

𝐿 𝑀 = {𝑢: [
𝑢
𝑣
] ∈ 𝑊𝐾𝜌 𝑉 } and 𝑞0 [

𝑢
𝑣
] →∗ [

𝑢
𝑣
] 𝑞,

where 𝑞 ∈ 𝐹. The family of languages accepted by finite automata is

denoted as WKFA.

The definitions of Watson-Crick grammars are presented as

follows.

Definition 1. [12] A Watson-Crick (WK) grammar 𝐺 = 𝑁, 𝑇, 𝜌, 𝑆, 𝑃
is called

 regular if each production has the form 𝐴 → 〈𝑢/𝑣〉 where

𝐴, 𝐵 ∈ 𝑁 and 〈𝑢/𝑣〉 ∈ 〈𝑇∗/𝑇∗〉.
 linear if each production has the form 𝐴 → 〈𝑢1/𝑣1〉𝐵〈𝑢2/𝑣2〉

or 𝐴 → 〈𝑢/𝑣〉 where 𝐴,𝐵 ∈ 𝑁 and 〈𝑢/𝑣〉, 〈𝑢1/𝑣1〉, 〈𝑢2/𝑣2〉 ∈
〈𝑇∗/𝑇∗〉.

 context-free if each production has the form 𝐴 → 𝛼 where

𝐴 ∈ 𝑁 and 𝛼 ∈ 𝑁 ∪ 〈𝑇∗/𝑇∗〉 ∗.
The notation 〈𝑢/𝑣〉 represents the element 𝑢, 𝑣 ⊆ 𝑉 × 𝑉 in the set of

pairs of strings and 〈𝑇∗/𝑇∗〉 is written instead of 𝑉∗ × 𝑉∗.

In order to generate or form a complete double sequence of DNA,

the sticker system uses a sticker operation on DNA molecules. Let 𝑉 be

an alphabet (a finite set of abstract symbols) for a symmetric relation

𝜌 ∈ 𝑉 × 𝑉 over 𝑉 (of complementarity). The symbol 𝑉∗ represents a

set of all strings which includes the empty string denoted as 𝜆,

composed of elements of 𝑉 and 𝑉+ is the set 𝑉∗ − {𝜆}. The set

http://www.foxitsoftware.com/shopping

Abdul Rahman et al. / Malaysian Journal of Fundamental and Applied Sciences
Special Issue on Natural Sciences and Mathematics (2018) 457-462

459

𝑊𝐾𝜌 𝑉 = [
𝑉
𝑉
]
𝜌

∗

where [
𝑉
𝑉
]
𝜌
= {[

𝑎
𝑏
] |𝑎, 𝑏 ∈ 𝑉, (

𝑎
𝑏
) ∈ 𝜌},

denotes the Watson-Crick domain associated to alphabet 𝑉 and

complementarity relation 𝜌. The elements [
𝑤1

𝑤2
] ∈ 𝑊𝐾𝜌 𝑉 are called

well-formed double stranded sequences, or also known as double

stranded sequences. The string 𝑤1 is the upper strand and 𝑤2 is the

lower strand of the molecule. Note that there is a difference between

(
𝑎
𝑏
) and [

𝑎
𝑏
]; for the pair of (

𝑎
𝑏
), there is no relation between the

elements 𝑎 and 𝑏, while [
𝑎
𝑏
] indicates that the elements in the upper

strand and lower strand complement and have the same length.

Apart from that, the set of incomplete molecules is denoted as:

𝑊𝜌 𝑉 = 𝐿𝜌 𝑉 ∪ 𝑅 𝑉 ∪ 𝐿𝑅𝜌 𝑉 ,

Where

𝐿𝜌 𝑉 = ((
𝜆
𝑉∗) ∪ (

𝑉∗

𝜆
)) [

𝑉
𝑉
]
𝜌

∗

,

𝑅𝜌 𝑉 = [
𝑉
𝑉
]
𝜌

∗

((
𝜆
𝑉∗) ∪ (

𝑉∗

𝜆
)),

𝐿𝑅𝜌 𝑉 = ((
𝜆
𝑉∗) ∪ (

𝑉∗

𝜆
)) [

𝑉
𝑉
]
𝜌

+

((
𝜆
𝑉∗) ∪ (

𝑉∗

𝜆
)).

In this research, we modified the definition of 𝐿𝑅𝜌 𝑉 according to

our grammar, where

𝐿𝑅𝜌
∗ 𝑇 = ((

𝜆
𝑇∗) ∪ (

𝑇∗

𝜆
)) [

𝑇
𝑇
]
𝜌

∗

((
𝜆
𝑇∗) ∪ (

𝑇∗

𝜆
)),

𝐿𝑅𝜌
+ 𝑇 = ((

𝜆
𝑇∗) ∪ (

𝑇∗

𝜆
)) [

𝑇
𝑇
]
𝜌

+

((
𝜆
𝑇∗) ∪ (

𝑇∗

𝜆
)),

and all the alphabet 𝑉 which was defined in 𝑊𝜌 𝑉 is changed to

alphabet 𝑇 according to the definition in the Chomsky grammar. Next,

a sticker system is defined as follows.

Definition 2. [14] A sticker system is a construct

𝛾 = 𝑉, 𝜌, 𝐴, 𝐷 ,

where 𝑉 is an alphabet, 𝜌 ∈ 𝑉 × 𝑉 is a symmetric relation, 𝐴 is finite

subset of 𝐿𝑅𝜌 𝑉 (called axioms) and 𝐷 is a finite subset of 𝑊𝜌 𝑉 ×

𝑊𝜌 𝑉 (called dominoes).

For the two sequences 𝑥, 𝑦 ∈ 𝐿𝑅𝜌 𝑉 , 𝑥 ⇒ 𝑦 if and only if 𝑦 =

𝜇(𝑢, 𝜇 𝑥, 𝑣) for some 𝑢, 𝑣 ∈ 𝐷, where 𝜇 is defined as the sticking

operation. Hence, 𝜇(𝑢, 𝜇 𝑥, 𝑣) = 𝜇 𝜇 𝑢, 𝑥 , 𝑣 since the prolongation

to the left is independent as to the one on the right such that the sticker

operation is associative. Moreover, a sequence 𝑥1 ⇒ 𝑥2 ⇒ ⋯ ⇒ 𝑥𝑘 is

obtained and is called a computation in 𝛾 as 𝑥1 ∈ 𝐴 and 𝑥𝑘 ∈ 𝑊𝐾𝜌 𝑉 .

Thus, a complete computation, 𝜎 is represented as 𝑥1 ⇒∗ 𝑥𝑘 when there

is no sticky end in the last sequence. The language generated by the

sticker system, 𝛾 is called a sticker language and it is defined by

𝐿 𝛾 = {𝑤 ∈ (
𝑉
𝑉
)
𝜌

∗

|𝑥 ⇒∗ 𝑤, 𝑥 ∈ 𝐴}.

There are several restricted variants of the sticker system which are

arbitrary, one-sided, regular, simple, simple and one-sided, or simple

and regular denoted as 𝐀𝐒𝐋 𝜶 , 𝐎𝐒𝐋 𝜶 , 𝐑𝐒𝐋 𝜶 , 𝐒𝐒𝐋 𝜶 , 𝐒𝐎𝐒𝐋 𝜶 ,
𝐒𝐑𝐒𝐋 𝜶 respectively where 𝛼 ∈ {𝑛, 𝑝, 𝑏} and the letters 𝑛, 𝑝, 𝑏
represent no restrictions, primitive and delay computation, respectively

[14]. In 1998, P�̌�un and Rozenberg [16] investigated the generative

power of several variants of sticker systems and the results of

characterizations of regular, linear, and recursively enumerable

languages were obtained. The definitions of 𝐑𝐒𝐋 𝜶 and 𝐎𝐒𝐋 𝜶 are

listed in the following.

Defintion 3. [14] A language generated from a sticker system is

defined as a regular sticker language (𝐑𝐒𝐋) if for each pair 𝑢, 𝑣 ∈
𝐷, we have either 𝑢 = 𝜆.

Defintion 4. [14] A language generated from a sticker system is

defined as a one-sided sticker language (𝐎𝐒𝐋) if for each pair 𝑢, 𝑣 ∈
𝐷, we have either 𝑢 = 𝜆 or 𝑣 = 𝜆.

The relationship between the family of regular sticker language in

sticker system with the family of regular language in Chomsky

hierachy is given in the next corollary.

Corollary 1. [14] 𝐑𝐒𝐋 𝜶 = 𝐎𝐒𝐋 𝜶 = 𝐑𝐄𝐆, 𝛼 ∈ {𝑛, 𝑝, 𝑏}.

In the next section, the definition of sWK regular grammars with

some examples are presented.

MAIN DEFINITIONS

In this section, the definition of static Watson-Crick regular

grammars which consist of right-linear and left-linear grammars are

introduced.

Definition 5. A static Watson-Crick (sWK) right-linear grammar is a

5-tuple 𝐺 = 𝑁, 𝑇, 𝜌, 𝑆, 𝑃 where 𝑁, 𝑇 are disjoint alphabets of

nonterminal and terminal respectively, 𝜌 ∈ 𝑇 × 𝑇 is a symmetric

relation (Watson-Crick complementarity), 𝑆 ∈ 𝑁 is a start symbol

(axiom) and 𝑃 is a finite set of production rules in the form of

(i) 𝑆 → [
𝑢
𝑣
] (

𝑥
𝑦)𝐴 where 𝐴 ∈ 𝑁 − {𝑆}, [

𝑢
𝑣
] (

𝑥
𝑦) ∈ 𝑅𝜌 𝑇 ;

(ii) 𝐴 → (
𝑥
𝑦)𝐵 where 𝐴, 𝐵 ∈ 𝑁 − {𝑆}, (

𝑥
𝑦) ∈ 𝐿𝑅𝜌

∗ 𝑇 ;

or

(iii) 𝐴 → (
𝑥
𝑦) [

𝑢
𝑣
] where 𝐴 ∈ 𝑁 − {𝑆}, (

𝑥
𝑦) [

𝑢
𝑣
] ∈ 𝐿𝜌 𝑇 .

Definition 6. A static Watson-Crick (sWK) left-linear grammar is a 5-

tuple 𝐺 = 𝑁, 𝑇, 𝜌, 𝑆, 𝑃 where 𝑁, 𝑇 are disjoint alphabets of

nonterminal and terminal respectively, 𝜌 ∈ 𝑇 × 𝑇 is a symmetric

relation (Watson-Crick complementarity), 𝑆 ∈ 𝑁 is a start symbol

(axiom) and 𝑃 is a finite set of production rules in the form of

(i) 𝑆 → 𝐴 (
𝑥
𝑦) [

𝑢
𝑣
] where 𝐴 ∈ 𝑁 − {𝑆}, (

𝑥
𝑦) [

𝑢
𝑣
] ∈ 𝐿𝜌 𝑇 ;

(ii) 𝐴 → 𝐵 (
𝑥
𝑦) where 𝐴, 𝐵 ∈ 𝑁 − {𝑆}, (

𝑥
𝑦) ∈ 𝐿𝑅𝜌

∗ 𝑇 ;

or

(iii) 𝐴 → [
𝑢
𝑣
] (

𝑥
𝑦) where 𝐴 ∈ 𝑁 − {𝑆}, [

𝑢
𝑣
] (

𝑥
𝑦) ∈ 𝑅𝜌 𝑇 .

Remark 1. The elements [
𝑢
𝑣
] in the set of all pairs of strings 𝑇 × 𝑇 can

be classified into two cases, whether in the form of [
𝑢
𝑣
] ≠ [

𝜆
𝜆
] or [

𝑢
𝑣
] =

[
𝜆
𝜆
].

Next, the derivation step for sWK regular grammar and the

language generated by this grammar are given.

Definition 7. Let 𝐺 = 𝑁, 𝑇, 𝜌, 𝑆, 𝑃 be a sWK regular grammar. We

say that 𝛼 derives 𝛽 in 𝐺, denoted/written as 𝛼
𝐺
⇒ 𝛽 (it is clear from the

context that we omit 𝐺 and write 𝛼 ⇒ 𝛽) if and only if

(i) 𝛼 = 𝑆 and 𝛽 = [
𝑢
𝑣
] (

𝑥
𝑦) 𝐴 where 𝛼 ⇒ 𝛽 ∈ 𝑃;

(ii) 𝛼 = [
𝑤1

𝑤2
] (

𝑥1

𝑦1
)𝐴 and 𝛽 = [

𝑤1

𝑤2
] (

𝑥1

𝑦1
) (

𝑥2

𝑦2
) 𝐵 where 𝐴, 𝐵 ∈

𝑁 − {𝑆}, [
𝑤1

𝑤2
] (

𝑥1

𝑦1
) ∈ 𝑅𝜌 𝑇 and 𝐴 → (

𝑥2

𝑦2
)𝐵 ∈ 𝑃;

http://www.foxitsoftware.com/shopping

Abdul Rahman et al. / Malaysian Journal of Fundamental and Applied Sciences
Special Issue on Natural Sciences and Mathematics (2018) 457-462

460

or

(iii) 𝛼 = [
𝑤1

𝑤2
] (

𝑥1

𝑦1
)𝐴 and 𝛽 = [

𝑤1

𝑤2
] (

𝑥1

𝑦1
) (

𝑥2

𝑦2
) [

𝑢
𝑣
] where 𝐴 ∈

𝑁 − {𝑆}, [
𝑤1

𝑤2
] (

𝑥1

𝑦1
) ∈ 𝑅𝜌 𝑇 and 𝐴 → (

𝑥2

𝑦2
) [

𝑢
𝑣
] ∈ 𝑃.

The reflexive and transitive closure of
𝐺
⇒or ⇒ is denoted by

𝐺
⇒∗ or ⇒∗ .

Definition 8. The language generated by a sWK regular grammar 𝐺
denoted by 𝐿 𝐺 , is defined as

𝐿 𝐺 = {𝑢: [
𝑢
𝑣
] ∈ 𝑊𝐾𝜌 𝑇 and 𝑆

𝐺
⇒∗ [

𝑢
𝑣
]}.

The family of languages generated by a sWK regular grammar is

denoted by SREG.

 The following example is illustrated to show the family of languages

generated by SREG.

Example 1. Let

𝐺 = {𝑆, 𝐴, 𝐵, 𝐶, 𝐷}, {𝑎, 𝑏, 𝑐, 𝑑}, { 𝑎, 𝑎 , 𝑏, 𝑏 , 𝑐, 𝑐 , 𝑑, 𝑑 }, 𝑆, 𝑃
be a sWK regular grammar and 𝑃 consists of the following rules:

𝑆 → (
𝑎
𝜆
)𝐴,

𝐴 → (
𝜆
𝑎
) [

𝑎
𝑎
] (

𝑎
𝜆
)𝐴, 𝐴 → (

𝜆
𝑎
) [

𝑏
𝑏
] (

𝑏
𝜆
)𝐵,

𝐵 → (
𝜆
𝑏
) [

𝑏
𝑏
] (

𝑏
𝜆
)𝐵, 𝐵 → (

𝜆
𝑏
) [

𝑐
𝑐
] (

𝑐
𝜆
) 𝐶,

𝐶 → (
𝜆
𝑐
) [

𝑐
𝑐
] (

𝑐
𝜆
) 𝐶, 𝐶 → (

𝜆
𝑐
) [

𝑑
𝑑
] (

𝑑
𝜆
)𝐷,

𝐷 → (
𝜆
𝑑
) [

𝑑
𝑑
].

From this, we obtain the derivation:

𝑆 ⇒∗ [𝑎
𝑛−1

𝑎𝑛−1] (
𝑎
𝜆
)𝐴

⇒ [𝑎
𝑛𝑏

𝑎𝑛𝑏
] (

𝑏
𝜆
) 𝐵

⇒∗ [𝑎
𝑛𝑏𝑚−1

𝑎𝑛𝑏𝑚−1] (
𝑏
𝜆
) 𝐵

 ⇒ [𝑎
𝑛𝑏𝑚𝑐

𝑎𝑛𝑏𝑚𝑐
] (

𝑐
𝜆
) 𝐶

⇒∗ [𝑎
𝑛𝑏𝑚𝑐𝑘−1

𝑎𝑛𝑏𝑚𝑐𝑘−1] (
𝑐
𝜆
) 𝐶

⇒∗ [𝑎
𝑛𝑏𝑚𝑐𝑘𝑑

𝑎𝑛𝑏𝑚𝑐𝑘𝑑
] (

𝑑
𝜆
)𝐷

⇒ [𝑎
𝑛𝑏𝑚𝑐𝑘𝑑𝑙

𝑎𝑛𝑏𝑚𝑐𝑘𝑑𝑙].

Hence, 𝐺 generates the language

𝐿 𝐺 = {𝑎𝑛𝑏𝑚𝑐𝑘𝑑𝑙|𝑛,𝑚, 𝑘, 𝑙 ≥ 2}.

Next, the computational power related to sWK regular grammars is

discussed in the following section.

RESULTS AND DISCUSSION

Here, the computational power of a sWK regular grammar is

investigated by finding the relationship between SREG with the

families in the Chomsky hierarchy, sticker system and also in Watson-

Crick grammar.

The following lemma immediately follows from the definition of a

sWK regular grammar.

Lemma 1. REG ⊆ SREG.

Proof. For a regular grammar 𝐺 = 𝑁, 𝑇, 𝑆, 𝑃 , its sWK variant 𝐺′ =
 𝑁, 𝑇, 𝜌, 𝑆, 𝑃′ is defined as follows:

(i) 𝜌 = { 𝑎, 𝑎 |𝑎 ∈ 𝑇},
(ii) for each production 𝐴 → 𝛼 ∈ 𝑃, every terminal string 𝑥 in 𝛼

is changed to [
𝑥
𝑥
].

Then, it is easy to see that 𝐿 𝐺′ = 𝐿 𝐺 . ■

Since the sWK grammar is a grammar counterpart of sticker

system, the relation between the regular sticker language, RSL(n) with

SREG is shown as follows in order to investigate the generative power

between these two languages.

Lemma 2. The following inclusion holds:

RSL(n) ⊆ SREG.

Proof. Let 𝛾 = 𝑇, 𝜌, 𝐴,𝐷 be a regular sticker system. We construct a

(sticker) static WK regular grammar 𝐺 = 𝑁, 𝑇, 𝑆, 𝑃 with 𝐿 𝛾 =
𝐿 𝐺 , where 𝑁 = {𝑆, 𝐵} and 𝑃 contains the productions in the form of

1. 𝑆 → 𝑥𝐵 for each 𝑥 ∈ 𝐴.

2. 𝐵 → 𝑣𝐵 for each 𝜆, 𝑣 ∈ 𝐷.

3. 𝐵 → (
𝜆
𝜆
).

First, we show that 𝐿 𝛾 ⊆ 𝐿 𝐺 . Suppose 𝑤 ∈ 𝐿 𝛾 . Then, there are

some 𝑥 ∈ 𝐴 and 𝜆, 𝑣1 , 𝜆, 𝑣2 ,⋯ , 𝜆, 𝑣𝑘 such that

[
𝑤
𝑤
] = 𝜇 𝜇 ⋯𝜇 𝜇 𝑥, 𝑣1 , 𝑣2 ⋯ , 𝑣𝑘−1 𝑣𝑘. (1)

The computation in (1) can be simulated by the following derivation in

𝐺:

𝑆 ⇒ 𝑥𝐵 ⇒ 𝑥𝑣1𝐵 ⇒ 𝑥𝑣1𝑣2𝐵 ⇒

⇒ 𝑥𝑣1𝑣2 ⋯𝑣𝑘−1𝐵 ⇒ 𝑥𝑣1𝑣2 ⋯𝑣𝑘−1𝑣𝑘𝐵

⇒ 𝑥𝑣1𝑣2 ⋯𝑣𝑘−1𝑣𝑘.
Second, we show that 𝐿 𝐺 ⊆ 𝐿 𝛾 . If 𝑤 ∈ 𝐿 𝐺 and 𝑤 =
𝑥1𝑥2𝑥3 ⋯𝑥𝑘 for some 𝑥1 ∈ 𝑅𝜌 𝑇 , 𝑥2𝑥3 ⋯𝑥𝑘 ∈ 𝐿𝑅𝜌

∗ 𝑇 ,

then

𝑆 ⇒ 𝑥1𝐵 ⇒∗ 𝑥1𝑥2𝑥3 ⋯𝑥𝑘𝐵 ⇒ 𝑥1𝑥2𝑥3 ⋯𝑥𝑘. (2)

By construction of 𝐺, 𝑥1 ∈ 𝐴 and for each 𝑥𝑖, 2 ≤ 𝑖 ≤ 𝑘 and 𝜆, 𝑥𝑖 ∈
𝐷. Thus, (2) can easily be changed to the computation in 𝛾:

[
𝑤
𝑤
] = 𝜇 𝜇 ⋯𝜇 𝜇 𝑥, 𝑣1 , 𝑣2 ⋯ , 𝑣𝑘−1 𝑣𝑘. ■

Lemma 3. The following proper inclusion holds:

RSL(n) ⊂ SREG.

Proof. From Lemma 2 and Corollary 1,

RSL(n) = REG ⊆ SREG. (3)

Next, we show that the language 𝐿 = {𝑎𝑛𝑏𝑛|𝑛 ≥ 2} ∈ SREG, which

implies the strictness of the inclusion in (3). Consider the sWK regular

grammar 𝐺 = {𝑆, 𝐴, 𝐵, 𝐶, 𝐷}, {𝑎, 𝑏}, 𝜌, 𝑆, 𝑃 where 𝑃 contains the

following productions:

(i) 𝑆 → [
𝑎
𝑎
] (

𝑎
𝜆
)𝐴, (v) 𝐶 → (

𝑏
𝜆
) 𝐵,

(ii) 𝐴 → (
𝑎
𝜆
)𝐴, (vi) 𝐶 → (

𝜆
𝑏
)𝐷,

(iii) 𝐴 → (
𝑏
𝜆
)𝐵, (vii) 𝐷 → (

𝜆
𝑏
)𝐷,

(iv) 𝐵 → (
𝜆
𝑎
)𝐶, (viii) 𝐷 → [

𝑏
𝑏
].

Thus, the derivation for each of the production rules is defined as

follows:

Step 1. From rule (i):

𝑆 ⇒ [
𝑎
𝑎
] (

𝑎
𝜆
)𝐴. (4)

Step 2. Derivation (4) can be continued with rule (ii) or rule (iii).

Without the loss of generality, we apply rule (ii) 𝑘 ≥ 0 times

and apply rule (iii):

𝑆 ⇒∗ [
𝑎
𝑎
] (

𝑎
𝜆
) (𝑎

𝑘

𝜆
)(

𝑏
𝜆
)𝐵 = [

𝑎
𝑎
] (𝑎

𝑘+1

𝜆
) (

𝑏
𝜆
) 𝐵. (5)

Step 3. Derivation (5) can only be continued with rule (iv):

𝑆 ⇒∗ [
𝑎
𝑎
] (𝑎

𝑘+1

𝜆
) (

𝑏
𝜆
) (

𝜆
𝑎
)𝐶 = [

𝑎𝑎
𝑎𝑎

] (𝑎
𝑘

𝜆
) (

𝑏
𝜆
) 𝐶. (6)

Step 4. Derivation (6) can be continued with rule (v) and rule (vi).

Rule (v) must be applied 𝑘 times to complete the lower strand

of (𝑎
𝑘

𝜆
), which results in applying rule (iv) to applied 𝑘 times,

and then we apply rule (vi):

𝑆 ⇒∗ [
𝑎𝑎
𝑎𝑎

] (𝑎
𝑘

𝑎𝑘) (
𝑏
𝜆
) (𝑏

𝑘

𝜆
)𝐶 = [𝑎

𝑘+2

𝑎𝑘+2] [
𝑏
𝑏
] (𝑏

𝑘

𝜆
)𝐷. (7)

Step 5. To complete derivation (7), we apply rule (vii) 𝑘 times and

the derivation is completed with rule (viii):

𝑆 ⇒∗ [𝑎
𝑘+2

𝑎𝑘+2
𝑏𝑘+2

𝑏𝑘+2].

http://www.foxitsoftware.com/shopping

Abdul Rahman et al. / Malaysian Journal of Fundamental and Applied Sciences
Special Issue on Natural Sciences and Mathematics (2018) 457-462

461

Thus, 𝐿 𝐺 = {𝑎𝑛𝑏𝑛|𝑛 ≥ 2}. ■

Next, we show that SREG can generate some non-context free

language, as shown in the Lemma 4.

Lemma 4.
SREG – CF ≠ ∅.

Proof. We will show that the language 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛|𝑛 ≥ 2} ∈ SREG.

Consider the sWK regular grammar 𝐺 =
 {𝑆, 𝐴, 𝐵, 𝐶, 𝐷}, {𝑎, 𝑏, 𝑐}, 𝜌, 𝑆, 𝑃 where 𝑃 contains the following

productions:

(i) 𝑆 → [
𝑎
𝑎
] (

𝑎
𝜆
)𝐴, (vi) 𝐶 → (

𝑐
𝜆
)𝐷,

(ii) 𝐴 → (
𝑎
𝜆
)𝐴, (vii) 𝐷 → (

𝜆
𝑏
) 𝐸,

(iii) 𝐴 → (
𝑏𝑏
𝜆
)𝐵, (viii) 𝐸 → (

𝑐
𝜆
)𝐷,

(iv) 𝐵 → (
𝜆
𝑎
)𝐶, (ix) 𝐸 → (

𝜆
𝑐
) 𝐸,

(v) 𝐶 → (
𝑏
𝜆
) 𝐵, (x) 𝐸 → (

𝜆
𝜆
).

The derivation using the above production rules is as follows:

Step 1. From rule (i):

𝑆 ⇒ [
𝑎
𝑎
] (

𝑎
𝜆
)𝐴. (8)

Step 2. Derivation (8) can be continued with rule (ii) or rule (iii).

Without the loss of generality, we apply rule (ii) 𝑘 ≥ 0 times

and apply rule (iii):

𝑆 ⇒∗ [
𝑎
𝑎
] (

𝑎
𝜆
) (𝑎

𝑘

𝜆
)(

𝑏𝑏
𝜆
) 𝐵 = [

𝑎
𝑎
] (𝑎

𝑘+1

𝜆
) (

𝑏𝑏
𝜆
) 𝐵. (9)

Step 3. Derivation (9) can only be continued with rule (iv):

𝑆 ⇒∗ [
𝑎
𝑎
] (𝑎

𝑘+1

𝜆
) (

𝑏𝑏
𝜆
) (

𝜆
𝑎
)𝐶 = [

𝑎𝑎
𝑎𝑎

] (𝑎
𝑘

𝜆
) (

𝑏𝑏
𝜆
) 𝐶. (10)

Step 4. Derivation (10) can be continued with rule (v) and rule (vi).

Rule (v) must be applied 𝑘 times to complete the lower strand

of (𝑎
𝑘

𝜆
), which results in applying rule (iv) 𝑘 times, and then

we apply rule (vi):

𝑆 ⇒∗ [
𝑎𝑎
𝑎𝑎

] (𝑎
𝑘

𝑎𝑘) (
𝑏𝑏
𝜆
)𝐶 = [𝑎

𝑘+2

𝑎𝑘+2] (
𝑏𝑘+2

𝜆
) (

𝑐
𝜆
)𝐷. (11)

Step 5. Derivation (11) can be continued with rule (vii) and rule

(viii). Rule (vi) must be applied 𝑘 times to complete the lower

strand of (𝑏
𝑘

𝜆
), which results in applying rule (vi) 𝑘 times,

and then we apply rule (viii):

𝑆 ⇒∗ [𝑎
𝑘+2

𝑎𝑘+2] (
𝑏𝑘+2

𝜆
) (

𝑐
𝜆
)𝐷 = [𝑎

𝑘+2

𝑎𝑘+2] [
𝑏𝑘+2

𝑏𝑘+2] [
𝑐
𝑐
] (𝑐

𝑘

𝜆
)𝐷.

 (12)

Step 6. To complete derivation (12), we apply rule (ix) 𝑘 times to

complete the lower strand of (𝑐
𝑘

𝜆
) and the derivation is

completed with rule (x):

𝑆 ⇒∗ [𝑎
𝑘+2

𝑎𝑘+2
𝑏𝑘+2

𝑏𝑘+2
𝑐𝑘+2

𝑐𝑘+2].

Thus, 𝐿 𝐺 = {𝑎𝑛𝑏𝑛𝑐𝑛|𝑛 ≥ 2}. ■

Since RSL(n) ⊂ SREG as in Lemma 3, then the following lemma

shows the relation between WKREG and SREG.

Lemma 5. The following inclusion holds:

WKREG ⊆ SREG.

Proof. Let 𝐺 = 𝑁, 𝑇, 𝜌, 𝑆, 𝑃 be a WK regular grammar (WKREG).

From 𝐺, we build a (sticker) sWK regular grammar (SREG) where 𝐺′ =
 𝑁′, 𝑇, 𝜌, 𝑆′, 𝑃′ such that 𝐿 𝐺 = 𝐿 𝐺′ .

Let 𝑃1 = {𝐴 → (
𝑥
𝑦)𝐵 ∈ 𝑃|𝑥 ≠ 𝜆 and 𝑦 ≠ 𝜆} and 𝑃2 = {𝐴 →

(
𝑥
𝑦) ∈ 𝑃|𝑥 ≠ 𝜆 and 𝑦 ≠ 𝜆}.

(i) For each production 𝑟: 𝐴 → (
𝑥
𝑦)𝐵 ∈ 𝑃1, we introduce the

new productions 𝐴 → (
𝑥
𝜆
) 𝐴𝑟, 𝐴𝑟 → (

𝜆
𝑦
)𝐵 where 𝐴𝑟 is a new

nonterminal.

(ii) For each production 𝑟: 𝐴 → (
𝑥
𝑦) ∈ 𝑃2, we introduce the new

productions 𝐴 → (
𝑥
𝜆
)𝐴𝑟 and 𝐴𝑟 → (

𝜆
𝑦
).

Sets 𝑃1
′ and 𝑃2

′ contain the productions defined in (i) and (ii) above

respectively. We set 𝑃′ = (𝑃 − 𝑃1 ∪ 𝑃2) ∪ 𝑃1
′ ∪ 𝑃2

′ ∪ {𝑆′ → 𝑆}

where 𝑆′ is a new nonterminal. Next, 𝑁′ contains all nonterminals of 𝑁
and new nonterminals introduced in the construction of new

productions. In a derivation 𝑆 ⇒∗ 𝑤 in 𝐺, each application of

production 𝑟: 𝐴 → (
𝑥
𝑦)𝐵 ∈ 𝑃1 or 𝑟: 𝐴 → (

𝑥
𝑦) ∈ 𝑃2 is replaced with the

application of the sequence of productions 𝐴 → (
𝑥
𝜆
)𝐴𝑟, 𝐴𝑟 → (

𝜆
𝑦
)𝐵 ∈

𝑃1
′ or 𝐴 → (

𝑥
𝜆
) 𝐴𝑟, 𝐴𝑟 → (

𝜆
𝑦
) ∈ 𝑃2

′ resulting in a derivation 𝑆′ ⇒

𝑆 ⇒∗ 𝑤 in 𝐺′. The similar construction also holds for the inverse case.

 ■

All the results above are sumarized in the following theorem.

Theorem 2. The relation in Fig. 1 holds where the solid arrows

represent the proper inclusions of the lower families into the upper

families, while the dotted arrow represents the inclusions.

𝐒𝐑𝐄𝐆 𝐖𝐊𝐑𝐄𝐆

𝑹𝑬𝑮 = 𝑹𝑺𝑳 𝒏 = 𝑶𝑺𝑳 𝒏

Fig. 1 The hierarchy of sWK, WK, Chomsky and sticker language
families.

CONCLUSION

In this paper, we defined a new theoretical model known as the

static Watson-Crick regular grammar and investigated its

computational power. Based on the results obtained, we can conclude

that:

(i) the family of regular languages is strictly included in the

family of static Watson-Crick regular languages,

(ii) static Watson-Crick regular grammars can generate non

context-free languages,

(iii) the family of Watson-Crick regular languages is included in

the family of static Watson-Crick regular languages.

ACKNOWLEDGEMENT

The first author would like to thank UTM Zamalah for funding her

studies at UTM under the Zamalah Scholarship. The second and third

authors would also like to thank the Ministry of Education (MOE) and

Research Management Centre (RMC), Universiti Teknologi Malaysia

(UTM) for the financial funding through Research University Grant

Vote No. 13H18. The fourth author is grateful to IIUM for financial

support through Research Initiative Grant Scheme RIGS16-368-0532.

REFERENCES

[1] L.M. Adleman, Molecular Computation of Solutions to Combinatorial
Problems, Science 266 (1994) 1021-1024.

[2] D. Boneh, C. Dunworth, R.J. Lipton, J. Sgall, On the Computational Power

of DNA, Discrete Applied Mathematics 71 (1996) 79-94.
[3] R.J. Lipton, DNA Solution of Hard Computational Probelms, Science 268

(1995) 542–545.

[4] N. Bouhmala, A Variable Neighborhood Walksat-based Algorithm for
MAX-SAT Problems, The Scientific World Journal (2014) 1-11.

http://www.foxitsoftware.com/shopping

 Abdul Rahman et al. / Malaysian Journal of Fundamental and Applied Sciences
Special Issue on Natural Sciences and Mathematics (2018) 457-462

462

[5] M. Darehmiraki, A New Solution for Maximal Clique Problem,

Biosystems 95(2) (2009) 145-149.

[6] M. Razzazi, M. Roayaei, Using Sticker Model of DNA Computing to

Solve Domatic Partition, Kernel and Induced Path Problems, Journal

Information Sciences 181(17) (2011) 3581-3600.
[7] T. Head, Formal Language Theory and DNA: An Analysis of the

Generative Capacity of Specific Recombinant Behaviors, Bulletin of

Mathematical Biology 49(6) (1987) 737-759.
[8] L. Kari, G. Paun, G. Rozenberg, A. Salomaa, S. Yu, DNA Computing,

Sticker Systems and Universality, Acta Informatica 35(5) (1998) 401-420.

[9] Y.S. Gan, W.H. Fong, N.H. Sarmin, The Generative Power of Weighted
One-Sided and Regular Sticker Systems, In AIP Conference Proceedings,

2014, 1602 (1) p. 855-862.

[10] R. Freund, G. Paun, G. Rozenberg, A. Salomaa, Watson-Crick Finite
Automata, in: Proc. 3rd DIMACS Workshop on DNA based Computers,

Philadelphia, 1997, p. 297-328.

[11] K.G. Subramanian, S. Hemalatha, I. Venkat, On Watson-Crick Automata,
In: Proc. the Second International Conference on Computational Science,

Engineering and Information Technology, Coimbatore, India, 2012, p.

151-156.

[12] N.L.M. Zulkufli, S. Turaev, M.I.M. Tamrin, M. Azeddine, Closure

Properties of Watson-Crick Grammars, In AIP Conference Proceedings,

2015, 1691 (1) p. 040032.
[13] E. Czeizler, E. Czeizler, A Short Survey on Watson-Crick Automata,

Bulletin of the EATCS 88 (2006). 104-119.

[14] G. Pǎun, G. Rozenberg, A. Salomaa, DNA Computing: New Computing

Paradigms, Springer, 1998, p. 82-153.
[15] P. Linz, An Introduction to Formal Languages and Automata, Jones and

Barlett Publishers, 2006, p. 16.

[16] G. Pǎun, G. Rozenberg, Sticker Systems, Theoretical Computer Science
204 (1998) 183-203.

